
TA’s remarks on 5011 homework 4

1. The mark distribution for Hw4 is:
Q2 (3 marks); Q4 (3 marks); Q6 (4 marks).

2. We use Caratheodory’s criterion multiple times in this exercise. A reference can be found in Royden’s
Real analysis in the name of “Carathéodory outer measure” and in the following more general setting:

Let X be a set of points and Γ a set of real-valued functions on X. It is often of interest
to know conditions under which an outer measure µ∗ will have the property that every
function in Γ will be measurable ...

3. In the solution to Q1(c), the idea is to consider set complement and make use of the result of Q1(b).
The solution also makes use of the result of Q1(a) implicitly in many places for countable additivity.
It may be rewritten as

We decompose Rn =
∪

k Ek where E1 := [−1, 1]n and Ek := [−k, k]n \ (−(k−1), k−1)n for
k ≥ 2. Fix a measurable A and an ε > 0. Define Ak := A∩Ek. By Q1(b) and the argument
in Lecture notes proof of Proposition 2.10(a), we can find an open Gk ⊇ Ac

k such that
Ln(Gk \Ac

k) < ε/2k . Define Kk := Ek ∩Gc
k. As Kk is closed and bounded, it is a compact

set. We have Ln(Ak \Kk) = Ln(Ak ∩ (Ec
k ∪ Gk)) = Ln(Ak ∩ Gk) = Ln(Gk \ Ac

k) < ε/2k.
We also have Kk ⊆ Gc

k ⊆ Ak.
By Hw3 solution to Ex8(b), we know that the boundary of a cube is of Ln-measure zero.
Therefore, we have Ln(∪Ak) =

∑
Ln(Ak) and Ln(∪Kk) =

∑
Ln(Kk), even though they

may not be disjoint unions.
If Ln(A) < ∞, we can fix some large N such that

∑∞
N Ln(Ak) < ε. The compact set K :=

∪N
k=1Kk satisfies K ⊆ A and Ln(A\K) ≤ Ln(∪N

k=1(Ak \Kk))+ ε ≤ 2ε. Else if Ln(A) = ∞,
then for each M > 0, we can find some large N such that

∑N
1 Ln(Ak) > M + ε. Then

K := ∪N
k=1Kk satisfies K ⊆ A and M + ε <

∑N
1 Ln(Ak) =

∑N
1 (Ln(Kk) +Ln(Ak \Kk)) ≤∑N

1 Ln(Kk) + ε = Ln(K) + ε. The result follows.

4. In the solution to Q2, we should first show that the boundary of a cube has zero µ-measure, so
that we can use countable additivity for any almost disjoint union of cubes without being both-
ered by their non-empty intersections. An approach can be found in Hw3 solution to Ex8(b).
Alternatively, we can consider covering given by the collection

{
[k/2ℓ, (k + 1)/2ℓ)n : ℓ ∈ N, k ∈ Z

}{
Πn

i=1[ki/2
ℓ, (ki + 1)/2ℓ) : ℓ ∈ N, (k1, · · · , kn) ∈ Zn

}
(the intervals are half closed, half open). Every

nonempty open set in Rn is a countable disjoint union of sets from this collection, c.f. Rudin’s Real
and Complex Analysis section 2.19 Euclidean Spaces.

5. In the later part of the solution to Q2, we can drop the assumption that E is bounded, because
lecture notes Ch2 Proposition 2.10 still works for unbounded E.

6. In Q2, as an alternative approach, after showing that µ = C ·Ln on open sets, to show that µ = C ·Ln

on Borel sets, we can show that µ is outer regular, for then as Ln is outer regular, we have

µ(E) = inf
G⊇E, G open

{µ(G)} = inf
G⊇E, G open

{C · Ln(G)} = C · Ln(E).

To show µ is outer regular, we may use lecture notes Ch2 Proposition 2.11 and then Proposition 2.9.

7. We will revisit the solution to Q3 and Q4 in lecture note Ch3 when studying Hausdorff measure. In
the solution to Q3, note that inf ∅ = ∞, whence “µδ(A) = ∞” includes the possibility that there is
no “δ-covering” for A. Also, note that as δ ↓ 0, we have µδ ↑ µ instead of µδ ↓ µ.
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8. In Q4, we have the following example1. In R, consider s := 0 such that

ρ(E) :=


0 if E = ∅
1 if E ̸= ∅ and diamE = 0

1 if diamE > 0.

Let δ := 2, A := {0} and B := {1}. Then

µ2(A ∪B) = 1 ̸= 1 + 1 = µ2(A) + µ2(B).

As another example2, in R2 with s := 1, δ := 10, A := [0, 1]× {0}, B := [0, 1]× {0.1}, we have

µ10(A) = inf

{∑
k

diam(Ck) : A ⊆
∪
k

Ck, diam(Ck) ≤ 10

}

= inf

{∑
k

diam(Ck) : A ⊆
∪
k

Ck, diam(Ck) ≤ 10, (x, y) ∈ Ck ⇒ y = 0

}
= L([0, 1]) = 1.

Similarly µ10(B) = 1. On the other hand, as diam([0, 1]× {0, 0.1}) =
√
1.01 ≤ 10, we have

µ10(A ∪B) ≤
√
1.01 < 2 = µ10(A) + µ10(B).

9. In Q6, instead of going through the construction steps of Riesz measure, we can make a guess first
and then justify our answer by some uniqueness result. The argument is like the following. Define a
Borel measure µ on R and show that it satisfies

Λ(f) =

∫
R
fdµ

for all f ∈ Cc(R) and blah blah blah. Conclude by using a uniqueness argument/theorem that µ is
the Riesz measure for Λ.
Such uniqueness argument can be found in e.g. Rudin’s Real and Complex Analysis Theorem 2.14
and the discussion therein.

1A student suggests this example.
2c.f. https://math.stackexchange.com/questions/2942022/. A student suggests this example.
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