- The mark distribution for Hw10 is: Q2 (3 marks); Q3 (3 marks); Q6(a)/Q8 (4 marks).
- 2. An alternative solution to Q1 is as follows. If $d\mathcal{L}^1 = hd\mu$, then for each $x \in (0,1)$, we have $h(x) = \int_{\{x\}} hd\mu = \mathcal{L}^1(\{x\}) = 0$, whence $h \equiv 0$ and $\mathcal{L}^1 \equiv 0$, which is a contradiction.
- 3. Different from the previous chapters, lecture notes Ch5 is about a new kind of math object called signed measure. Previous results of positive measures are not automatically extended to signed measures. For example, given a signed measure λ , we have not yet proved any result about whether $\lim_{n \to \infty} \lambda(E_n) = \lambda(\bigcap_{1}^{\infty} E_n)$ if $E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$.
- 4. Consequently, we may consider another solution to Q2. One approach is given by Rudin's *Real and Complex Analysis* Theorem 6.11, which makes use the result that " $\lambda \ll \mu \Rightarrow |\lambda| \ll \mu$ " (lecture notes proposition 5.4). Since $|\lambda|$ is a positive measure, previous results can be applied to it.
- 5. Up to lecture notes section 5.2, or Rudin's section 6.17, we do not know what integration with respect to a signed measure is. When we talked about integration, it involved positive measures only. It is in lecture notes section 5.3, or Rudin's section 6.18, that we start to define

$$\int f d\lambda := \int \left(f \cdot \frac{d\lambda}{d |\lambda|} \right) d |\lambda|$$

if the R.H.S. makes sense. Similarly, we have not yet introduced what $L^1(\lambda)$ means when λ is a signed measure.

6. Q3 asks

Let μ be a σ -finite measure and λ a signed measure on (X, \mathfrak{M}) satisfying $\lambda \ll \mu$. Show that $\int f d\lambda = \int f h d\mu$, $\forall f \in L^1(\lambda), f h \in L^1(\mu)$, where $h = \frac{d\lambda}{d\mu} \in L^1(\mu)$.

In view of the above discussion, we may rephrase it as

Let μ be a σ -finite measure and λ a signed measure on (X, \mathfrak{M}) satisfying $\lambda \ll \mu$. Define $h := \frac{d\lambda}{d\mu} \in L^1(\mu)$. Suppose $f : X \to \mathbb{R}$ satisfies $f \in L^1(|\lambda|)$ and $fh \in L^1(\mu)$. Show that $\int \left(f \cdot \frac{d\lambda}{d|\lambda|}\right) d|\lambda| = \int fh \, d\mu$.

Note that as $\left|\frac{d\lambda}{d|\lambda|}\right| \equiv 1$ (lecture notes proposition 5.7), we have $f \cdot \frac{d\lambda}{d|\lambda|} \in L^1(|\lambda|)$.

7. Another thought is that we may try to define

$$\int f d\lambda := \int f d\lambda^+ - \int f d\lambda^-$$

if the two terms on the R.H.S. make sense. Here λ^{\pm} represent the Jordan decomposition of λ . As a result, another way to rephrase Q3 may be

Let μ be a σ -finite measure and λ a signed measure on (X, \mathfrak{M}) satisfying $\lambda \ll \mu$. Define $h := \frac{d\lambda}{d\mu} \in L^1(\mu)$. Suppose $f : X \to \overline{\mathbb{R}}$ satisfies $f \in L^1(\lambda^+) \cap L^1(\lambda^-)$ and $fh \in L^1(\mu)$. Show that $\int f d\lambda^+ - \int f d\lambda^- = \int fh d\mu$.

8. In light of the previous discussion, below we present a solution to Q3 which is an unabridged work of a student.

This requires a rigorous definition of integrals wrt signed measures, note one found in stackexchange is by using Hahn decomposition to decompose λ into positive part m_1 and negative part m_2 , then one evaluates integrals separately (defining $\int f dm = \int f dm_1 - \int f dm_2$ retains duality between measure and functions). With above decomposition of λ to m_1, m_2 . One first compute with characteristic function (of λ -measurable set, hence m_i -measurable.), then by linearity of integral (proven first to each m_i , then the difference of m_i 's.), it holds for simple functions. For characteristic function, let $E \in \mathfrak{M}$, then

$$\int \chi_E \, d\lambda = \int \chi_E \, dm_1 - \int \chi_E \, dm_2 = m_1(E) - m_2(E) = \lambda(E) = \int_E h \, d\mu = \int \chi_E h \, d\mu$$

by Radon-Nikodym thm..

if f is nonnegative λ -integrable, hence by definition, f is both m_1, m_2 measurable. And there exists a monotone sequence of measurable simple functions s_i convergent to f.

$$\int f d\lambda = \int f dm_1 - \int f dm_2$$

= $\left(\lim_{i \to \infty} \int s_i dm_1\right) - \left(\lim_{i \to \infty} \int s_i dm_2\right) = \left(\lim_{i \to \infty} \int s_i dm_1 - \int s_i dm_2\right)$
= $\lim_{i \to \infty} \int s_i d\lambda = \lim_{i \to \infty} \int s_i h d\mu$
= $\int f h d\mu$

The last limit is because one already have $fh \in L^1(\mu)$ (by assumption) and hence by monotonicity $s_ih \in L^1(\mu)$ and uniformly bounded above (in magnitude) by fh, hence it follows by Dominated convergence thm. Finally for general $f \in L^1(\lambda)$ such that $fh \in L^1(\mu)$. Then

$$\int f d\lambda = \int f^+ d\lambda - \int f^- d\lambda$$
$$= \int f^+ h \, d\mu - \int f^- h \, d\mu = \int f h d\mu$$

The second last line is because, by our definition,

L.H.S. =
$$\int f d\lambda^+ - \int f d\lambda^- = \left(\int f^+ d\lambda^+ - \int f^- d\lambda^+\right) - \left(\int f^+ d\lambda^- - \int f^- d\lambda^-\right) = \text{R.H.S.}$$

- 9. We may think of the solution to Q6 two ways. Firstly, it is a solution to lecture notes proposition 5.4 rather than 5.8. Secondly, note that if $\lambda \perp \mu$ for positive and nonzero measures λ, μ on (X, \mathfrak{M}) , then μ is concentrated on X but $\lambda(X) \neq 0$. We may refer to Rudin's proposition 6.8 for a better proof of lecture notes proposition 5.4.
- 10. We provide another solution to Q6 assuming the result of Q7.
 - (a) We first show that " $\mu_1, \mu_2 \in M_r(X) \Rightarrow \mu_1 + \mu_2 \in M_r(X)$ ". Observe that given $E \in \mathcal{B}$ and a countable partition $\{E_j\}$ of E, we have

$$\sum_{j} |(\mu_1 + \mu_2)(E_j)| \le \sum_{j} |\mu_1(E_j)| + \sum_{j} |\mu_2(E_j)| \le |\mu_1|(E) + |\mu_2|(E),$$

whence $|\mu_1 + \mu_2|(E) \le |\mu_1|(E) + |\mu_2|(E)$ by taking sup over $\{E_j\}$ on the L.H.S..

Let $\varepsilon > 0$ and $E \in \mathcal{B}$. Since $\mu_1, \mu_2 \in M_r(X)$ and $|\mu_i|$ are finite measures, there exist open sets $G_i \supseteq E$ and compact sets $K_i \subseteq E$ such that $|\mu_i| (G_i \setminus E) \le \varepsilon$ and $|\mu_i| (E \setminus K_i) \le \varepsilon$. Therefore, for $G := G_1 \cap G_2$ and $K := K_1 \cup K_2$, we have

$$\begin{aligned} |\mu_1 + \mu_2| (G \setminus E) &\leq |\mu_1| (G \setminus E) + |\mu_2| (G \setminus E) \\ &\leq |\mu_1| (G_1 \setminus E) + |\mu_2| (G_2 \setminus E) \leq 2\varepsilon, \end{aligned}$$

and similarly $|\mu_1 + \mu_2| (E \setminus K) \leq 2\varepsilon$. This shows $\mu_1 + \mu_2 \in M_r(X)$.

The argument above also reveals that " $\mu \in M_r(X) \Rightarrow c\mu \in M_r(X)$ ". Hence $M_r(X)$ is a subspace of M(X). It remains to show that it is a closed subspace.

Let $\{\mu_n\} \subseteq M_r(X), \ \mu \in M(X)$ be such that $\|\mu_n - \mu\| \to 0$ as $n \to \infty$. Let $\varepsilon > 0$ and $E \in \mathcal{B}$. There exists N such that $\|\mu_N - \mu\| \leq \varepsilon$. As $\mu_N \in M_r(X)$ and $|\mu_N|$ is a finite measure, there exists open set $G \supseteq E$ and compact set $K \subseteq E$ such that $|\mu_N| (G \setminus E) \leq \varepsilon$ and $|\mu_N| (E \setminus K) \leq \varepsilon$. Therefore,

$$|\mu| (G \setminus E) = |\mu - \mu_N + \mu_N| (G \setminus E) \le |\mu - \mu_N| (G \setminus E) + |\mu_N| (G \setminus E)$$
$$\le |\mu - \mu_N| (X) + \varepsilon$$
$$= ||\mu - \mu_N|| + \varepsilon \le 2\varepsilon,$$

and similarly $|\mu|(E \setminus K) \leq 2\varepsilon$. We conclude that $\mu \in M_r(X)$.

(b) It is because $M_r(X)$ is a subspace and

$$\mu^{+} = \frac{1}{2} |\mu| + \frac{1}{2} \mu, \quad \mu^{-} = \frac{1}{2} |\mu| - \frac{1}{2} \mu.$$

(c) We want to show that $\lambda \in M_r(X)$, where $\lambda(E) := \int_E f d |\mu|$. Let $\varepsilon > 0$ and $E \in \mathcal{B}$. By lecture notes proposition 5.3, we have $|\lambda|(E) = \int_E |f| d |\mu|$. By Hw2 Q10, there exists $\delta > 0$ such that

$$\int_{A} |f| d |\mu| < \varepsilon \quad \text{whenever } |\mu| (A) < \delta.$$

Since $\mu \in M_r(X)$ and $|\mu|$ is a finite measure, there exists open set $G \supseteq E$ and compact set $K \subseteq E$ such that $|\mu| (G \setminus E) < \delta$ and $|\mu| (E \setminus K) < \delta$. Consequently

$$|\lambda| (G \setminus E) = \int_{G \setminus E} |f| d |\mu| < \varepsilon,$$

and similarly $|\lambda| (E \setminus K) < \varepsilon$. This was to be demonstrated.

11. At last, the TA of this course would like to express his acknowledgement. Firstly, I am very grateful that I can inherit the homework solutions. They are illuminating and save my time. Secondly, thank you for making your files more user-friendly to me, so that the TA work is less exhausting than it could be. Not only your mathematics but also your empathy demonstrates how great you are.