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1 Two-person zero sum games

1.1 Game matrices

In a two-person zero sum game, two players, player I and player II, make
their moves simultaneously. Then the payoffs to the players depend on the
strategies used by the players. In this chapter, we study only zero sum
games which means the sum of the payoffs to the players is always zero. We
will also assume that the game has perfect information which means all
players know how the outcomes depend on the strategies the players use.

Definition 1.1.1 (Strategic form of a two-person zero sum game). The
strategic form of a two-person zero sum game is given by a triple (X, Y, π)
where

1. X is the set of strategies of player I.

2. Y is the set of strategies of player II.

3. π : X × Y → R is the payoff function of player I.

For (x, y) ∈ X×Y , the value π(x, y) is the payoff to player I when player
I uses strategy x and player II uses strategy y. Note that the payoff to
player II is equal to −π(x, y) since the game is a zero sum game. The game
has perfect information means that the function π is known to both players.
We will always assume that the sets X and Y are finite. In this case we may
assume X = {1, 2, · · · ,m} and Y = {1, 2, · · · , n}. Then the payoff function
can be represented by an m×n matrix which is called the game matrix and
we will denote it by A = [aij]. A two-person zero sum game is completely
determined by its game matrix. When player I uses the i-th strategy and
player II uses the j-th strategy, then the payoff to player I is the entry aij
of A. The payoff to player II is then −aij. If a two-person zero sum game
is represented by a game matrix, we will call player I the row player and
player II the column player.

Given a game matrix A, we would like to know what the optimal strategies
for the players are and what the payoffs to the players will be if both of them
use their optimal strategies. The answer to this question is simple if A has a
saddle point.

Definition 1.1.2 (Saddle point). We say that an entry akl is a saddle point
of an m× n matrix A if
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1. akl = min
j=1,2,··· ,n

{akj}

2. akl = max
i=1,2,··· ,m

{ail}

The first condition means that when the row player uses the k-th strategy,
then the payoff to the row player is not less than akl no matter how the column
player plays. The second condition means that when the column player uses
the l-th strategy, then the payoff to the row player is not larger than akl no
matter how the row player plays. Consequently we have

Theorem 1.1.3. If A has a saddle point akl, then the row player may guar-
antee that his payoff is not less than akl by using the k-th strategy and the
column player may guarantee that the payoff to the row player is not larger
than akl by using the l-th strategy.

Suppose A is a matrix which has a saddle point akl. The above theo-
rem implies that the corresponding row and column constitute the optimal
strategies for the players. To find the saddle points of a matrix, first write
down the row minima of the rows and the column maxima of the columns.
Then find the maximum of row minima which is called the maximin, and
the minimum of the column maxima which is called the minimax. If the
maximin is equal to the minimax, then the entry in the corresponding row
and column is a saddle point. If the maximin and minimax are different,
then the matrix has no saddle point.

Example 1.1.4.

min
1 2 0
3 5 2
0 −4 −3
−2 4 1


0
2
−4
−2

max 3 5 2

Both the maximin and minimax are 2. Therefore the entry a23 = 2 is a
saddle point. �

Example 1.1.5.
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min 2 −1 3 1
−4 2 0 3
0 1 −2 4

 −1
−4
−2

max 2 2 3 4

The maximin is −1 while the minimax is 2 which are not equal. Therefore
the matrix has no saddle point. �

Saddle point of a matrix may not be unique. However the values of saddle
points are always the same.

Theorem 1.1.6. The values of the saddle points of a matrix are the same.
That is to say, if akl and apq are saddle points of a matrix, then akl = apq.
Furthermore, we have apq = apl = akq = akl.

Proof. We have

akl ≤ akq (since akl ≤ akj for any j)
≤ apq (since aiq ≤ apq for any i)
≤ apl (since apq ≤ apj for any j)
≤ akl (since ail ≤ akl for any i)

Therefore
akl = akq = apq = apl

We have seen that if A has a saddle point, then the two players have
optimal strategies by using one of their strategies constantly (Theorem 1.1.3).
If A has no saddle point, it is expected that the optimal ways for the players
to play the game are not using one of the strategies constantly. Take the
rock-paper-scissors game as an example.

Example 1.1.7 (Rock-paper-scissors). The rock-paper-scissors game has
the game matrix

R P S
R
P
S

 0 −1 1
1 0 −1
−1 1 0


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Here we use the order rock(R), paper(P), scissors(S) to write down the game
matrix. �

Everybody knows that the optimal strategy of playing the rock-paper-
scissors game is not using any one of the gestures constantly. When one
of the strategies of a player is used constantly, we say that it is a pure
strategy. For games without saddle point like rock-paper-scissors game,
mixed strategies instead of pure strategies should be used.

Definition 1.1.8 (Mixed strategy). A mixed strategy is a row vector x
= (x1, x2, · · · , xm) ∈ Rm such that

1. xi ≥ 0 for any i = 1, 2, · · · ,m

2.
m∑
i=1

xi = 1

In other words, a vector is a mixed strategy if it is a probability vector.
We will denote the set of probability m vectors by Pm.

When a mixed strategy (x1, x2, · · · , xm) is used, the player uses his i-
th strategy with a probability of xi for i = 1, 2, · · · ,m. Mixed strategies
are generalization of pure strategies. If one of the coordinates of a mixed
strategy is 1 and all other coordinates are 0, then it is a pure strategy. So
a pure strategy is also a mixed strategy. Suppose the row player and the
column player use mixed strategies x ∈ Pm and y ∈ Pn respectively. Then
the outcome of the game is not fixed because the payoffs to the players will
then be random variables. We denote by π(x,y) the expected payoff to
the row player when the row player uses mixed strategy x and the column
player uses mixed strategy y. We have the following simple formula for the
expected payoff π(x,y) to the row player.

Theorem 1.1.9. In a two-person zero sum game with m × n game matrix
A, suppose the row player uses mixed strategies x and the column player uses
mixed strategies y independently. Then the expected payoff to the row player
is

π(x,y) = xAyT

where yT is the transpose of y.
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Proof. The expected payoff to the row player is

E(payoff to the row player)
=

∑
1 ≤ i ≤ m
1 ≤ j ≤ n

aijP (I uses i-th strategy and II uses j-th strategy)

=
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

aijP (I uses i-th strategy)P (II uses j-th strategy)

=
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

aijxiyj

= xAyT

Let A be an m× n game matrix. For x ∈ Pm, the vector

xA ∈ Rn

has the following interpretation. The j-th coordinate, j = 1, 2, · · · , n, of the
vector is the expected payoff to the row player if the row player uses mixed
strategy x and the column player uses the j-th strategy constantly. In this
case a rational column player would use the l-th strategy, 1 ≤ l ≤ n, such
that the l-th coordinate of the vector xA is the least coordinate among all
coordinates of xA. (Note that the column player wants the expected payoff
to the row player as small as possible since the game is a zero sum game.)

On the other hand, for y ∈ Pn, the i-th coordinate, i = 1, 2, · · · ,m, of
the column vector

AyT ∈ Rm

is the expected payoff to the row player if the row player uses his i-th strategy
constantly and the column player uses the mixed strategy y. In this case a
rational row player would use the k-th strategy, 1 ≤ k ≤ m, such that the
k-th coordinate of AyT is the largest coordinate among all coordinates of
AyT .

When a game matrix does not have a saddle point, both players do not
have optimal pure strategies. However there always exists optimal mixed
strategies for the players by the following minimax theorem due to von Neu-
mann.

Theorem 1.1.10 (Minimax theorem). Let A be an m × n matrix. Then
there exists real number ν ∈ R, mixed strategy for the row player p ∈ Rm,
and mixed strategy for the column player q ∈ Rn such that
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1. pAyT ≥ ν, for any y ∈ Pn

2. xAqT ≤ ν, for any x ∈ Pm

3. pAqT = ν

In the above theorem, the real number ν = ν(A) is called the value, or the
security level, of the game matrix A. The strategy p is called a maximin
strategy for the row player and the strategy q is called a minimax strategy
for the column player. The value ν of a matrix is unique. However maximin
strategy and minimax strategy are in general not unique.

The maximin strategy p and the minimax strategy q are the optimal
strategies for the row player and the column player respectively. It is because
the row player may guarantee that his payoff is at least ν no matter how the
column player plays by using the maximin strategy p. This is also the reason
why the value ν is called the security level. Similarly, the column player may
guarantee that the payoff to the row player is at most ν, and thus his payoff
is at least −ν, no matter how the row player plays by using the minimax
strategy q. We will prove the minimax theorem in Section 2.4.

1.2 2× 2 games

In this section, we study 2 × 2 game matrices closely and see how one can
solve them, that means finding the maximin strategies for the row player,
minimax strategies for the column player and the values of the game. First
we look at a simple example.

Example 1.2.1 (Modified rock-paper-scissors). The rules of the modified
rock-paper-scissors are the same as the ordinary rock-paper-scissors except
that the row player can only show the gesture rock(R) or paper(P) but not
scissors while the column player can only show the gesture scissors(S) or
rock(R) but not paper. The game matrix of the game is

S R
R
P

(
1 0
−1 1

)
It is easy to see that the game matrix does not have a saddle point. Thus
there is no pure maximin or minimax strategy. To solve the game, suppose
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the row player uses mixed strategy x = (x, 1− x). Consider

xA = (x, 1− x)

(
1 0
−1 1

)
= (x− (1− x), 1− x) = (2x− 1, 1− x)

This shows that when the row player uses mixed strategy x = (x, 1−x), then
his payoff is 2x− 1 if the column player uses his 1st strategy scissors(S) and
is 1− x if the column player uses his 2nd strategy rock(R). Now we solve the
equation 2x − 1 = 1 − x and get x = 2

3
. One may see that if 0 ≤ x < 2

3
,

then 2x− 1 < x− 1 and a rational column player would use his 1st strategy
scissors(S) and the payoff to the row player would be 2x − 1 < 1

3
. On the

other hand, if 2
3
< x ≤ 1, then 2x − 1 > 1 − x and a rational column

player would use his 2nd strategy rock(R) and the payoff to the row player
would be 1 − x < 1

3
. Now if x = 2

3
, that is if the row player uses the mixed

strategy (2
3
, 1
3
), then he may guarantee that his payoff is 1− x = 2x− 1 = 1

3

no matter how the column player plays. This is the largest payoff he may
guarantee and therefore the mixed strategy p = (2

3
, 1
3
) is the maximin strategy

for the row player. Similarly, suppose the column player uses mixed strategy
y = (y, 1− y). Consider

AyT =

(
1 0
−1 1

)(
y

1− y

)
=

(
y

−y + (1− y)

)(
y

1− 2y

)
If 0 ≤ y < 1

3
, then y < 1 − 2y and a rational row player would use his 2nd

strategy paper(P) and his payoff would be 1 − 2y > 1
3
. If 1

3
< y ≤ 1, then

y > 1− 2y and a rational row player would use his 1st strategy rock(R) and
his payoff would be y > 1

3
. If y = 1

3
, then the payoff to the row player is always

1
3

no matter how he plays. Therefore q = (1
3
, 2
3
) is the minimax strategy for

the column player and he may guarantee that the payoff to the row player is
1
3

no matter how the row player plays. Moreover the value of the game is
ν = 1

3
. We summarize the above discussion in the following statements.

1. The row player may use his maximin strategy p = (2
3
, 1
3
) to guarantee

that his payoff is ν = 1
3

no matter how the column player plays.

2. The column player may use his minimax strategy q = (1
3
, 2
3
) to guar-

antee that the payoff to the row player is ν = 1
3

no matter how the row
player plays. �

Now we give the complete solutions to 2× 2 games.
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Theorem 1.2.2. Let

A =

(
a b
c d

)
be a 2× 2 game matrix. Suppose A has no saddle point. Then

1. The value of the game is

ν =
ad− bc

a− b− c+ d

2. The maximin strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
3. The minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
Proof. Suppose the row player uses mixed strategy x = (x, 1− x). Consider

xA = (x, 1−x)

(
a b
c d

)
= (ax+c(1−x), bx+d(1−x)) = ((a−c)x+c, (b−d)x+d)

Now the payoff to the row player that he can guarantee is

min{(a− c)x+ c, (b− d)x+ d}

Since A has no saddle point, we have a− c and b−d are of different sign and
the maximum of the above minimum is obtained when

(a− c)x+ c = (b− d)x+ d

⇒ x =
d− c

a− b− c+ d

Note that x and 1− x = a−b
a−b−c+d must be of the same sign because A has no

saddle point. We must have 0 < x < 1 and we conclude that the maximin
strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
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Similarly suppose the column player uses mixed strategy y = (y, 1 − y).
Consider

AyT =

(
a b
c d

)(
y

1− y

)
=

(
aq + b(1− y)
cq + d(1− y)

)
=

(
(a− b)y + b
(c− d)y + d

)
The column player may guarantee that the payoff to the row player is at
most

max{(a− b)y + b, (c− d)y + d}

The above quantity attains it minimum when

(a− b)y + b = (c− d)y + d

⇒ y =
d− b

a− b− c+ d

and the minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
By calculating

pA =

(
ad− bc

a− b− c+ d
,

ad− bc
a− b− c+ d

)
and AqT =

(
ad−bc

a−b−c+d
ad−bc

a−b−c+d

)
we see that the maximum payoff that the row player may guarantee to him-
self and the minimum payoff to the row player that the column player may
guarantee are both ad−bc

a−b−c+d . In fact the minimax theorem (Theorem 1.1.10)
says that these two values must be equal. We conclude that the value of A
is ν = ad−bc

a−b−c+d .

Note that the above formulas work only when A has no saddle point. If
A has a saddle point, the vectors p and q obtained using the formulas may
not be probability vectors.

Example 1.2.3. Consider the modified rock-paper-scissors game (Example
1.2.1) with game matrix

A =

(
1 0
−1 1

)
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The game matrix has no saddle point. By Theorem 1.2.2, the value of the
game is

ν =
ad− bc

a− b− c+ d
=

1× 1− 0× (−1)

1− 0− (−1) + 1
=

1

3

the maximin strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
=

(
1− (−1)

1− 0− (−1) + 1
,

1− 0

1− 0− (−1) + 1

)
=

(
2

3
,
1

3

)
and the minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
=

(
1− 0

1− 0− (−1) + 1
,

1− (−1)

1− 0− (−1) + 1

)
=

(
1

3
,
2

3

)
�

Example 1.2.4. In a game, each of the two players Andy and Bobby calls
out a number simultaneously. Andy may call out either 1 or −2 while Bobby
may call out either 1 or −3. Then Bobby pays p dollars to Andy where p
is the product of the two numbers (Andy pays Bobby −p dollars when p is
negative). The game matrix of the game is

A =

(
1 −3
−2 6

)
The value of the game is

ν =
1× 6− (−2)× (−3)

1− (−3)− (−2) + 6
= 0

the maximin strategy for Andy is

p =

(
6− (−2)

1− (−3)− (−2) + 6
,

1− (−3)

1− (−3)− (−2) + 6

)
=

(
2

3
,
1

3

)
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and the minimax strategy for Bobby is

q =

(
6− (−3)

1− (−3)− (−2) + 6
,

1− (−2)

1− (−3)− (−2) + 6

)
=

(
3

4
,
1

4

)
�

We say that a two-person zero sum game is fair if its value is zero. The
game in Example 1.2.4 is a fair game.

1.3 Games reducible to 2× 2 games

To solve an m × n game matrix for m,n > 2 without saddle point, we may
first remove the dominated rows or columns. A row dominates another if all
its entries are larger than or equal to the corresponding entries of the other.
Similarly, a column dominates another if all its entries are smaller than or
equal to the corresponding entries of the other.

Definition 1.3.1. Let A = [aij] be an m× n game matrix.

1. We say that the k-th row is dominated by the r-th row if akj ≤ arj for
any j = 1, 2, · · · , n.

2. We say that the l-th column is dominated the s-th column if ail ≥ ais
for any i = 1, 2, · · · ,m.

We say that a row (column) is a dominated row (column) if it is domi-
nated by another row (column).

If the k-th row of A is dominated by the r-th row, then for the row player,
playing the r-th strategy is at least as good as playing the k-th strategy.
Thus the k-th row can be ignored in finding the maximin strategy for the
row player. Similarly the column player may ignore a dominated column
when finding his minimax strategy.

Theorem 1.3.2. Let A be an m × n game matrix. Suppose A has a domi-
nated row or dominated column. Let A′ be the matrix obtained by deleting a
dominated row or dominated column from A. Then

1. The value of A′ is equal to the value of A.
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2. The players of A have maximin/minimax strategies which never use
dominated row/column.

More precisely, if the k-th row is a dominated row of A, A′ is the (m−1)×n
matrix obtained by deleting the k-th row from A, and p′ = (p1, · · · , pk−1, pk+1,
· · · , pm) ∈ Pm−1 is a maximin strategy for the row player of A′, then p =
(p1, · · · , pk−1, 0, pk+1, · · · , pm) ∈ Pm is a maximin strategy for the row player
of A. Similarly, if the l-th column is a dominated row of A, A′ is the
m × (n − 1) matrix obtained by deleting the l-th column from A, and q′ =
(q1, · · · , ql−1, ql+1 · · · , qn) ∈ Pn−1 is a minimax strategy of A′, then q =
(q1, · · · , ql−1, 0, ql+1, · · · , qn) ∈ Pn is a minimax strategy of A.

Proof. Suppose the k-th row of A is dominated by the r-th row and A′

is obtained by deleting the k-th row from A. Let ν ′ be the value of A′

and q ∈ Pn be a minimax strategy of A′. For any mixed strategy x =
(x1, · · · , xm) ∈ Pm, define x′ = (x′1, · · · , x′k−1, x′k+1, · · · , x′m) ∈ Pm−1 by

x′i =

{
xi if i 6= r

xk + xr if i = r

and we have
xAqT ≤ x′A′qT ≤ ν ′

Here the first inequality holds because the k-th is dominated by the r-th
row and the second inequality holds because q is a minimax strategy of A′.
Thus the value of A is less than or equal to ν ′. On the other hand, let
p′ = (p1, · · · , pk−1, pk+1, · · · , pm) ∈ Pm−1 be a maximin strategy of A′ and
let p = (p1, · · · , pk−1, 0, pk+1, · · · , pm) ∈ Pm. Then we have

pAyT = p′A′yT ≥ ν ′

for any y ∈ Pn. It follows that the value of A is ν ′ and p is a maximin
strategy of A. The proof of the second statement is similar.

The removal of dominated rows or columns does not change the value of a
game. The above theorem only says that there is at least one optimal strategy
with zero probability at the dominated rows and columns. There may be
other optimal strategies which have positive probability at the dominated
rows or columns. However any optimal strategy must have zero probability
at strictly dominated rows and columns. Here a row is strictly dominated
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by another row if all its entries are strictly smaller than the corresponding
entries of the other. Similarly a column is strictly dominated by another
column if all its entries are strictly larger than the corresponding entries of
the other.

Example 1.3.3. To solve the game matrix

A =

 3 −1 4
2 −3 1
−2 4 0


we may delete the second row since it is dominated by the first row and get
the reduced matrix

A′ =

(
3 −1 4
−2 4 0

)
Then we may delete the third column since is dominated by the first column.
Hence the matrix A is reduced to the 2× 2 matrix

A′′ =

(
3 −1
−2 4

)
The value of this 2 × 2 matrix is 0.7. The maximin and minimax strategies
are (0.6, 0.4) and (0.5, 0.5) respectively. Therefore the value of A is 0.7, a
maximin strategy for the row player is (0.6, 0, 0.4) and a minimax strategy for
the column player is (0.5, 0.5, 0). Note that we need to insert the zeros to the
dominated rows and columns when writing down the maximin and minimax
strategies for the players. �

1.4 2× n and m× 2 games

Let

A =

(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
be a 2×n matrix. We are going to explain how to solve the game with game
matrix A if there is no dominated row or column. Suppose the row player
uses strategy x = (x, 1 − x) for 0 ≤ x ≤ 1. The payoff to the row player is
given by

xA = (x, 1− x)

(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
= (a11x+ a21(1− x), a12x+ a22(1− x), · · · , a1nx+ a2n(1− x))
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Now we need to find the value of x so that the minimum

min
1≤j≤n

{a1jx+ a2j(1− x)}

of the coordinates of xA attains its maximum. We may use graphical method
to achieve this goal.

Step 1.
For each 1 ≤ j ≤ n, draw the graph of

v = a1jx+ a2j(1− x), for 0 ≤ x ≤ 1

The graph shows the payoff to the row player if the column player uses
the j-th strategy.

Step 2.
Draw the graph of

v = min
1≤j≤n

{a1jx+ a2j(1− x)}

This is called the lower envelope of the graph.

Step 3.
Suppose (p, ν) is a maximum point of the lower envelope. Then ν is
the value of the game and p = (p, 1− p) is a maximin strategy for the
row player.

Step 4.
The solutions for y ∈ Pn to the equation

AyT = ν1T

where 1 = (1, 1), give the minimax strategy for the column player.

Example 1.4.1. Solve the 2× 4 game matrix

A =

(
−1 0 4 6
5 3 2 −1

)
Solution.



Two-person zero sum games 16

Step 1. Draw the graph of
C1 : v = −x+ 5(1− x)

C2 : v = 3(1− x)

C3 : v = 4x+ 2(1− x)

C4 : v = 6x− (1− x)

Step 2. Draw the lower envelope (blue polygonal curve).

Step 3. The maximum point of the lower envelope is the intersection
point of C2 and C4. By solving{

C2 : v = 3(1− x)

C4 : v = 6x− (1− x)

we obtain the maximum point (p, ν) = (0.4, 1.8) of the lower envelope.

Step 4. Find the minimax strategies for the column player by solving(
0 6
3 −1

)(
y2
y4

)
=

(
1.8
1.8

)
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and get y2 = 0.7 and y4 = 0.3.

Therefore the value of the game is ν = 1.8. The maximin strategy for the
row player is p = (0.4, 0.6) and the minimax strategy for the column player
is q = (0, 0.7, 0, 0.3). �

Example 1.4.2. Solve the 2× 5 game matrix

A =

(
1 3 0 −1 2
−1 −3 2 5 −2

)
Solution. The lower envelope is shown in the following figure.

By solving 
C1 : v = x− (1− x)

C3 : v = 2(1− x)

C4 : v = −x+ 5(1− x)



Two-person zero sum games 18

we see that the maximum point of the lower envelope is (p, ν) = (0.75, 0.5).
Thus the maximin strategy for the row player is (0.75, 0.25) and the value of
the game is ν = 0.5. To find minimax strategies for the column player, we
solve  1 1 1

1 0 −1
−1 2 5

 y1
y3
y4

 =

 1
0.5
0.5


Note that we have added the equation y1+y3+y4 = 1 to exclude the solutions
which are not probability vectors. (Explain why we didn’t do it in Example
1.4.1.) Using row operation, we obtain the row echelon form 1 1 1 1

1 0 −1 0.5
−1 2 5 0.5

 −→
 1 0 −1 0.5

0 1 2 0.5
0 0 0 0


The non-negative solution to the system of equations is

(y1, y3, y4) = (0.5 + t, 0.5− 2t, t) for 0 ≤ t ≤ 0.25

Therefore the column player has minimax strategies

q = (0.5 + t, 0, 0.5− 2t, t, 0) for 0 ≤ t ≤ 0.25

In particular, (0.5, 0, 0.5, 0, 0) and (0.75, 0, 0, 0.25, 0) are minimax strategies
for the column player. �

Example 1.4.3. Solve the 2× 5 game matrix

A =

(
−3 −1 −2 2 1
1 −1 3 −2 0

)
Solution. The lower envelope is shown in the following figure.
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The maximum points of the lower envelope are points lying on the line seg-
ment joining (0.25,−1) and (0.5,−1). Thus the value of the game is ν = −1.
The maximin strategies for the row player are

p = (p, 1− p) for 0.25 ≤ p ≤ 0.5

and the minimax strategy for the column player is

q = (0, 1, 0, 0, 0)

�

Next we consider m × 2 games. There are two methods to solve such
games.

Method 1.
Let y = (y, 1 − y), 0 ≤ y ≤ 1, be the strategy for the column player.
Draw the upper envelope

v = max
1≤i≤m

{ai1y + ai2(1− y)}

Suppose the minimum point of the upper envelope is (q, ν). Then the
value of the game is ν and the minimax strategy for the column player
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is q = (q, 1− q). Moreover the maximum strategies for the row player
are the solutions for x ∈ Pm to the equation

xA = ν1 = (ν, ν)

Method 2.
Solve the game with 2×m game matrix −AT . Then

value of A = − value of −AT
maximin strategy of A = minimax strategy of −AT
minimax strategy of A = maximin strategy of −AT

Example 1.4.4. Solve the 4× 2 game matrix

A =


4 −2
3 0
−1 1
−3 4


Solution.

Method 1.
Let y = (y, 1 − y), 0 ≤ y ≤ 1, be the strategy of the column player.
The upper envelope is
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Solving {
R2 : v = 3(1− y)

R4 : v = −3y + 4(1− y)

the minimum point of the upper envelope is (q, ν) = (0.4, 1.2). Now
the row player would only use the 2nd and 4th strategy and we solve

(x2, x4)

(
3 0
−3 4

)
= (1.2, 1.2)

which gives (x2, x4) = (0, 7, 0.3). Therefore the value of the game is
ν = 1.2, the maximin strategy for the row player is p = (0, 0.7, 0, 0.3)
and the minimax strategy for the column player is q = (0.4, 0.6).

Method 2.
Consider

−AT =

(
−4 −3 1 3
2 0 −1 −4

)
Draw the lower envelope
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We see that the value of −AT is -1.2 and the maximin strategy of −AT
is (0.4, 0.6). Solving(

−3 3
0 −4

)(
x2
x4

)
=

(
−1.2
−1.2

)
We get x2 = 0.7 and x4 = 0.3. Thus the minimax strategy of −AT is
(0, 0.7, 0, 0.3). Therefore

value of A = − value of −AT = 1.2
maximin strategy of A = minimax strategy of −AT = (0, 0.7, 0, 0.3)
minimax strategy of A = maximin strategy of −AT = (0.4, 0.6)

�

Theorem 1.4.5 (Principle of indifference). Let A be an m×n game matrix.
Suppose ν is the value of A, p = (p1, · · · , pm) be a maximin strategy for the
row player and q = (q1, · · · , qn) be a minimax strategy for the column player.

For any k = 1, 2, · · · ,m, if pk > 0, then
n∑
j=1

akjqj = ν. In particular, when

the column player uses his minimax strategy q, then the payoff to the row
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player are indifferent among all his k-th strategies with pk > 0. Similarly,

for any l = 1, 2, · · · , n, if ql > 0, then
m∑
i=1

ailpi = ν. In particular, when the

row player uses his maximin strategy p, then the payoff to the row player are
indifferent among all the l-th strategies of the column player with ql > 0.

Proof. For each k = 1, 2, · · · ,m, we have

n∑
j=1

akjqj ≤ ν

since q is a minimax strategy for the column player. On the other hand,

ν = pAqT =
m∑
k=1

pk

(
n∑
j=1

akjqj

)
≤

m∑
k=1

pkν = ν

Thus we have

pk

n∑
j=1

akjqj = pkν

for any k = 1, 2, · · · ,m. Therefore

n∑
j=1

akjqj = ν

whenever pk > 0. The proof of the second statement is similar.

Exercise 1

1. Find the values of the following game matrices by finding their saddle
points

(a)

 5 1 −2 6
−1 0 1 −2
3 2 5 4


(b)


−4 5 −3 −3
0 1 3 −1
−3 −1 2 −5
2 −4 0 −2


2. Solve the following game matrix, that is, find the value of the game,

a maximin strategy for the row player and a minimax strategy for the
column.
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(a)

(
1 7
2 −2

)

(b)

(
3 −1
−2 4

)

(c)

(
3 2 4 0
−2 1 −4 5

)

(d)

(
1 0 4 2
0 2 −3 −2

)

(e)


5 −3
−3 5
2 −1
4 0


(f)

 5 −2 4
3 −3 1
0 3 2


(g)

 5 1 −2 6
−1 0 1 −2
3 2 5 4


3. Raymond holds a black 2 and a red 9. Calvin holds a red 3 and a black

8. Each of them chooses one of the cards from his hand and then two
players show the chosen cards simultaneously. If the chosen cards are
of the same colour, Raymond wins and Calvin wins if the cards are of
different colours. The loser pays the winner an amount equal to the
number on the winner’s card. Write down the game matrix, find the
value of the game and the optimal strategies of the players.

4. Alex and Becky point fingers to each other, with either one finger or
two fingers. If they match with one finger, Becky pays Alex 3 dollars.
If they match with two fingers, Becky pays Alex 11 dollars. If they
don’t match, Alex pays Becky 1 dollar.

(a) Find the optimal strategies for Alex and Becky.

(b) Suppose Alex pays Becky k dollars as a compensation before the
game. Find the value of k to make the game fair.

5. Player I and II choose integers i and j respectively where 1 ≤ i, j ≤ 7.
Player II pays Player I one dollar if |i − j| = 1. Otherwise there is no
payoff. Write down the game matrix of the game, find the value of the
game and the optimal strategies for the players.

6. Use the principle of indifference to solve the game with game matrix
1 −2 3 −4
0 1 −2 3
0 0 1 −2
0 0 0 1


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7. In the Mendelsohn game, two players choose an integer from 1 to 5
simultaneously. If the numbers are equal there is no payoff. The player
that chooses a number one larger than that chosen by his opponent
wins 1 dollar from its opponent. The player that chooses a number two
or more larger than his opponent loses 2 dollars to its opponent. Find
the game matrix and solve the game.

8. Aaron puts a chip in either his left hand or right hand. Ben guesses
where the chip is. If Ben guesses the left hand, he receives $2 from
Aaron if he is correct and pays $4 to Aaron if he is wrong. If Ben
guesses the right hand, he receives $1 from Aaron if he is correct and
pays $3 to Aaron if he is wrong.

(a) Write down the payoff matrix of Aaron. (Use order of strategies:
Left, Right.)

(b) Find the maximin strategy for Aaron, the minimax strategy for
Ben and the value of the game.

9. Let

A =

(
−3 1
c −2

)
where c is a real number.

(a) Find the range of values of c such that A has a saddle point.

(b) Suppose the zero sum game with game matrix A is a fair game.

(i) Find the value of c.

(ii) Find the maximin strategy for the row player and the minimax
strategy for the column player.

10. Prove that if A is a skewed symmetric matrix, that is, AT = −A, then
the value of A is zero.

11. Let n be a positive integer and 1 = (1, 1, · · · , 1) ∈ Rn. Prove the
following statements.

(a) If A is an n×n symmetric matrix, that is AT = A, and there exists
probability vector y ∈ Pn such that AyT = v1T where v ∈ R is a
real number, then v is the value of A.
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(b) There exists an n× n matrix A, a probability vector y ∈ Pn and
a real number v such that AyT = v1T but v is not the value of A.

12. Let n be a positive integer and

D =


λ1

λ2
0

. . .

0 λn


be an n× n diagonal matrix where λ1 ≤ λ2 ≤ · · · ≤ λn.

(a) Suppose λ1 ≤ 0 and λn > 0. Find the value of the zero sum game
with game matrix D.

(b) Suppose λ1 > 0. Solve the zero sum game with game matrix D.

13. Let

A =


1 −1 0 0 0
−1 −1 1 0 0
0 1 1 −1 0
0 0 −1 −1 1
0 0 0 1 −1

 .

(a) Find a vector x = (1, x2, x3, x4, x5) ∈ R5 and a real number a such
that

AxT = (0, 0, 0, 0, a)T

(b) Find a vector y = (1, y2, y3, y4, y5) ∈ R5 and a real number b such
that

AyT = (1, 1, 1, 1, b)T

(c) Find the maximin strategy, the minimax strategy and the value
of A. (Hint: Find real numbers α, β ∈ R such that q = αx + βy
satisfies AqT = v1T for some v ∈ R.)

14. For positive integer k, define

Ak =

(
4k − 3 −(4k − 2)
−(4k − 1) 4k

)
.

(a) Solve Ak, that is, find the maximin strategy, minimax strategy
and value of Ak in terms of k.
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(b) Let r1, r2, · · · , rn > 0 be positive real numbers. Using the principle
of indifference, or otherwise, find, in terms of r1, r2, · · · , rn, the
value of

D =


1
r1

0 0 · · · 0

0 1
r2

0 · · · 0

0 0 1
r3
· · · 0

...
...

...
. . .

...
0 0 0 · · · 1

rn

 .

(c) Find, with proof, the value of the matrix

A =


A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · A25

 .



2 Linear programming and maximin theorem

2.1 Linear programming

In this chapter we study two-person zero sum game with m×n game matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Suppose the row player uses strategy x = (x1, · · · , xm) ∈ Pm. Then the
column player would use his j-th strategy such that

a1jp1 + a2jp2 + · · ·+ amjpm

is minimum among j = 1, 2, · · · , n. Thus the payoff to the row player that
he can guarantee is

min
j=1,2,··· ,n

{a1jx1 + a2jx2 + · · ·+ amjxm}

Hence if the above expression attains its maximum at x = p ∈ Pm, then p
is a maximin strategy for the row player. Moreover, the value of the game is

ν = max
x∈Pm

min
j=1,2,··· ,n

{a1jx1 + a2jx2 + · · ·+ amjxm}

By introducing a new variable v, we can restate the maximin problem, that
is finding a maximin strategy, as the following linear programming problem

max v
subject to a11p1 + a21p2 + · · ·+ am1pm ≥ v

a12p1 + a22p2 + · · ·+ am2pm ≥ v
...

a1np1 + a2np2 + · · ·+ amnpm ≥ v
p1 + p2 + · · ·+ pm = 1
p1, p2, · · · , pm ≥ 0
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Similarly, to find a minimax strategy for the column player, we need to solve
the following minimax problem

min v
subject to a11q1 + a12q2 + · · ·+ a1nqn ≤ v

a21q1 + a22q2 + · · ·+ a2nqn ≤ v
...

am1q1 + am2q2 + · · ·+ amnqn ≤ v
q1 + q2 + · · ·+ qn = 1
q1, q2, · · · , qn ≥ 0

To solve the maximin and minimax problems, first we transform them to a
pair of primal and dual problems.

Definition 2.1.1 (Primal and dual problems). A linear programming prob-
lem in the following form is called a primal problem.

max f(y1, · · · , yn) =
n∑
j=1

cjyj + d

subject to
n∑
j=1

aijyj ≤ bi, i = 1, 2, · · · ,m

y1, y2, · · · , yn ≥ 0

The dual problem associated to the above primal problem is

min g(x1, · · · , xm) =
m∑
i=1

bixi + d

subject to
m∑
i=1

aijxi ≥ cj, j = 1, 2, · · · , n

x1, x2, · · · , xm ≥ 0

Here x1, · · · , xm, y1, · · · , yn are variables, and aij, bi, cj, d, i = 1, 2, · · · ,m,
j = 1, 2, · · · , n, are constants. The linear functions f and g are called ob-
jective functions. The primal problem and the dual problem can be written
in the following matrix forms

Primal problem max f(y) = cyT + d
subject to AyT ≤ bT

y ≥ 0
Dual problem min g(x) = xbT + d

subject to xA ≥ c
x ≥ 0
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Here x ∈ Rm, y ∈ Rn are variable vectors, A is an m × n constant matrix,
b ∈ Rm, c ∈ Rn are constant vectors and d ∈ R is a real constant. The
inequality u ≤ v for vectors u,v means each of the coordinates of v − u is
non-negative.

For primal and dual problems, we always have the constraints x,y ≥ 0.
In other words, all variables are non-negative. From now on, we will not
write down the constraints x,y ≥ 0 for primal and dual problems and it is
understood that all variables are non-negative.

Definition 2.1.2. Suppose we have a pair of primal and dual problems.

1. We say that a vector x ∈ Rm in the dual problem, (or y ∈ Rn in the
primal problem), is feasible if it satisfies the constraints of the problem.
We say that the primal problem (or the dual problem) is feasible there
exists a feasible vector for the problem.

2. We say that the primal problem, (or the dual problem), is bounded if
the objective function is bounded above, (or below) on the set of feasible
vectors.

3. We say that a feasible vector x ∈ Rm in the dual problem, (or y ∈ Rn

in the primal problem), is optimal if the objective function f (or g)
attains its maximum (or minimax) at x (or y) on the set of feasible
vectors.

Theorem 2.1.3. Suppose x and y are feasible vectors in the dual and primal
problems respectively. Then

f(y) ≤ g(x)

Proof. We have

f(y) = cyT + d
≤ xAyT + d (since x is feasible and y ≥ 0)
≤ xbT + d (since y is feasible and x ≥ 0)
= g(x)

The theorem above has a simple and important consequence that the
primal problem is bounded if the dual problem associated with it has a
feasible vector, and vice verse.
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Theorem 2.1.4. Suppose we have a pair of primal and dual problems.

1. If the primal problem is feasible, then the dual problem is bounded.

2. If the dual problem is feasible, then the primal problem is bounded.

3. If both problems are feasible, then both problems are solvable, that is,
there exists optimal vectors p and q for the dual and primal problems
respectively. Moreover we have f(p) ≤ g(q).

Proof. For the first statement, suppose the primal problem has a feasible
vector q. Then for any feasible vector x of the dual problem, we have g(x) ≥
f(q) by Theorem 2.1.3. Hence the dual problem is bounded. The proof of the
second statement is similar. For the third statement, suppose both problems
are feasible. Then both problems are bounded by the first two statements.
Observe that the set of feasible vectors is closed. It follows that the optimal
values of the objective functions f and g are attainable. Therefore there
exists optimal vectors p and q for the dual and primal problems respectively
and f(q) ≤ g(p) by Theorem 2.1.3.

Furthermore we have the following important theorem in linear program-
ming concerning the solutions to the primal and dual problems.

Theorem 2.1.5. Suppose both the dual problem and the primal problem are
feasible. Then there exist optimal vectors p and q for the dual and primal
problem respectively, and we have

f(q) = g(p)

Proof. We have proved the solvability of the problems. The equality f(q) =
g(p) can be proved using minimax theorem and we omit the proof here.

2.2 Transforming maximin problem to dual problem

To find a maximin strategy for the row player of a two-person zero sum game,
we have seen in the previous section that we need to solve the following



Linear programming and minimax theorem 32

maximin problem.

max v
subject to a11p1 + a21p2 + · · ·+ am1pm ≥ v

a12p1 + a22p2 + · · ·+ am2pm ≥ v
...

a1np1 + a2np2 + · · ·+ amnpm ≥ v
p1 + p2 + · · ·+ pm = 1
p1, p2, · · · , pm ≥ 0

which can be written into following matrix form

max v
subject to pA ≥ v1

p1T = 1
p ≥ 0

where 1 = (1, · · · , 1) ∈ Rm. We solve the above maximin problem in the
following two steps.

1. Transform the maximin problem to a dual problem.

2. Use simplex method to solve the dual problem.

In this section, we are going to discuss how to transform a maximin problem
to a dual problem. Note that the maximin problem is neither a primal nor
dual problem because there is a constraint p1 +p2 + · · ·+pm = 1 which is not
allowed and we do not have the constraint v ≥ 0. To transform the maximin
problem into a dual problem, first we add a constant k to each entry of A so
that the value of the game matrix is positive. Secondly, we let

xi =
pi
v
, for i = 1, 2, · · · ,m

Then to maximize v is the same as minimizing

x1 + x2 + · · ·+ xm =
p1 + p2 + · · ·+ pm

v
=

1

v

Moreover for each j = 1, 2, · · · , n, the constraint

a1jp1 + a2jp2 + · · ·+ amjpm ≥ v
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is equivalent to
a1jx1 + a2jx2 + · · ·+ amjxm ≥ 1

and the maximin problem would become a dual problem. We summarize the
above procedures as follows.

1. First, add a constant k to each entry of A so that every entry of A is
positive. (This is done to make sure that the value of the game matrix
is positive.)

2. Let
xi =

pi
v
, for i = 1, 2, · · · ,m

3. Write down the dual problem

min g(x1, x2, · · · , xm) = x1 + x2 + · · ·+ xm
subject to a11x1 + a21x2 + · · ·+ am1xm ≥ 1

a12x1 + a22x2 + · · ·+ am2xm ≥ 1
...
a1nx1 + a2nx2 + · · ·+ amnxm ≥ 1

(Note that we always have the constraints x1, x2, · · · , xm ≥ 0) or in
matrix form

min g(x) = x1T

subject to xA ≥ 1

where 1 = (1, 1 · · · , 1) ∈ Rm.

4. Suppose x = (x1, x2, · · · , xm) is an optimal vector of the dual problem
and

d = g(x) = x1 + x2 + · · ·+ xm

is the minimum value. Then

p =
x

d
=
(x1
d
,
x2
d
, · · · , xm

d

)
is a maximin strategy for the row player and the value of the game
matrix A is

v =
1

d
− k
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To find the minimax strategy for the column player, we need to solve the
following minimax problem.

min v
subject to AqT ≤ v1T

1qT = 1
q ≥ 0

where 1 = (1, · · · , 1) ∈ Rn. If we assume that v > 0, the above optimization
problem can be transformed to the following primal problem by taking yj =
qj
v

for j = 1, 2, · · · , n.

max f(y) = 1yT

subject to Ay ≤ 1T

where y = (y1, y2, · · · , yn). (Note that we always have the constraint y ≥ 0
for primal problem.) Suppose y is an optimal vector for the above primal
problem. Then q = y

d
is a minimax strategy for the column player.

2.3 Simplex method

We have seen that a pair of maximin and minimax problems can be trans-
formed to a pair of dual and primal problems. In this section, we will show
how to use simplex method to solve the dual and primal problems simultane-
ously. Recall that the primal and dual problems are optimization problems of
the following forms. Please be reminded that we always have the constraints
x,y ≥ 0.

Primal problem max f(y) = cyT + d
subject to AyT ≤ bT

Dual problem min g(x) = xbT + d
subject to xA ≥ c

We describe the simplex method as follows.

Step 1. Introduce new variables xm+1, · · · , xm+m, yn+1, · · · , yn+m which
are called slack variables and set up the tableau
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y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

Step 2.

(i) If c1, c2, · · · , cn ≤ 0, then the solution to the problems are

Primal problem maximum value of f = d
y1 = y2 = · · · = yn = 0,
yn+1 = b1, yn+2 = b2, · · · , yn+m = bm

Dual problem minimum value of g = d
x1 = x2 = · · · = xm = 0,
xm+1 = −c1, xm+2 = −c2, · · · , xm+n = −cm

(ii) Otherwise go to step 3.

Step 3. Choose l = 1, 2, · · · , n such that cl > 0.

(i) If ail ≤ 0 for all i = 1, 2, · · · ,m, then the problems are unbounded
(because yl can be arbitrarily large) and there is no solution.

(ii) Otherwise choose k = 1, 2, · · · ,m, such that

bk
akl

= min
ail>0

{
bi
ail

}
Step 4. Pivot on the entry akl and swap the variables at the pivot row
with the variables at the pivot column. The pivoting operation is
performed as follows.

yl yj
xk a∗ b = −yn+k
xi c d = −yn+i

q q
xm+l xm+j

−→

yn+k yj
xm+l

1
a

b
a

= −yl
xi − c

a
d− bc

a
= −yn+i

q q
xk xm+j
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Step 5. Go to Step 2.

To understand how the simplex method works, we introduce basic forms of
linear programming problem.

Definition 2.3.1 (Basic form). A basic form of a pair of primal and dual
problems is a problem of the form

Primal basic form max f(y) = cyT + d
subject to AyT − bT = −(yn+1, · · · , yn+m)T

y ≥ 0
Dual basic form min g(x) = xbT + d

subject to xA− c = (xm+1, · · · , xm+n)
x ≥ 0

where x = (x1, · · · , xm) ∈ Rm and y = (y1, · · · , yn) ∈ Rn. The pair of basic
forms can be represented by the tableau

y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

The variables at the rightmost column and at the bottom row are called basic
variables. The other variables at the leftmost columns and at the top row
are called independent/non-basic variables.

A pair of primal and dual problems may be expressed in basic form in
many different ways. The pivot operation changes one basic form of the
pair of primal and dual problems to another basic form of the same pair of
problems, and swaps one basic variable with one independent variable.

Theorem 2.3.2. The basic forms before and after a pivot operation are
equivalent.

Proof. The tableau before the pivot operation
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yl yj
xk a∗ b = −yn+k
xi c d = −yn+i

q q
xm+l xm+j

is equivalent to the system of equations{
axk + cxi = xm+l

bxk + dxi = xm+j
and

{
ayl + byj = −yn+k
cyl + dyj = −yn+i

⇔
{
−xm+l + cxi = −axk
bxk + dxi = xm+j

and

{
yn+k + byj = −ayl
cyl + dyj = −yn+i

⇔

{ 1

a
xm+l −

c

a
xi = xk

bxk + dxi = xm+j

and

{
1

a
yn+k +

b

a
yj = −yl

cyl + dyj = −yn+i

⇔


1

a
xm+l −

c

a
xi = xk

b

(
1

a
xm+l −

c

a
xi

)
+ dxi = xm+j

and


1

a
yn+k +

b

a
yj = −yl

c

(
1

a
yn+k +

b

a
yj

)
+ dyj = −yn+i

⇔


1

a
xm+l −

c

a
xi = xk

b

a
xm+l +

(
d− bc

a

)
xi = xm+j

and


1

a
yn+k +

b

a
yj = −yl

− c
a
yn+k +

(
d− bc

a

)
yj = −yn+i

which is equivalent to the tableau

yn+k yj
xm+l

1
a

b
a

= −yl
xi − c

a
d− bc

a
= −yn+i

q q
xk xm+j
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The above calculation shows that the constraints before and after a pivot
operation are equivalent, and the values of the objective functions f and
g for any given x1, · · · , xm, xm+1, · · · , xm+n and y1, · · · , yn, yn+1, · · · , yn+m
satisfying the constraints remain unchanged.

For each pair of basic forms, there associates a pair of basic solutions
which will be defined below. Note that the basic solutions are not really
solutions to the primal and dual problems because basic solutions are not
necessarily feasible.

Definition 2.3.3 (Basic solution). Suppose we have a pair of basic forms
represented by the tableau

y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

The basic solution to the basic form is

x1 = x2 = · · · = xm = 0, xm+1 = −c1, xm+2 = −c2, · · · , xm+n = −cn
y1 = y2 = · · · = yn = 0, yn+1 = b1, yn+2 = b2, · · · , yn+m = bm

The basic solutions are obtained by setting the independent variables, that
is the variables at the top and at the left, to be 0 and then solving for the
basic variables, that is the variables at the bottom and at the right, by the
constraints.

The basic solutions always satisfy the equalities in the constraints, but
they may not be feasible since some variables may have negative values.
However if both the dual and primal basic solutions are feasible, then they
must be optimal.

Theorem 2.3.4. Suppose we have a pair of basic forms.

1. The basic solution to the primal basic form is feasible if and only if
b1, b2, · · · , bm ≥ 0.
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2. The basic solution to the dual basic form is feasible if and only if
c1, c2, · · · , cn ≤ 0.

3. The pair of basic solutions are optimal if b1, · · · , bm ≥ 0 and c1, · · · , cn ≤
0.

Proof. Observe that the basic solutions always satisfy the equalities xA−c =
(xm+1, · · · , xm+n) and AyT − bT = −(yn+1, · · · , yn+m)T of the constraints.

1. The basic solution to the primal basic form is (y1, · · · , yn, yn+1, · · · , yn+m) =
(0, · · · , 0, b1, · · · , bm). Thus it is feasible if and only if all the variables
are non-negative which is equivalent to b1, b2, · · · , bm ≥ 0.

2. The basic solution to the dual basic form is (x1, · · · , xm, xm+1, · · · , xm+n) =
(0, · · · , 0,−c1, · · · ,−cn). Thus it is is feasible if and only if all the vari-
ables are non-negative which is equivalent to c1, c2, · · · , cn ≤ 0.

3. Suppose b1, b2, · · · , bm ≥ 0 and c1, c2, · · · , cn ≤ 0. For any feasi-
ble vectors (x1, · · · , xm, xm+1, · · · , xm+n) of the dual basic form and
(y1, · · · , yn, yn+1, · · · , yn+m) of the primal basic form, we have

f(y1, · · · , yn) = (c1, · · · , cn)(y1, · · · , yn)T + d

≤ (x1, · · · , xm)A(y1, · · · , yn)T + d

≤ (x1, · · · , xm)(b1, · · · , bm)T + d

= g(x1, · · · , xm)

On the other hand, the basic solutions (x1, · · · , xm,xm+1, · · · , xm+n)=
(0, · · · , 0,−c1, · · · ,−cn) and (y1, · · · , yn,yn+1, · · · , yn+m)= (0, · · · , 0,b1,
· · · , bm) are feasible and

f(0, · · · , 0) = d = g(0, · · · , 0)

Therefore f attains its maximin and g attains its minimum at the basic
solutions.

In practice, we do not write down the basic variables. We would swap the
variables at the left and at the top when preforming pivot operation. One
may find the basic and independent variables by referring to the following
table.
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Left Top

xi
xi is independent variable
yn+i is basic variable

xi is basic variable
yn+i is independent variable

yj
yj is basic variable
xm+j is independent variable

yj is independent variable
xm+j is basic variable

In other words, when we write down a tableau of the form

xi yl −1
yj A

bi
xk bk
−1 cj cl −d

the basic solution associated with it is

xi = −cj, xk = 0, xm+j = 0, xm+l = −cl
yj = bi, yl = 0, yn+i = 0, yn+k = bk

and the genuine tableau is

yn+i yl −1
xm+j A

bi = −yj
xk bk = −yn+k
−1 cj cl −d

q q
xi xm+l

Example 2.3.5. Solve the following primal problem.

max f = 6y1 + 4y2 + 5y3 + 150
subject to 2y1 + y2 + y3 ≤ 180

y1 + 2y2 + 3y3 ≤ 300
2y1 + 2y2 + y3 ≤ 240

Solution. Set up the tableau and perform pivot operations successively. The
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pivoting entries are marked with asterisks.

y1 y2 y3 −1
x1 2∗ 1 1 180
x2 1 2 3 300
x3 2 2 1 240
−1 6 4 5 −150

−→

x1 y2 y3 −1
y1

1
2

1
2

1
2

90
x2 −1

2
3
2

5
2

210
x3 −1 1∗ 0 60
−1 −3 1 2 −690

−→

x1 x3 y3 −1
y1 1 −1

2
1
2

60
x2 1 −3

2
5
2

∗
120

y2 −1 1 0 60
−1 −2 −1 2 −750

−→

x1 x3 x2 −1
y1

4
5
−1

5
−1

5
36

y3
2
5
−3

5
2
5

48
y2 −1 1∗ 0 60
−1 −14

5
1
5
−4

5
−846

−→

x1 y2 x2 −1
y1

3
5

1
5
−1

5
48

y3 −1
5

3
5

2
5

84
x3 −1 1 0 60
−1 −13

5
−1

5
−4

5
−858

The independent variables are y2, y4, y5 and the basic variables are y1, y3, y6.
The basic solution is

y2 = y4 = y5 = 0, y1 = 48, y3 = 84, y6 = 60

Thus an optimal vector for the primal problem is

(y1, y2, y3) = (48, 0, 84)

The maximum value of f is 858.
We may also write down an optimal solution to the dual problem. The

dual problem is

min g = 180x1 + 300x2 + 240x3 + 150
subject to 2x1 + x2 + 2x3 ≥ 6

x1 + 2x2 + 2x3 ≥ 4
x1 + 3x2 + x3 ≥ 5

From the last tableau, the independent variables are x3, x4, x6 and the basic
variables are x1, x2, x5. The basic solution is

x3 = x4 = x6 = 0, x1 =
13

5
, x2 =

4

5
, x5 =

1

5
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Therefore an optimal vector for the dual problem is

(x1, x2, x3) =

(
13

5
,
4

5
, 0

)
The minimum value of g is 858 which is equal to the maximum value of f .�

To use simplex method solving a game matrix, first we add a constant
k to every entry so that the entries are all non-negative and there is no
zero column. This is done to make sure that the value of the new matrix is
positive. Then we take b = (1, · · · , 1) ∈ Rm, c = (1, · · · , 1) ∈ Rn to set up
the initial tableau

y1 · · · yn
x1 a11 · · · a1n 1
...

...
. . .

...
...

xm am1 · · · amn 1
1 · · · 1 0

and apply the simplex algorithm. Then the value of the game matrix is

ν =
1

d
− k

where d is the maximum value of f or the minimum value of g, and k is the
constant which is added to the game matrix at the beginning. A maximin
strategy for the row player is

p =
1

d
x =

1

d
(x1, x2, · · · , xm)

and a minimax strategy for the column player is

q =
1

d
y =

1

d
(y1, x2, · · · , yn)

To avoid making mistakes, one may check that the following conditions must
be satisfied in every step.

1. The rightmost number in each row is always non-negative. This is
guaranteed by the choice of the pivoting entry.
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2. The value of the number in the lower right corner is always equal to
the sum of those entries in the lower row which associate with xi’s at
the top row (and similarly equal to the sum of those entries at the
rightmost column associate with yj’s at the leftmost column.)

3. The value of the number in the lower right corner never increases.

Finally, one may also check that the result should satisfy the following two
conditions.

1. Every entry of pA is larger than or equal to ν.

2. Every entry of AqT is less than or equal to ν.

Example 2.3.6. Solve the two-person zero sum game with game matrix(
−1 5 3 2
6 −1 0 4

)
Solution. Add k = 1 to each of the entries, we obtain the matrix(

0 6 4 3
7 0 1 5

)
Applying simplex algorithm, we have

y1 y2 y3 y4 −1
x1 0 6 4 3 1
x2 7∗ 0 1 5 1
−1 1 1 1 1 0

−→

x2 y2 y3 y4 −1
x1 0 6∗ 4 3 1
y1

1
7

0 1
7

5
7

1
7

−1 −1
7

1 6
7

2
7
−1

7

−→

x2 x1 y3 y4 −1

y2 0 1
6

2
3

∗ 1
2

1
6

y1
1
7

0 1
7

5
7

1
7

−1 −1
7
−1

6
4
21
− 3

14
−13

42

−→

x2 x1 y2 y4 −1
y3 0 1

4
3
2

3
4

1
4

y1 −1
7
− 1

28
− 3

14
17
28

3
28

−1 −1
7
− 3

14
−2

7
− 5

14
− 5

14

The independent variables are x3, x5, y2, y4, y5, y6 and the basic variables are
x1, x2, x4, x6, y1, y3. The basic solution is

x3 = x5 = 0, x1 =
3

14
, x2 =

1

7
, x4 =

2

7
, x6 =

5

14

y2 = y4 = y5 = y6 = 0, y1 =
3

28
, y3 =

1

4
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The optimal value is d =
5

14
. Therefore a maximin strategy for the row

player is

p =
1

d
(x1, x2) =

14

5

(
3

14
,
1

7

)
=

(
3

5
,
2

5

)
A minimax strategy for the column player is

q =
1

d
(y1, y2, y3, y4) =

14

5

(
3

28
, 0,

1

4
, 0

)
=

(
3

10
, 0,

7

10
, 0

)
The value of the game is

ν =
1

d
− k =

14

5
− 1 =

9

5

�

Example 2.3.7. Solve the two-person zero sum game with game matrix

A =

 2 −1 6
0 1 −1
−2 2 1


Solution. Add 2 to each of the entries, we obtain the matrix 4 1 8

2 3 1
0 4 3


Applying simplex method, we have

y1 y2 y3 −1
x1 4∗ 1 8 1
x2 2 3 1 1
x3 0 4 3 1
−1 1 1 1 0

−→

x1 y2 y3 −1
y1

1
4

1
4

2 1
4

x2 −1
2

5
2

∗ −3 1
2

x3 0 4 3 1
−1 −1

4
3
4
−1 −1

4

−→

x1 x2 y3 −1
y1

3
10

− 1
10

23
10

1
5

y2 −1
5

2
5

−6
5

1
5

x3
4
5

−8
5

39
5

1
5

−1 − 1
10
− 3

10
− 1

10
−2

5
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The independent variables are x3, x4, x5, y3, y4, y5 and the basic variables are
x1, x2, x6, y1, y2, y6. The basic solution is

x3 = x4 = x5 = 0, x1 =
1

10
, x2 =

3

10
, x6 =

1

10

y3 = y4 = y5 = 0, y1 =
1

5
, y2 =

1

5
, y6 =

1

5

The optimal value is d =
2

5
. Therefore a maximin strategy for the row player

is

p =
1

d
(x1, x2, x3) =

5

2

(
1

10
,

3

10
, 0

)
=

(
1

4
,
3

4
, 0

)
A minimax strategy for the column player is

q =
1

d
(y1, y2, y3) =

5

2

(
1

5
,
1

5
, 0

)
=

(
1

2
,
1

2
, 0

)
The value of the game is

ν =
1

d
− k =

5

2
− 1 =

1

2

One may check the result by the following calculations

pA =

(
1

4
,
3

4
, 0

) 2 −1 6
0 1 −1
−2 2 1

 =

(
1

2
,
1

2
,
3

4

)

AqT =

 2 −1 6
0 1 −1
−2 2 1




1

2
1

2
0

 =


1

2
1

2
0


One sees that the row player may guarantee that his payoff is at least

1

2
by

using p =

(
1

4
,
3

4
, 0

)
and the column player may guarantee that the payoff

to the row player is at most
1

2
by using q =

(
1

2
,
1

2
, 0

)
. �
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2.4 Minimax theorem

In this section, we prove the minimax theorem (Theorem 1.1.10). The the-
orem was first published by John von Neumann in 1928. Another way to
state the minimax theorem is that the row value and the column value of a
matrix are always the same.

Definition 2.4.1 (Row and column values). Let A be an m× n matrix.

1. The row value of A is defined1 by

νr(A) = max
x∈Pm

min
y∈Pn

xAyT

2. The column value of A is defined by

νc(A) = min
y∈Pn

max
x∈Pm

xAyT

The row value νr(A) of a game matrix A is the largest payoff of the
row player that he may guarantee himself. The column value νc(A) of A is
the least payoff that the column player may guarantee that the row player
cannot surpass. The strategies for the players to achieve these goals are
called maximin and minimax strategies.

Definition 2.4.2 (Maximin and minimax strategies). Let A be an m × n
matrix.

1. A maximin strategy is a strategy p ∈ Pm for the row player such
that

min
y∈Pn

pAyT = max
x∈Pm

min
y∈Pn

xAyT = νr(A)

2. A minimax strategy is a strategy q ∈ Pn for the column player such
that

max
x∈Pm

xAqT = min
y∈Pn

max
x∈Pm

xAyT = νc(A)

It can be seen readily that we always have νr(A) ≤ νc(A) for any matrix
A and we give a rigorous proof here.

1Note that since the payoff function π(x,y) = xAyT is continuous and the sets Pm,Pn

are compact, that is closed and bounded, the payoff function attains its maximum and
minimum by extreme value theorem.
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Theorem 2.4.3. For any m× n matrix A, we have

νr(A) ≤ νc(A)

Proof. Let p ∈ Pm be a maximin strategy for the row player and q ∈ Pn be
a minimax strategy for the column player. Then we have

νr(A) = max
x∈Pm

min
y∈Pn

xAyT

= min
y∈Pn

pAyT

≤ pAqT

≤ max
x∈Pm

xAqT

= min
y∈Pn

max
x∈Pm

xAyT

= νc(A)

Before we prove the minimax theorem, let’s study some properties of
convex sets.

Definition 2.4.4 (Convex set). A set C ⊂ Rn is said to be convex if

λx + (1− λ)y ∈ C for any x,y ∈ C, 0 ≤ λ ≤ 1

Geometrically, a set C ⊂ Rn is convex if the line segment joining any
two points in C is contained in C. It is easy to see from the definition that
intersection of convex sets is convex.

Definition 2.4.5 (Convex hull). The convex hull of a set {x1,x2, · · · ,xk}
of vectors in Rn is defined by

Conv({x1,x2, · · · ,xk})

= {x ∈ Rn : x =
k∑
i=1

λixi with λi ≥ 0 for all i and
k∑
i=1

λi = 1}
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The convex hull of a set of vectors can also be defined as the smallest
convex set which contains all vectors in the set.

To prove the minimax theorem, we prove a lemma concerning properties
of convex sets. Recall that the standard inner product and the norm on Rn

are defined as follows. For any x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈
Rn,

1. 〈x,y〉 = x1y1 + x2y2 + · · ·+ xnyn

2. ‖x‖ =
√
〈x,x〉 =

√
x21 + x22 + · · ·+ x2n

The following lemma says that we can always use a plane to separate the
origin and a closed convex set C not containing the origin. It is a special
case of the hyperplane separation theorem2.

Lemma 2.4.6. Let C ⊂ Rn be a closed convex set with 0 6∈ C. Then there
exists z ∈ C such that

〈z,y〉 > 0 for any y ∈ C
2The hyperplane separation theorem says that we can always use a hyperplane to

separate two given sets which are closed and convex, and at least one of them is bounded.
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Proof. Since C is closed, there exists z ∈ C such that

‖z‖ = min
y∈C
‖y‖

We are going to prove that 〈z,y〉 > 0 for any y ∈ C by contradiction.
Suppose there exists y ∈ C such that 〈z,y〉 ≤ 0. Let x ∈ Rn be a point
which lies on the straight line passing through z, y, and is orthogonal to
z−y. The point x lies on the line segment joining z, y, that is lying between
z and y, because 〈z,y〉 ≤ 0.

Since z,y ∈ C and C is convex, we have x ∈ C. (The expression for x is not
important in the proof but let’s include here for reference

x =
〈y − z,y〉
‖y − z‖2

z +
〈z− y, z〉
‖y − z‖2

y

Note that 〈y−z,y〉‖y−z‖2 ,
〈z−y,z〉
‖y−z‖2 ≥ 0 because 〈z,y〉 ≤ 0 and 〈y−z,y〉

‖y−z‖2 + 〈z−y,z〉
‖y−z‖2 = 1

which shows that x lies on the line segment joining z, y.)
Moreover, we have

‖z‖2 = ‖x + (z− x)‖2

= ‖x‖2 + ‖(z− x)‖2 (since x ⊥ z− x)

> ‖x‖2
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which contradicts that z is a point in C closest to the origin 0.

The following theorem says that for any matrix A, we have either νr(A) >
0 or νc(A) ≤ 0. The key of the proof is to consider the convex hull C
generated by the column vectors of A and the standard basis for Rm, and
study the two cases 0 6∈ C and 0 ∈ C.

Theorem 2.4.7. Let A be an m × n matrix. Then one of the following
statements holds.

1. There exists probability vector x ∈ Pm such that xA > 0, that is all
coordinates of xA are positive. In this case, νr(A) > 0.

2. There exists probability vector y ∈ Pn such that AyT ≤ 0, that is all
coordinates of AyT are non-positive. In this case, νc(A) ≤ 0.

Proof. For j = 1, 2, · · · , n, let

aj = (a1j, a2j, · · · , amj) ∈ Rm

In other words, aT1 , a
T
2 , · · · , aTn are the column vectors of A and we may write

A = [aT1 , a
T
2 , · · · , aTn ]. Let

C = Conv({a1, a2, · · · , an, e1, e2, · · · , em})
be the convex hull of {a1, a2, · · · , an, e1, e2, · · · , em} where {e1, e2, · · · , em}
is the standard basis for Rm.
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We are going to prove that the two statements in the theorem correspond to
the two cases 0 6∈ C and 0 ∈ C.

Case 1. Suppose 0 6∈ C. Then by Lemma 2.4.6, there exists z =
(z1, z2, · · · , zm) ∈ Rm such that

〈z,y〉 > 0 for any y ∈ C

In particular, we have

〈z, ei〉 = zi > 0 for any i = 1, 2, · · · ,m

Then we may take

x =
z

z1 + z2 + · · ·+ zm
∈ Pm

and we have

〈x, aj〉 =
〈z, aj〉

z1 + z2 + · · ·+ zm
> 0 for any j = 1, 2, · · · , n

which means xA > 0. Let α > 0 be the smallest coordinate of the
vector xA and we have

νr(A) ≥ min
y∈Pn

xAyT ≥ α > 0

Case 2. Suppose 0 ∈ C. Then there exists λ1, λ2, · · · , λm+n with λi ≥ 0
for all i, and λ1 + λ2 + · · ·+ λm+n = 1 such that

λ1a1 + λ2a2 + · · ·+ λnan + λn+1e1 + λn+2e2 + · · ·+ λn+mem = 0

which implies

A (λ1, λ2, · · · , λn)T

= λ1a
T
1 + λ2a

T
2 + · · ·+ λna

T
n

= −(λn+1e
T
1 + λn+1e

T
2 + · · ·+ λn+meTm)

= − (λn+1, λn+2, · · · , λn+m)T

Since {e1, e2, · · · , em} are linearly independent, at least one of λ1, λ2, · · · , λn
is positive for otherwise all λ1, λ2, · · · , λm+n are zero which contradicts
λ1 + λ2 + · · ·+ λm+n = 1. Then we may take

y =
(λ1, λ2, · · · , λn)

λ1 + λ2 + · · ·+ λn
∈ Pn
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and we have

AyT = − 1

λ1 + λ2 + · · ·+ λn

 λn+1
...

λn+m

 ≤ 0

which implies
vc(A) ≤ max

x∈Pm
xAyT ≤ 0

Now we give the proof of the minimax theorem (Theorem 1.1.10) which
can be stated in the following form.

Theorem 2.4.8 (Minimax theorem). For any matrix A, the row value and
columns value of A are equal. In other words, we have

νr(A) = νc(A)

Proof. It has been proved that νr(A) ≤ νc(A) for any matrix A (Theorem
2.4.3). We are going to prove that νc(A) ≤ νr(A) by contradiction. Suppose
there exists matrix A such that νr(A) < νc(A). Let k be a real number such
that νr(A) < k < νc(A). Let A′ be the matrix obtained by subtracting every
entry of A by k. Then νr(A

′) = νr(A) − k < 0 and νc(A
′) = νc(A) − k > 0

which is impossible by applying Theorem 2.4.7 to A′. The contradiction
shows that νc(A) ≤ νr(A) for any matrix A and the proof of the minimax
theorem is complete.

Exercise 2

1. Solve the following primal problems. Then write down the dual prob-
lems and the solutions to the dual problems.

(a)
max f = 3y1 + 5y2 + 4y3 + 12

subject to 3y1 + 2y2 + 2y3 ≤ 15
4y2 + 5y3 ≤ 24

(b)
max f = 2y1 + 4y2 + 3y3 + y4

subject to 3y1 + y2 + y3 + 4y4 ≤ 12
y1 − 3y2 + 2y3 + 3y4 ≤ 7
2y1 + y2 + 3y3 − y4 ≤ 10
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2. Solve the zero sum games with the following game matrices, that is
find the value of the game, a maximin strategy for the row player and
a minimax strategy for the column player.

(a)

 2 −3 3
−2 3 1
1 1 5



(b)

 3 1 −5
−1 −2 6
−2 −1 3



(c)

 3 0 1
−1 2 −2
0 1 −1



(d)

 2 0 −2
−1 −3 3
−2 2 0



(e)


1 −1 1
−2 0 −1
1 −2 2
−1 1 −2



(f)


−3 2 0
1 −2 −1
−1 0 2
1 1 −3


3. Prove that if C1 and C2 are convex sets in Rn, then the following sets

are also convex.

(a) C1 ∩ C2

(b) C1 + C2 = {x1 + x2 : x1 ∈ C1,x2 ∈ C2}

4. Let A be an m × n matrix. Prove that the set of maximin strategies
for the row player of A is convex.

5. Let C be a convex set in Rn and x,y ∈ C. Let z ∈ Rn be a point on
the straight line joining x and y such that z is orthogonal to x− y.

(a) Find z in terms of x and y.

(b) Suppose 〈x,y〉 < 0. Prove that z ∈ C.

6. Let A be an m × n matrix with column vectors aT1 , a
T
2 , · · · , aTn . Let

νc(A) be the column value of A and let

C = Conv({a1, a2, · · · , an, e1, e2, · · · , em})

where {e1, e2, · · · , em} is the standard basis for Rm. Prove that if
νc(A) ≤ 0, then 0 ∈ C.



3 Bimatrix games

In this chapter, we study bimatrix game. A bimatrix game is a two-person
game with perfect information. In a bimatrix game, two players, player
I and player II, choose their strategies simultaneously. Then the payoffs
to the players depend on the strategies used by the players. Unlike zero
sum game, we have no assumption on the sum of payoffs to the players.
We will first study non-cooperative games where the solutions are the Nash
equilibria. Then we will study Nash’s bargaining model and threat solution in
cooperative game with nontransferable and transferable utilities respectively.

3.1 Nash equilibrium

A bimatrix game can be represented by two matrices, hence its name.

Definition 3.1.1 (Bimatrix game). The normal form of a bimatrix game
is given by a pair of m × n matrices (A,B). The matrices A and B are
payoff matrices for the row player (player I) and the column player (player
II) respectively. Suppose the row player uses strategy x ∈ Pm and the column
player uses strategy y ∈ Pn. Then the payoff to the row player and column
player are given by the payoff functions

π(x,y) = xAyT

ρ(x,y) = xByT

respectively.

Definition 3.1.2. The safety level, or security level, of the row player
is

µ = max
x∈Pm

min
y∈Pn

xAyT = ν(A)

where ν(A) denotes the value of the matrix A when A is considered as the
game matrix of a two-person zero sum game. The safety level of the column
player is

ν = max
y∈Pn

min
x∈Pm

xByT = ν(BT )

where ν(BT ) is the value of the transpose BT of B.

Note that the value of a matrix is defined to be the maximum payoff that
the row payoff may guarantee himself. The safety level of the column player
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of the bimatrix game (A,B) is the value νBT of the transpose BT of B, not
the value of B.

Definition 3.1.3 (Nash equilibrium). Let (A,B) be a game bimatrix. We
say that a pair of strategies (p,q) is an equilibrium pair, or mixed Nash
equilibrium, or just Nash equilibrium, for (A,B) if

xAqT ≤ pAqT for any x ∈ Pm

and
pByT ≤ pBqT for any y ∈ Pn

Example 3.1.4 (Prisoner dilemma). Let

(A,B) =

(
(−5,−5) (−1,−10)
(−10,−1) (−2,−2)

)
which represents a version of the famous prisoner dilemma. The strategy
pair (p,q) = ((1, 0), (1, 0)) is a Nash equilibrium. The Nash equilibrium is
unique in this example. �

Example 3.1.5 (Dating game). Consider

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
.

It is an example of a dating game. There are two obvious Nash equi-
libria, which are pure Nash equilibria, namely (p,q) = ((1, 0), (1, 0)) and
((0, 1), (0, 1)). The game has one more mixed Nash equilibrium (non-pure
Nash equilibrium which is harder to find out. To see what it is, suppose the
row player uses strategy x = (x, 1− x), where 0 ≤ x ≤ 1. Then

xB = (x, 1− x)

(
2 0
0 3

)
= (2x, 3− 3x)

It means that the payoff to the column player is 2x, and 3−3x if the column
player constantly uses his 1st, and 2nd strategies respectively. Setting 2x =
3− 3x, we have x = 0.6 and

(0.6, 0.4)B = (0.6, 0.4)

(
2 0
0 3

)
= (1.2, 1.2)



Bimatrix games 56

Thus if the row player uses mixed strategy (0.6, 0.4), then the payoff to the
column player is always 1.2 no matter how the column player plays. Similarly
suppose the column player uses y = (y, 1− y), 0 ≤ y ≤ 1. Then

AyT =

(
4 0
0 1

)(
y

1− y

)
=

(
4y

1− y

)
It means that the payoff to the row player is 4y, and 1− y if the row player
constantly uses his 1st, and 2nd strategies respectively. Setting 4y = 1 − y,
we have y = 0.2. Then(

4 0
0 1

)(
0.2
0.8

)
=

(
0.8
0.8

)
Thus if the column player uses mixed strategy (0.2, 0.8), then the payoff to
the row player is always 0.8 no matter how the row player plays. Therefore
the strategy pair (p,q) = ((0.6, 0.4), (0.2, 0.8)) is a Nash equilibrium. In
conclusion, the dating game has three Nash equilibria and we list them in
the following table.

Nash equilibrium and the corresponding payoff pair
Row player’s strategy p Column player’s strategy q Payoff pair (π, ρ)

(1, 0) (1, 0) (4, 2)
(0, 1) (0, 1) (1, 3)

(0.6, 0.4) (0.2, 0.8) (0.8, 1.2)

�
Note that in the third Nash equilibrium of the above example, the strategy

for the row player p = (0.6, 0.4) is the minimax strategy for the column player
of BT , not the maximin strategy for the row player of A. That means what
the row player should do is to fix the payoff to its opponent (the column
player) to be 1.2 instead of guaranteeing the payoff to himself to be 0.8.
Similarly, the strategy for the column player q = (0.2, 0.8) in this Nash
equilibrium is the minimax strategy for the column player of A. So the
column player should use a strategy to fix the row player’s payoff instead of
guaranteeing his own payoff.

3.2 Nash’s theorem

One of the most fundamental works in game theory is the following theorem
of Nash which greatly extended the minimax theorem (Theorem 1.1.10). The
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theorem says that Nash equilibrium always exists in a non-cooperative game
with finitely many players.

Theorem 3.2.1 (Nash’s theorem). Every finite3 game with finite number of
players has at least one Nash equilibrium.

Nash invoked the following celebrated theorem in topology to prove his
theorem.

Theorem 3.2.2 (Brouwer’s fixed-point theorem). Let X be a topological
space which is homeomorphic to the closed unit ball Dn = {x ∈ Rn : ‖x‖ ≤
1}. Then any continuous map T : X → X has at least one fixed-point, that
is, there exists x ∈ X such that T (x) = x.

Remarks:

1. Two topological space X and Y are homeomorphic if there exists bi-
jective map ϕ : X → Y such that both ϕ and its inverse ϕ−1 are
continuous.

2. The set Pn = {(x1, x2, · · · , xn) ∈ Rn : x1, · · · , xn ≥ 0 and x1 + x2 +
· · ·+ xn = 1} of probability vectors in Rn is homeomorphic to Dn−1.

3A game is finite if the number of strategies of each player is finite.



Bimatrix games 58

Moreover Pm × Pn is homeomorphic to Dm+n−2.

The proof of the Brouwer’s fixed-point theorem is out of the propose and
scope of this notes. Now we give the proof of Nash’s theorem assuming the
Brouwer’s fixed-point theorem.

Proof of Nash’s theorem. For simplicity, we consider two-person game only.
The proof for the general case is similar. Let (A,B) be the game bimatrix
of a two-person game. Define T : Pm × Pn → Pm × Pn by

T (x,y) = (u,v) = ((u1, u2, · · · , um), (v1, v2, · · · , vn))
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where for k = 1, 2, · · · ,m and l = 1, 2, · · · , n,

uk =
xk + ck

1 +
m∑
i=1

ci

and vl =
yl + dl

1 +
n∑
j=1

dj

and

ck = max{π(ek,y)− π(x,y) = ekAyT − xAyT , 0}
dl = max{ρ(x, el)− ρ(x,y) = xBeTl − xByT , 0}

Here ek, el are vectors in the standard bases in Rm, Rn respectively. By
definition, ck is the increase of payoff of the first player if the first player
changes his strategy from x to ek while the strategy of the second player
remains at y. However, if there is no increase, then we set ck = 0. The
numbers dk are similarly defined. Note that u ∈ Pm and v ∈ Pn because

ck, dl ≥ 0

and

m∑
k=1

 xk + ck

1 +
m∑
i=1

ci

 =

m∑
k=1

xk +
m∑
k=1

ck

1 +
m∑
i=1

ci

=

1 +
m∑
k=1

ck

1 +
m∑
i=1

ci

= 1

n∑
l=1

 yl + dl

1 +
n∑
j=1

dj

 =

n∑
l=1

yl +
n∑
l=1

dl

1 +
n∑
j=1

dj

=

1 +
n∑
l=1

dl

1 +
n∑
j=1

dj

= 1

Now T is a continuous map from Pm × Pn to Pm × Pn. By Brouwer’s
fixed-point theorem (Theorem 3.2.2), there exists (p,q) ∈ Pm × Pn such
that

T (p,q) = (p,q)

The proof of Nash’s theorem is complete if we can prove that (p,q) is a Nash
equilibrium. Suppose on the contrary that (p,q) is not a Nash equilibrium.
Then either there exists r ∈ Pm such that rAqT > pAqT or there exists
s ∈ Pn such that pBsT > pBqT . Without loss of generality, we consider the
former case. Write r = (r1, r2, · · · , rm). Since

pAqT < rAqT =
m∑
k=1

rkekAqT
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and r is a probability vector, we see that there exists 1 ≤ k ≤ m such that

pAqT < ekAqT

It follows that
ck = max{ekAqT − pAqT , 0} > 0

and thus
m∑
i=1

ci > 0. On the other hand, since

pAqT =
m∑
i=1

pieiAqT

and p is a probability vector, there exists 1 ≤ r ≤ m such that pr > 0 and

erAqT ≤ pAqT

which implies, by the definition of cr, that cr = 0. Hence we have

pr + cr

1 +
m∑
i=1

ci

=
pr

1 +
m∑
i=1

ci

≤ pr
1 + ck

< pr

which contradicts that (p,q) is a fixed-point of T . Therefore (p,q) is a Nash
equilibrium and the proof of Nash’s theorem is complete. �

We have seen in the proof of Nash’s theorem that (p,q) is a Nash equilib-
rium if it is a fixed-point of T . As a matter of fact, the converse of this state-
ment is also true. For if (p,q) is a Nash equilibrium, then eiAqT ≤ pAqT

for any 1 ≤ i ≤ m. Thus ci = 0 for any 1 ≤ i ≤ m. Similarly dj = 0 for any
1 ≤ j ≤ n. Therefore T (p,q) = (p,q).

To find Nash equilibria of a 2 × 2 game bimatrix (A,B), we may let
x = (x, 1− x), y = (y, 1− y) and consider the payoff functions

π(x, y) = π(x,y) = xAyT

ρ(x, y) = ρ(x,y) = xByT

Define

P = {(x, y) : π(x, y) attains its maximum at x for fixed y.}
Q = {(x, y) : ρ(x, y) attains its maximum at y for fixed x.}

Then (x,y) is a Nash equilibrium if and only if (x, y) ∈ P ∩Q.
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Example 3.2.3 (Prisoner dilemma). Consider the prisoner dilemma (Ex-
ample 3.1.4) with bimatrix

(A,B) =

(
(−5,−5) (−1,−10)
(−10,−1) (−2,−2)

)
The payoff to the row player is given by

π(x, y) = (x, 1− x)

(
−5 −1
−10 −2

)(
y

1− y

)
= (x, 1− x)

(
−4y − 1
−8y − 2

)
Since −8y − 2 < −4y − 1 for any 0 ≤ y ≤ 1, we have

P = {(1, y) : 0 ≤ y ≤ 1}

On the other hand,

ρ(x, y) = (x, 1− x)

(
−5 −10
−1 −2

)(
y

1− y

)
= (−4x− 1,−8x− 2)

(
y

1− y

)
Since −8x− 2 < −4x− 1 for any 0 ≤ x ≤ 1, we have

Q = {(x, 1) : 0 ≤ p ≤ 1}
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Now
P ∩Q = {(1, 1)}

Therefore the game has a unique Nash equilibrium (p,q) = ((1, 0), (1, 0)).�

Example 3.2.4 (Dating game). Consider the dating game (Example 3.1.5)
with bimatrix

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
We have

π(x, y) = (x, 1− x)

(
4 0
0 1

)(
y

1− y

)
= (x, 1− x)

(
4y

1− y

)
Now 

4y < 1− y if 0 ≤ y <
1

5

4y = 1− y if y =
1

5

4y > 1− y if
1

5
< y ≤ 1

Thus

P =

{
(x, y) :

(
x = 0 ∧ 0 ≤ y <

1

5

)
∨
(

0 ≤ x ≤ 1 ∧ y =
1

5

)
∨
(
x = 1 ∧ 1

5
< y ≤ 1

)}
On the other hand,

ρ(x, y) = (x, 1− x)

(
2 0
0 3

)(
y

1− y

)
= (2x, 3− 3x)

(
y

1− y

)
Now 

2x < 3− 3x if 0 ≤ x <
3

5

2x = 3− 3x if x =
3

5

2x > 3− 3x if
3

5
< x ≤ 1
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Thus

Q =

{
(x, y) :

(
0 ≤ x <

3

5
∧ y = 0

)
∨
(
x =

3

5
∧ 0 ≤ y ≤ 1

)
∨
(

3

5
< x ≤ 1 ∧ y = 1

)}

Now

P ∩Q =

{
(0, 0), (1, 1),

(
3

5
,
1

5

)}
Therefore the game has three Nash equilibria

(p,q) = ((1, 0), (1, 0)), ((0, 1), (0, 1)),

(
3

5
,
2

5

)
,

((
1

5
,
4

5

))
.

We list the associated payoff pairs in the following table.

p q (π, ρ)
(1, 0) (1, 0) (4, 2)
(0, 1) (0, 1) (1, 3)(
3

5
,
2

5

) (
1

5
,
4

5

) (
4

5
,
6

5

)
�

Definition 3.2.5. Let (A,B) be a game bimatrix.
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1. We say that two Nash equilibria (p,q) and (p′,q′) are interchange-
able if (p′,q) and (p,q′) are also Nash equilibria.

2. We say that two Nash equilibria (p,q) and (p′,q′) are equivalent if

π((p,q), ρ(p,q)) = π((p′,q′), ρ(p′,q′))

3. We say that a bimatrix game (A,B) is solvable in the Nash sense
if any two Nash equilibria are interchangeable and equivalent.

For the prisoner dilemma (Example 3.2.3), there is only one Nash equi-
librium. Thus the prisoner dilemma is solvable in the Nash sense. For the
dating game (Example 3.2.4), there are three Nash equilibria which are not
interchangeable. So the dating game is not solvable in the Nash sense.

Example 3.2.6. Solve the game bimatrix

(A,B) =

(
(1, 4) (5, 1)
(4, 2) (3, 3)

)
Solution. Consider

AyT =

(
1 5
4 3

)(
y

1− y

)
=

(
−4y + 5
y + 3

)
Now 

−4y + 5 > y + 3 if 0 ≤ y <
2

5

−4y + 5 = y + 3 if y =
2

5

−4y + 5 < y + 3 if
2

5
< y ≤ 1

We see that

P =

{
(x, y) :

(
x = 0 ∧ 2

5
< y ≤ 1

)
∨
(

0 ≤ x ≤ 1 ∧ y =
2

5

)
∨
(
x = 1 ∧ 0 ≤ y <

2

5

)}
On the other hand

xB = (x, 1− x)

(
4 1
2 3

)
= (2x+ 2,−2x+ 3)
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and 
2x+ 2 < −2x+ 3 if 0 ≤ x <

1

4

2x+ 2 = −2x+ 3 if x =
1

4

2x+ 2 > −2x+ 3 if
1

4
< x ≤ 1

We see that

Q =

{
(x, y) :

(
0 ≤ x <

1

4
∧ y = 0

)
∨
(
x =

1

4
∧ 0 ≤ y ≤ 1

)
∨
(

1

4
< x ≤ 1 ∧ y = 1

)}

Now

P ∩Q =

{(
1

4
,
2

5

)}
Therefore the game has Nash equilibrium

(p,q) =

((
1

4
,
3

4

)
,

(
2

5
,
3

5

))
and is solvable in the Nash sense since the Nash equilibrium is unique. �

3.3 Nash bargaining model

A bimatrix game can be played as a cooperative game with non-transferable
utility. This means the players may make agreements on what strategies
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they are going to use. However they are not allowed to share the payoffs they
obtained in the game. In such a game, players may use joint strategies.

Definition 3.3.1. Let (A,B) be an m× n bimatrix of a two-person game.

1. A joint strategy of (A,B) is an m× n matrix

P =

 p11 · · · p1n
...

. . .
...

pm1 · · · pmn


which satisfies

(i) pij ≥ 0 for any i = 1, 2, · · · ,m and j = 1, 2, · · · , n

(ii)
m∑
i=1

n∑
j=1

pij = 1

In other words, P is a joint strategy if it is a probability matrix.
The set of all m× n probability matrices is denoted by

Pm×n = {P = [pij] : pij ≥ 0 and
∑

pij = 1}

In particular, if p = (p1, · · · , pm) ∈ Pm and q = (q1, · · · , qn) ∈ Pn,
then

pTq =

 p1q1 · · · p1qn
...

. . .
...

pmq1 · · · pmqn

 ∈ Pm×n
is a joint strategy. In this case, the row player uses strategy p and the
column player uses strategy q independently. Not all joint strategies
are of this form. For example (

1
2

0
0 1

2

)
cannot be expressed as the form pTq. When this joint strategy is used,
the players may flip a coin and both use their first strategies if a ‘head’
is obtained and both use their second strategies if a ‘tail’ is obtained.
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2. For joint strategy P = [pij] ∈ Pm×n, the payoff u to the row player and
the payoff v to the column player are given by the payoff pair

(u(P ), v(P )) =

(∑
i,j

aijpij,
∑
i,j

bijpij

)
=

∑
i,j

pij(aij, bij)

3. The cooperative region of (A,B) is the set of all feasible payoff pairs

R = {(u(P ), v(P )) ∈ R2 : P ∈ Pm×n}

=

{
(u, v) ∈ R2 : (u, v) =

∑
i,j

pij(aij, bij) for some [pij] ∈ Pm×n
}

In other words, the cooperative region R is the convex hull of the set
of points {(aij, bij) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} in R2. Note that R is a
closed convex polygon in R2.
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4. The status quo point is the payoff pair (µ, ν) for the players as-
sociated to the solution of the game when (A,B) is considered as a
non-cooperative game. In other words, the status quo point is the pay-
offs that the players may expect if the negotiations break down. Unless
otherwise specified, we will take (µ, ν) = (ν(A), ν(BT )) to be the status
quo point where v(A) and ν(BT ) are the values of A and the transpose
BT of B respectively.

5. We say that a payoff pair (u, v) is Pareto optimal if u′ ≥ u, v′ ≥ v
and (u′, v′) ∈ R implies (u′, v′) = (u, v) where R is the cooperative
region.

6. The bargaining set of (A,B) is the set of Pareto optimal payoff pairs
(u, v) ∈ R such that u ≥ µ and v ≥ ν where (µ, ν) is the status quo
point. In other words, the bargaining set is

{(u, v) ∈ R : u ≥ µ, v ≥ ν and (u, v) is Pareto optimal}
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When the status quo point is not Pareto optimal, the two players of the
game would have a tendency to cooperate. The bargaining problem is a
problem to understand how the players should cooperate in this situation.
Nash proposed that the solution to the bargaining problem is a function,
called the arbitration function, depending only on the cooperative region R
and the status quo point (µ, ν) ∈ R, which satisfies certain properties called
Nash bargaining axioms.

Definition 3.3.2 (Nash bargaining axioms). An arbitration function is
a function (α, β) = A(R, (µ, ν)) defined for a closed and bounded convex set
R ⊂ R2 (cooperative region) and a point (µ, ν) ∈ R (status quo point) such
that the following Nash bargaining axioms are satisfied.

1. (Individual rationality) α ≥ µ and β ≥ ν.

2. (Pareto optimality) For any (u, v) ∈ R, if u ≥ α and v ≥ ν, then
(u, v) = (α, β).

3. (Feasibility) (α, β) ∈ R.
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4. (Independence of irrelevant alternatives) If R′ ⊂ R, (µ, ν) ∈ R′ and
(α, β) = A(R, (µ, ν)) ∈ R′, then A(R′, (µ, ν)) = (α, β) = A(R, (µ, ν)).

5. (Invariant under linear transformation) Let a, b, c, d ∈ R be any real
numbers with a, c > 0. Let R′ = {(au + b, cv + d) : (u, v) ∈ R} and
(µ′, ν ′) = (aµ+ b, cν + d). Then A(R′, (µ′, ν ′)) = (aα + b, cβ + d).

6. (Symmetry) Suppose R is symmetry, that is (u, v) ∈ R implies (v, u) ∈
R, and µ = ν. Then α = β.

Theorem 3.3.3 (Nash bargaining solution). There exists a unique arbitra-
tion function A(R, (µ, ν)) for closed and bounded convex setR and (µ, ν) ∈ R
which satisfies the Nash bargaining axioms.

Before proving Theorem 3.3.3, first we prove a lemma.

Lemma 3.3.4. Let R ⊂ R2 be any closed and bounded convex set and
(µ, ν) ∈ R. Let

K = {(u, v) ∈ R : u ≥ µ, v ≥ ν}
Let g : K → R be the function defined by

g(u, v) = (u− µ)(v − ν) for (u, v) ∈ K

Suppose U = {(u, v) ∈ K : u > µ, v > ν} 6= ∅. Then there exists unique
(α, β) ∈ K such that

g(α, β) = max
(u,v)∈K

g(u, v)
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Proof. Since g is continuous and K is closed and bounded, g attains its
maximum at some point (α, β) ∈ K and let

M = max
(u,v)∈K

g(u, v)

be the maximum value of g on K. We are going to prove by contradiction
that the maximum point of g on K is unique. Suppose on the contrary that
there exists (α′, β′) ∈ K with (α′, β′) 6= (α, β) such that

g(α′, β′) = g(α, β) = M

Then either α′ > α and β′ < β, or α′ < α and β′ > β. In both case we have
(α− α′) (β′ − β) > 0. Observe that the mid-point (α+α

′

2
, β+β

′

2
) of (α, β) and

(α′, β′) lies in K since K is convex. On the other hand, the value of g at
(α+α

′

2
, β+β

′

2
) is

g

(
α + α′

2
,
β + β′

2

)
=

(
α + α′

2
− µ, β + β′

2
− ν
)

=
1

4
((α− µ) + (α′ − µ)) ((β − ν) + (β′ − ν))

=
1

4
((α− µ)(β − ν) + (α− µ)(β′ − ν)

+(α′ − µ)(β − ν) + (α′ − µ)(β′ − ν))

=
1

4
((α− µ)(β − ν) + (α− µ)((β′ − β) + (β − ν))

+(α′ − µ)((β − β′) + (β′ − ν)) + (α′ − µ)(β′ − ν))

=
1

4
(2(α− µ)(β − ν) + (α− µ)(β′ − β)

+(α′ − µ)(β − β′) + 2(α′ − µ)(β′ − ν))

=
1

4
(2g(α, β) + (α− α′)(β′ − β) + 2g(α′, β′))

=
1

4
(2M + (α− α′) (β′ − β) + 2M)

> M

This contradicts that the maximum value of g on K is M . Therefore g attains
its maximum at a unique point.
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Proof of existence of arbitration function. For any closed and bounded convex
set R and (µ, ν) ∈ R, let K = {(u, v) ∈ R : u ≥ µ, v ≥ ν}, U = {(u, v) ∈
R : u > µ, v > ν} and define (α, β) = A(R, (µ, ν)) as follows:

1. If U 6= ∅, then (α, β) = A(R, (µ, ν)) ∈ K is the unique maximum point
of g(u, v) = (u− µ)(v − ν) in K, that is

g(α, β) = max
(u,v)∈K

g(u, v)

2. If U = ∅, then (α, β) = A(R, (µ, ν)) ∈ K is the unique maximum point
of u+ v on K, that is

α + β = max
(u,v)∈K

(u+ v)

We are going to prove that the function A(R, (µ, ν)) satisfies the Nash bar-
gaining axioms. We prove only for the first case U 6= ∅ and the second case
is obvious.

1. (Individual rationality) It follows by the definition that (α, β) ∈ K and
we have α ≥ µ and β ≥ ν.

2. (Pareto optimality) Suppose there exists (α′, β′) ∈ R such that α′ ≥ α
and β′ ≥ β. Then g(α′, β′) ≥ g(α, β) which implies that (α′, β′) =
(α, β) since the maximum point of g on K is unique.

3. (Feasibility) Since (α, β) ∈ K ⊂ R by definition, we have (α, β) ∈ R.

4. (Independence of irrelevant alternatives) Suppose R′ ⊂ R is a subset of
R which contains both (µ, ν) and (α, β). Since g attains its maximum
at (α, β) on K, it also attains its maximum at (α, β) on K ′ = K ∩R′.
Thus

A(R′, (µ, ν)) = (α, β) = A(R, (µ, ν))

5. (Invariant under linear transformation) Let a, b, c, d ∈ R with a, c > 0.
Let R′ = {(u′, v′) = (au + b, cv + d) : (u, v) ∈ R} and (µ′, ν ′) =
(aµ+ b, cν + d). Then

g′(u′, v′) = (u′ − µ′)(v′ − ν ′)
= ((au+ b)− (aµ+ b))((cv + d)− (cν + d))

= ac(u− µ)(v − ν)

= acg(u, v)
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Hence g′ attains its maximum at (α′, β′) = (aα + b, cβ + d) on K ′ =
{(u′, v′) = (au+ b, cv+ d) : (u, v) ∈ K} since g attains its maximum at
(α, β) on K. Therefore A(R′, (µ, ν)) = (α′, β′).

6. (Symmetry) Suppose R is symmetric and µ = ν. Then

g(u, v) = (u− µ)(v − µ) = g(v, u)

and (v, u) ∈ K if and only if (u, v) ∈ K. Thus if g attains its maximum
at (α, β) on K, then g also attains its maximum at (β, α) on K. By
uniqueness of maximum point of g on K, we see that (β, α) = (α, β)
which implies α = β.

�

Proof of uniqueness of arbitration function. Suppose A′(R, (µ, ν)) is another
arbitration function satisfying the Nash bargaining axioms. Let R be a
closed and bounded convex set and (µ, ν) ∈ R. By applying a linear trans-
formation, we may assume that (µ, ν) = (0, 0) and (α, β) = A(R, (0, 0)) =
(0, 0), (1, 0), (0, 1) or (1, 1). We are going to prove that A′(R, (0, 0)) = (α, β).

Case 1. (α, β) = (0, 0):

In this case K = {(0, 0)} and we have A′(R, (0, 0)) since (α, β) ∈ K.

Case 2. (α, β) = (1, 0) or (0, 1):

We consider the case for (α, β) = (1, 0) and the other case is similar.
By definition of (α, β), we must have K = {(u, 0) : 0 ≤ u ≤ 1}. By the
individual rationality, we have A′(R, (0, 0)) ∈ K. By Pareto optimality,
we have A′(R, (0, 0)) = (1, 0).

Case 3. (α, β) = (1, 1):

First we claim that u + v ≤ 2 for any (u, v) ∈ K. We prove the claim
by contradiction. Suppose there exists (u, v) ∈ K such that u+ v > 2.
Then for any 0 ≤ t ≤ 1, we have

t(u, v) + (1− t)(1, 1) = ((u− 1)t+ 1, (v − 1)t+ 1) ∈ K

since K is convex. Let g(t) be the value of g at the point t(u, v) + (1−
t)(1, 1) ∈ K lying on the line segment joining (1, 1) and (u, v).
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Then

g(t) = g(1 + (u− 1)t, 1 + (v − 1)t)

= ((u− 1)t+ 1)((v − 1)t+ 1)

= (u− 1)(v − 1)t2 + (u+ v − 2)t+ 1

We have
g′(t) = 2(u− 1)(v − 1)t+ u+ v − 2

which implies
g′(0) = u+ v − 2 > 0

It follows that there exists 0 < t ≤ 1 such that

g(t) > g(0) = g(1, 1)

which contradicts that g attains its maximum at (1, 1) on K. Hence we
proved the claim that u+ v ≤ 2 for any (u, v) ∈ K. Now let R′ be the
convex hull of {(u, v) : (u, v) ∈ R or (v, u) ∈ R}. Then u′ + v′ ≤ 2 for
any (u′, v′) ∈ R′ since u + v ≤ 2 for any (u, v) ∈ R. By symmetry, we
have A′(R′, (0, 0)) = (α′, α′) for some (α′, α′) ∈ R′. Now α′ ≤ 1 since
α′ + α′ ≤ 2. Since (1, 1) ∈ K ⊂ R′, we have A′(R′, (0, 0)) = (1, 1) by
Pareto optimality. Therefore A′(R, (0, 0)) = (1, 1) by independence of
irrelevant alternative.
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This completes the proof that A′(R, (µ, ν)) = A(R, (µ, ν)) for any closed and
bounded convex set R and any point (µ, ν) ∈ R. �

Example 3.3.5 (Dating game). Consider the dating game given by the bi-
matrix

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
We use (µ, ν) = (ν(A), ν(BT )) = (4

5
, 6
5
) as the status quo point (see

Example 3.1.5). We need to find the payoff pair on

K =

{
(u, v) ∈ R : u ≥ 4

5
, v ≥ 6

5

}
so that the function

g(u, v) =

(
u− 4

5

)(
v − 4

5

)
attains its maximum. Now any payoff pair (u, v) along the line segment
joining (1, 3) and (4, 2) satisfies

v − 3 = −1

3
(u− 1)

v = −1

3
u+

10

3

Thus

g(u, v) =

(
u− 4

5

)(
v − 6

5

)
=

(
u− 4

5

)(
−1

3
u+

32

15

)
= −1

3
u2 +

12

5
u− 128

75

attains its maximum when

u =
18

5
and v =

32

15

Since this payoff pair lies on the line segment joining (1, 3) and (4, 2), the
arbitration pair of the game with status quo point (µ, ν) = (4

5
, 6
5
) is

(α, β) =

(
18

5
,
32

15

)
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�
To find the arbitration pair, one may use the fact that if g(u, v) = (u −

µ)(v−ν) attains it maximum at the point (α, β) over the line joining (u0, v0)
and (u1, v1), then the slope of the line joining (α, β) and (µ, ν) would be
equal to the negative of the slope of line joining (u0, v0) and (u1, v1). Using
this fact, one may see easily that (α, β) satisfies

β − v0 =
v1 − v0
u1 − u0

(α− u0)

β − ν = − v1 − v0
u1 − u0

(α− µ)

Hence if the payoff pair (α, β) obtained by solving the above system of equa-
tions lies on the line segment joining (u0, v0) and (u1, v1), which implies that
(α, β) lies on the bargaining set, then (α, β) is the arbitrary pair.

Example 3.3.6. Let

(A,B) =

(
(2, 6) (6, 2) (−1, 4)
(4, 3) (2, 7) (5, 5)

)
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The reader may check that the values of A, BT are 3.2, 4.5 respectively
and we use (µ, ν) = (3.2, 4.5) as the status quo point. We need to consider
two line segments.

1. The line segment joining (5, 5) and (6, 2):

The equation of the line segment is given by v = −3u+ 20. The value
of g(u, v) along the line segment is

g(u, v) = (u− 3.2)(v − 4.5)

= (u− 3.2)(−3u+ 15.5)

= −3u2 + 25.1u+ 49.6

which attain its maximum at (251
60
, 149

20
). Since this payoff pair lies out-

side the line segment joining (5, 5) and (6, 2) and thus lies outside K, we
know that the arbitration pair does not lie on the line segment joining
(5, 5) and (6, 2).

2. The line segment joining (2, 7) and (5, 5):

The slope of the line joining (2, 7) and (5, 5) is −2
3
. To find the max-

imum point of g(u, v) along the line joining (2, 7) and (5, 5), we may
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solve 
v − 7 = −2

3
(u− 2)

v − 4.5 =
2

3
(u− 3.2)

which gives (u, v) = (4.475, 5.35). Since this payoff pair lies on the line
segment joining (2, 7) and (5, 5), we conclude that the arbitration pair
is (α, β) = (4.475, 5.35).

�

3.4 Threat solution

In this section, we study two-person cooperative games with transfer-
able utility. We assume that the players are ’rational’ in the sense that,
given a choice between two possible outcomes of differing personal utility,
each player will select the one with the higher utility. In the model of the
cooperative game with transferable utility, we assume there is a period of
preplay negotiation, during which the players meet to discuss the possibility
of choosing a joint strategy together with some possible side payment to in-
duce cooperation. They also discuss what will happen if they cannot come
to an agreement; each may threaten to use some unilateral strategy that is
bad for the opponent. If they do come to an agreement, it may be assumed
that the payoff vector is Pareto optimal.

In the discussion, both players may make some threat of what strategy
they will take if an agreement is not reached. However, a threat to be be-
lievable must not hurt the player who makes it to a greater degree than the
opponent. Such a threat would not be credible. For example, consider the
following bimatrix game. (

(5, 3) (0,−4)
(0, 0) (3, 6)

)
If the players come to an agreement, it will be to use the lower right corner
because it has the greatest total payoff, namely 9. Player II may argue that
she should receive at least half the sum, 4.5. She may even feel generous in
’giving up’ as a side payment some of the 6 she would be winning. However,
Player I may threaten to use row 1 unless he is given at least 5. That threat
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is very credible since if Player I uses row 1, Player II cannot make a counter-
threat to use column 2 because it would hurt her more than Player I. The
counter-threat would not be credible.

In this model of the preplay negotiation, the threats and counter-threats
may be made and remade until time to make a decision. Ultimately the play-
ers announce what threats they will carry out if agreement is not reached.
It is assumed that if agreement is not reached, the players will leave the ne-
gotiation table and carry out their threats. However, being rational players,
they will certainly reach agreement, since this gives a higher utility. The
threats are only a formal method of arriving at a reasonable amount for the
side payment, if any, from one player to the other.

The problem then is to choose the threats and the proposed side payment
judiciously. The players use threats to influence the choice of the final payoff
vector. The problem is how do the threats influence the final payoff vector,
and how should the players choose their threat strategies? For two-person
games with transferable utility, there is a very convincing answer.

Definition 3.4.1 (Threat solution). Let (A,B) be a game bimatrix.

1. The threat matrix is the matrix T = A−B.

2. The threat differential δ is the value of the threat matrix T = A−B.
In other words, δ = v(T ) = v(A−B).

3. The threat strategies of Player I and Player II are the maximin
strategy pd and the minimax strategy qd of the threat matrix T = A−B
respectively.

4. The threat point, or disagreement point, is the payoff pair (µd, νd)
when the threat strategies pd, qd are being used. In other words,

(µd, νd) = (pdAqTd ,pdBqTd ).

Note that δ = µd − νd.

5. The threat solution is the payoff pair

(ϕ1, ϕ2) =

(
σ + δ

2
,
σ − δ

2

)
=

(
σ + µd − νd

2
,
σ − µd + νd

2

)
.

where
σ = max

i,j
(aij + bij)
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is the maximum total payoff which is the maximum entry of the sum
matrix A+B. Note that (ϕ1, ϕ2) is the solution to{

ϕ1 + ϕ2 = σ

ϕ1 − ϕ2 = δ

If the players come to an agreement, then they will agree to play to
achieve the largest possible total payoff σmax

i,j
(aij + bij) as the payoff to be

divided between them. So it is easy to see that the threat solution (ϕ1, ϕ2)
should satisfy ϕ1 + ϕ2 = σ.

Suppose now that the players have selected their threat strategies, pd for
Player I and qd for Player II. Then if agreement is not reached, Player I
receives pdAqTd and Player II receives pdBqTd . The resulting payoff vector,
(µd, νd) = (pdAqTd ,pdBqTd ) is in the cooperative region and is called the dis-
agreement point or threat point. Once the disagreement point is determined,
the players must agree on the point (u, v) on the line u + v = σ to be used
as the cooperative solution. Player I will accept no less than µd and Player
II will accept no less than νd since these can be achieved if no agreement is
reached. But once the disagreement point has been determined, the game
becomes symmetric. The players are arguing about which point on the line
interval from (µd, σ − µd) to (σ − νd, νd) to select as the cooperative solu-
tion. No other considerations with respect to the matrices A and B play any
further role. Therefore, the midpoint of the interval, namely

(ϕ1, ϕ2) =

(
σ + µd − νd

2
,
σ − µd + νd

2

)
is the natural compromise. Both players suffer equally if the agreement is
broken. Suppose Player I receives less than ϕ1. He may threat Player II by
saying that he will use his threat strategy pd. By doing so, Player I may
guarantee that he gets at least δ = v(A − B) more than Player II. This
ensures Player II will suffer more. Similarly, If Player II receives less than
ϕ2, she may ensure that Player I suffers more by using her threat strategy
qd.

Example 3.4.2. Find the threat strategies and the threat solution of the
game bimatrix

(A,B) =

(
(0, 0) (6, 2) (−1, 2)

(4,−1) (3, 6) (5, 5)

)
.
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Solution. There is a Nash equilibrium in the first row, second column, with
payoff vector (6, 2). The maximum total payoff is

σ = 5 + 5 = 10.

If they come to an agreement, Player I will select the second row, Player II
will select the third column and both players will receive a payoff of 5. They
must still decide on a side payment, if any. They consider the zero-sum game
with the threat matrix

T = A−B =

(
0 4 −3
5 −3 0

)
.

The first column is strictly dominated by the last. The threat strategies are
then easily determined to be{

pd = (0.3, 0.7)

qd = (0, 0.3, 0.7)

Now the threat differential is δ = v(A−B) = −9/10 and the threat solution
is

(ϕ1, ϕ2) =

(
10− 9

10

2
,
10 + 9

10

2

)
=

(
91

20
,
109

20

)
Example 3.4.3. Find the threat solution of the game bimatrix

(A,B) =

 (1, 5) (2, 2) (0, 1)
(4, 2) (1, 0) (2, 1)
(5, 0) (2, 3) (0, 0)

 .

Solution. There are two cooperative strategies giving total payoff σ = 6. The
threat matrix is

T = A−B =

 −4 0 −1
2 1 1
5 −1 0

 .

which has a saddle-point at the 2, 3-entry and the threat differential is δ =
v(T ) = 1. The threat strategies are{

pd = (0, 1, 0)

qd = (0, 0, 1)
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and the threat solution is

(ϕ1, ϕ2) =

(
6 + 1

2
,
6− 1

2

)
= (3.5, 2.5).

Exercise 3

1. Find all Nash equilibria of the following bimatrix games. For each of
the Nash equilibrium, find the payoff pair.

(a)

(
(1, 4) (5, 1)
(4, 2) (3, 3)

)
(b)

(
(5, 2) (2, 0)
(1, 1) (3, 4)

) (c)

(
(1, 5) (2, 3)
(5, 2) (4, 2)

)
(d)

(
(−1, 0) (2, 1)
(4, 3) (−3,−1)

)
2. Find all Nash equilibria of the following bimatirx games

(a)

(
(4, 1) (2, 3) (3, 4)
(3, 2) (5, 5) (1, 2)

)

(b)

(
(1, 0) (4,−1) (5, 1)
(3, 2) (1, 1) (2,−1)

)
(c)

 (4, 6) (0, 3) (2,−1)
(2, 4) (6, 5) (−1, 1)
(5, 0) (1, 2) (4, 3)


(d)

 (3, 2) (4, 0) (7, 9)
(2, 6) (8, 4) (3, 5)
(5, 4) (5, 3) (4, 1)


3. The Brouwer’s fixed-point theorem states that every continuous map
f : X → X has a fixed-point if X is homeomorphic to a closed unit ball.
Find a map f : X → X which does not have any fixed-point for each of
the following topological spaces X. (It follows that the following spaces
are not homeomorphic to a closed unit ball.)

(a) X is the punched closed unit disc D2 \ {0} = {(x, y) ∈ R2 : 0 <
x2 + y2 ≤ 1}

(b) X is the unit sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
(c) X is the open unit disc B2 = {(x, y) ∈ R2 : x2 + y2 < 1}

4. For each of the following bimatrices (A,B), find the values νA and
νBT of A and BT respectively, and the Nash bargaining solution using
(µ, ν) = (νA, νBT ) as the status quo point.
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(a)

(
(4,−4) (−1,−1)
(0, 1) (1, 0)

)
(b)

(
(3, 1) (1, 0)

(0,−1) (2, 3)

) (c)

(
(2, 2) (0, 1) (1,−1)
(4, 1) (−2, 1) (1, 3)

)
(d)

(
(6, 4) (0, 10) (4, 1)

(8,−2) (4, 1) (0, 1)

)
5. Two broadcasting companies, NTV and CTV, bid for the exclusive

broadcasting rights of an annual sports event. If both companies bid,
NTV will win the bidding with a profit of $20 (million) and CTV will
have no profit. If only NTV bids, therell be a profit of $50 (million).
If only CTV bids, therell be a profit of $40 (million). Find the Nash’s
solution to the bargaining problem.

6. Let R = {(u, v) : v ≥ 0 and u2 + v ≤ 4} ⊂ R2. Find the arbitration
pair A(R, (µ, ν)) using the following points as the status quo point
(µ, ν).

(a) (0, 0) (b) (0, 1)

7. Let R ⊂ R2 be a closed and bounded convex set, (µ, ν) ∈ R and
(α, β) = A(R, (µ, ν)) be the arbitration pair with α 6= µ. Suppose the
boundary ofR is given, locally at (α, β), by the graph of a differentiable
function f(x) with f(α) = β. Prove that f ′(α) is equal to the negative
of the slope of the line joining (µ, ν) and (α, β).

8. Suppose A is an n× n matrix such that the sum of entries in any row
of A is equal to a constant rn. Let (µ, ν) be the status quo point of
the bimatrix (A,AT ).

(a) Prove that there is a Nash equilibrium of (A,AT ) with (r, r) as
payoff pair.

(b) Prove that the arbitration payoff pair of the bimatrix (A,AT ) is

(α, β) = (m,m) where m is the maximum entry of
A+ AT

2
. (Here

in finding the arbitration payoff pair of bimatix (A,B), the status
quo point is taken to be (µ, ν) = (v(A), v(BT )) where v is the
value of a matrix.)

9. Find the threat strategies and the threat solutions of the following game
bimatrix.
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(a)

(
(3,−2) (2, 4)
(1, 0) (3,−1)

)

(b)

(
(5, 3) (1, 3)
(4, 4) (2, 1)

)
(c)

(
(6, 4) (2, 3) (4, 7)
(2, 6) (4, 2) (5, 4)

)

(d)

 (2, 8) (7, 5) (6, 3)
(0, 7) (4, 3) (5, 5)

(3,−1) (−2, 6) (2, 7)





4 Extensive form

In the strategic form of a game, we have assumed that players, when taking
their actions, either did so simultaneously, or without knowing the action
choice of the other players. Although, this modelling assumption might be
appropriate in some settings, there are many situations in the world of busi-
ness and politics that involve players moving sequentially after observing
what the other players have done. For example, a bargaining situation be-
tween a seller and a buyer may involve the buyer making an offer and the
seller, after observing the buyer’s offer, either accepting or rejecting it. Or
imagine an incumbent senator deciding whether to run an expensive ad cam-
paign for the upcoming elections and a potential challenger deciding whether
to enter the race or not, after observing the campaign decision of the incum-
bent. Both of these situations involve a player choosing an action after
observing the action of the other player. The extensive form of a game, as
opposed to the strategic form, provides a more appropriate framework to
analyze certain interesting questions that arise in strategic interactions that
involve sequential moves.

4.1 Game tree

Games in extensive form are modelled using directed graphs.

Definition 4.1.1 (Directed graph). A directed graph is a pair (T, F )
where T is a nonempty set of vertices, or nodes and F is a function that
gives for each x ∈ T a subset F (x) ⊂ T called the followers of x. When a
directed graph is used to represent a game, the vertices represent positions of
the game. The followers, F (x), of a position, x, are those positions that can
be reached from x in one move.

Definition 4.1.2 (Path). Let G = (T, F ) and t0, t ∈ T be two vertices. A
path from t0 to t is a sequence, t0, t1, · · · , tn ∈ T , of vertices such that tn = t
and ti ∈ F (ti−1) is a follower of ti−1 for i = 1, 2, · · · , n.

For the extensive form of a game, we deal with a particular type of di-
rected graph called a tree.

Definition 4.1.3 (Tree). A tree is a directed graph, (T, F ) in which there
is a special vertex, t0, called the root or the initial vertex, such that for every
other vertex t ∈ T , there is a unique path beginning at t0 and ending at t.
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The existence and uniqueness of the path implies that a tree is connected,
has a unique initial vertex, and has no circuits or loops. We will also assume
that all trees are finite meaning that there are only finitely many vertices.
We say that a vertex of a tree is a terminal vertex if it has no follower and
the game ends when a terminal vertex is reached.

Definition 4.1.4 (Terminal vertex). We say that a vertex t ∈ T of a tree
G = (T, F ) is a terminal vertex if t has no follower. In other words, t is
a terminal vertex if F (t) = ∅.

In a game tree, play starts at the initial vertex and continues along one
of the paths eventually ending in one of the terminal vertices. At terminal
vertices, the rules of the game specify the payoff. For n-person games, this
would be an n-tuple of payoffs. We will consider two person game and called
the two players Player I and Player II. For the nonterminal vertices there
are three possibilities. Some nonterminal vertices are assigned to Player I
who is to choose the move at that position. Others are assigned to Player II.
However, some vertices may be singled out as positions from which a chance
move is made.

Now we describe pure strategies of players in a game tree.

Definition 4.1.5 (Pure strategy). Let G = (T, F ) be a game tree and
t11, t12, · · · , t1k1 be the vertices associated with Player I. A pure strategy
of Player I is a choice of vertices v11, v12, · · · , v1k1 such that v1i ∈ F (t1i) is a
follower of t1i for each i = 1, 2, · · · , k1. Similarly, a pure strategy of Player
II is a choice of vertices v21, v22, · · · , v2k2 such that v2i ∈ F (t2i) is a follower
of t2i where t21, t22, · · · , t2k2 are vertices associated with Player II.

A game tree can be solved using backward induction. Mechanically,
backward induction corresponds to the following procedure. Consider any
node that comes just before terminal nodes, that is, after each move stemming
from this node, the game ends. If the player who moves at this node acts
rationally, he chooses the best move for himself at that node. Hence, select
one of the moves that give this player the highest payoff. Assigning the payoff
vector associated with this move to the node at hand, delete all the moves
stemming from this node so that we have a shorter game, where the above
node is a terminal node. Repeat this procedure until the origin is the only
remaining node. The outcome is the moves that are picked in the way. Since
a move is picked at each set, the result is a strategy profile.
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Example 4.1.6 (Centipede game). Consider the centipede game in Fig-
ure 1. This game describes a situation where it is mutually beneficial for all
players to stay in a relationship, while a player would like to exit the rela-
tionship, if she knows that the other player will exit in the next day.
In the third day, Player I moves, choosing between going across (α) or down

Figure 1: Centipede game

(δ). If he goes across, he would get 2; if he goes down, he would get the higher
payoff of 3. Hence, according to the procedure, he goes down. Selecting the
move δ for the node at hand, one reduces the game as in Figure 2.

Here, the part of the game that starts at the last decision node is replaced

Figure 2: Backward induction

with the payoff vector associated with the selected move, δ, of the player at
this decision node. In the second day, Player II moves, choosing between
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going across (a) or down (d). If she goes across, she get 3; if she goes down,
she gets the higher payoff of 4. Hence, according to the procedure, she goes
down. Selecting the move d for the node at hand, one reduces the game fur-
ther as in Figure 3.

Once again, the part of the game that starts with the node at hand is re-

Figure 3: Backward induction

placed with the payoff vector associated with the selected move d. Now, Player
I gets 0 if he goes across (A), and gets 1 if he goes down (D). Therefore,
he goes down. The procedure results in the following pure strategies: At each
node, the player who is to move goes down, exiting the relationship. The pure
strategies obtained by using backward induction can be described as Player I
uses Dδ and Player II uses d.

Let’s go over the assumptions that we have made in constructing this pure

Figure 4: Backward induction
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strategies. We assumed that Player I will act rationally at the last date, when
we reckoned that he goes down. When we reckoned that Player II goes down
in the second day, we assumed that Player II assumes that Player I will
act rationally on the third day, and also assumed that she is rational, too.
On the first day, Player I anticipates all these. That is, he is assumed to
know that Player II is rational, and that she will keep believing that Player
I will act rationally on the third day. This example also illustrates another
notion associated with backward induction - commitment (or the lack of com-
mitment). Note that the outcomes on the third day (i.e., (3, 3) and (2, 5))
are both strictly better than the equilibrium outcome (1, 0). But they cannot
reach these outcomes, because Player II cannot commit to go across, and
anticipating that Player II will go down, Player I exits the relationship in
the first day. There is also a further commitment problem in this example.
If Player I were able to commit to go across on the third day, then Player II
would definitely go across on the second day. In that case, Player I would go
across on the first. Of course, Player I cannot commit to go across on the
third day, and the game ends in the first day, yielding the low payoffs (1, 1).

It is not difficult to see that the pure strategies resulting from backward
induction is always a Nash equilibrium. But not all Nash equilibria can be
obtained by backward induction.

Example 4.1.7 (Battle of sexes). Consider the game of the battle of the
sexes. There are two players Alice and Bob. The game tree is shown in
Figure 5.

In this game, backward induction leads to pure strategies Alice uses O and
Bob uses OF as shown in Figure 6.

There is another Nash equilibrium: Alice uses F , and Bob uses FF . Let’s
see why this is a Nash equilibrium. Alice plays a best response to the strategy
of Bob: if she goes to Football she gets 1, and if she goes to Opera she gets 0
(as they do not meet). Bob’s strategy (FF ) is also a best response to Alice’s
strategy: under this strategy he gets 2, which is the highest he can get in this
game.

One can, however, discredit the latter Nash equilibrium because it relies
on an sequentially irrational move at the node after Alice goes to Opera. This
node does not happen according to Alice’s strategy, and it is therefore ignored
in Nash equilibrium. Nevertheless, if Alice goes to Opera, going to football
game would be irrational for Bob, and he would rationally go to Opera as well.
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Figure 5: Battle of the sexes

Figure 6: Battle of the sexes
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And Alice should foresee this and go to Opera. Sometimes, we say that this
equilibrium is based on ”an incredible threat”, with the obvious interpretation.

The battle of sexes game (Example 4.1.7) illustrates a shortcoming of the
usual rationality condition, which requires that one must play a best response
(as a complete contingent plan) at the beginning of the game. While this
requires that the player plays a best response at the nodes that he assigns
positive probability, it leaves the player free to choose any move at the nodes
that he puts zero probability because all the payoffs after those nodes are
multiplied by zero in the expected utility calculation. Since the likelihoods of
the nodes are determined as part of the solution, this may lead to somewhat
erroneous solutions in which a node is not reached because a player plays
irrationally at the node, anticipating that the node will not be reached, as
in (F , FF ) equilibrium. Of course, this is erroneous in that when that node
is reached the player cannot pretend that the node will not be reached as
he will know that the node is reached by the definition of information set.
Then, he must play a best response taking it given that the node is reached.

Many games involve chance moves. Examples include the rolling of
dice in board games like monopoly or backgammon or gambling games, the
dealing of cards as in bridge or poker. In these games, chance moves play an
important role. Even in chess, there is generally a chance move to determine
which player gets the white pieces (and therefore the first move which is
presumed to be an advantage). It is assumed that the players are aware of
the probabilities of the various outcomes resulting from a chance move.

Another important aspect we must consider in studying the extensive
form of games is the amount of information available to the players about
past moves of the game. In poker for example, the first move is the chance
move of shuffling and dealing the cards, each player is aware of certain aspects
of the outcome of this move (the cards he received) but he is not informed of
the complete outcome (the cards received by the other players). This leads
to the possibility of ”bluffing”. This type of games are called games with
imperfect information. Here is an example.

Example 4.1.8 (Bluffing game). The bluffing game is played as follows.
Both players put 1 dollar, called the ante, in the center of the table. The
money in the center of the table, so far two dollars, is called the pot. Then
Player I is dealt a card from a deck. It is a winning card with probability
1/4 and a losing card with probability 3/4. Player I sees this card but keeps
it hidden from Player II. (Player II does not get a card.) Player I then
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checks or bets. If he checks, then his card is inspected; if he has a winning
card he wins the pot and hence wins the 1 dollar ante from Player II, and
otherwise he loses the 1 dollar ante to Player II. If Player I bets, he puts 2
dollars more into the pot. Then Player II, not knowing what card Player I
has, must fold or call. If she folds, she loses the 1 dollar ante to Player I no
matter what card Player I has. If Player II calls, she adds 2 dollars to the
pot. Then Player I’s card is exposed and Player I wins 3 dollars (the ante
plus the bet) from Player II if he has a winning card, and loses 3 dollars to
Player II otherwise.

The tree for the bluffing game is shown in Figure 7. There are at most
three moves in this game: (1) the chance move that chooses a card for Player
I, (2) Player I’s move in which he checks or bets, and (3) Player II’s move
in which she folds or calls. To each vertex of the game tree, we attach a label
indicating which player is to move from that position. Chance moves refer to
as moves by nature and use the label N . Each edge is labelled to identify the
move. The moves leading from a vertex at which nature moves are labelled
with the probabilities with which they occur. At each terminal vertex, we write
the numerical value of Player I’s winnings (Player II’s losses).

There is only one feature lacking from the above figure. From the tree we

Figure 7: Bluffing game

should be able to reconstruct all the essential rules of the game. That is not
the case with the tree of Figure 7 since we have not indicated that at the time
Player II makes her decision she does not know which card Player I has
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received. That is, when it is Player II’s turn to move, she does not know at
which of her two possible positions she is. We indicate this on the diagram
by joining the two positions with a dotted line, and we say that these two
vertices constitute an information set. The two vertices at which Player
I is to move constitute two separate information sets since he is told the
outcome of the chance move. The completed game tree is shown is Figure 8.

Figure 8: Bluffing game

The game tree with all the payoffs, information sets, and labels for the
edges and vertices included is known as the Kuhn tree. We now give the
formal definition of a Kuhn tree. Not every set of vertices can form an infor-
mation set. In order for a player not to be aware of which vertex of a given
information set the game has come to, each vertex in that information set
must have the same number of edges leaving it. Furthermore, it is important
that the edges from each vertex of an information set have the same set of la-
bels. The player moving from such an information set really chooses a label.
It is presumed that a player makes just one choice from each information set.

Definition 4.1.9 (Extensive form). A finite two-person game in extensive
form is given by
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1. a finite tree with vertices T ,

2. a payoff function that assigns a payoff pair to each terminal vertex,

3. a set T0 of non-terminal vertices (representing positions at which chance
moves occur) and for each t ∈ T0, a probability distribution on the edges
leading from t,

4. a partition of the rest of the vertices (not terminal and not in T0) into
two groups T11, T12, · · · , T1k1 (for Player I) and T21, T22, · · · , T2k2 (for
Player II), and

5. for each information set Tjk for player j, a set of labels Ljk, and for
each vertex t ∈ Tjk, a one-to-one mapping of Tjk onto the set of edges
leading from t,

Here is an example of games in extensive form.

Example 4.1.10 (Matching pennies). Consider the game in Figure 9. The

Figure 9: Matching pennies

tree consists of 7 nodes. The first one is allocated to Player I, and the
next two to Player II. The four terminal vertices have payoffs attached to
them. Since there are two players, payoff vectors have two elements. The
first number is the payoff of Player I and the second is the payoff of Player
II.



Extensive form 95

The information structure in a game in extensive form can be quite com-
plex. It may involve lack of knowledge of the other player’s moves or of some
of the chance moves. It may indicate a lack of knowledge of how many moves
have already been made in the game. It may describe situations in which
one player has forgotten a move he has made earlier. In fact, one way to
try to model the game of bridge as a two-person zero-sum game involves the
use of this idea. In bridge, there are four individuals forming two teams or
partnerships of two players each. The interests of the members of a partner-
ship are identical, so it makes sense to describe this as a two-person game.
But the members of one partnership make bids alternately based on cards
that one member knows and the other does not. This may be described as
a single player who alternately remembers and forgets the outcomes of some
of the previous random moves. A kind of degenerate situation exists when
an information set contains two vertices which are joined by a path, as is the
case with Player I’s information set in Figure 10.

Figure 10: When t is reached, Player I has forgotten he had chosen a at t0.

Definition 4.1.11 (Perfect recall). We say that a game in extensive form
is of perfect recall if all players remember all past information they once
knew and all past moves they made.
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Consider the game tree in Figure 11. Suppose Player I plays a and then
Player II plays d. Player I does not know whether he arrives t1 or t2 because
t1, t2 are in the same information set even though he has played a in the first
move. Player I has forgotten what he has played in the first move. So this
game is not of perfect recall. If then Player I plays e, the payoff pair would
be (0, 0).

Figure 11: Player I does not know whether he is at t1 and t2 because he has
forgotten whether he has chosen a or b previously.

Games in which both players know the rules of the game, that is, in
which both players know the Kuhn tree, are called games of complete in-
formation. Games in which one or both of the players do not know some
of the payoffs, or some of the probabilities of chance moves, or some of the
information sets, or even whole branches of the tree, are called games with
incomplete information, or pseudogames. We assume in the following that
we are dealing with games of complete information.

Extensive form games describe strategic interactions in which moves may
occur sequentially. The two main classes of extensive form games are games
of perfect information and games of imperfect information. Now we can make
a formal definition of games of perfect information.

Definition 4.1.12 (Game of perfect information). A game of perfect in-
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formation is a game in extensive form in which each information set of
every player contains a single vertex.

The centipede (Example 4.1.6) and battle of the sexes (Example 4.1.7) are
examples of games of perfect information. In such games a player’s choices
are always immediately observed by his opponents. Simultaneous moves
are modeled by incorporating unobserved moves, and so lead to imperfect
information games. Extensive form games may also include chance events,
modeled as moves by Nature. For our categorization, it is most convenient
to understand ’game of perfect information’ to refer only to games without
moves by Nature. The bluffing game (Example 4.1.8) and matching pennies
(Example 4.1.10) are examples of games of imperfect information.

4.2 Reduction of extensive form to strategic form

In this section, we study how to transform a game in extensive form to
strategic form.

Given a game in extensive form, we first find X and Y , the sets of pure
strategies of the players to be used in the strategic form. A pure strategy for
Player I is a rule that tells him exactly what move to make in each of his in-
formation sets. Let T11, T12, · · · , T1k1 be the information sets for Player I and
let L11, L12, · · · , L1k1 be the corresponding sets of labels. A pure strategy for
Player I is a k1-tuple x = (x1, x2, · · · , xk1) where for each i, xi is one of the ele-
ments of L1i. If there are mi elements in L1i, the number of such k1-tuples and
hence the number of Player I’s pure strategies is the product m1m2 · · ·mk1 .
The set of all such strategies is X. Similarly, if T21, T22, · · · , T2k2 represent
Player II’s information sets and L21, L22, · · · , L2k2 the corresponding sets of
labels, a pure strategy for Player II is a k2-tuple, y = (y1, y2, · · · , yk2) where
yj ∈ L2j for each j. Player II has n1n2 · · ·nk2 pure strategies if there are nj
elements in L2j. Y denotes the set of these strategies.

Definition 4.2.1 (Pure strategy). A pure strategy for Player I of a game
in extensive form is a k1-tuple x = (x1, x2, · · · , xk1) where for each i, xi
an element in the set of labels L1i associated with the information set T1i.
Similarly a pure strategy for Player II is a k2-tuple y = (y1, y2, · · · , yk2)
where yj is an element in L2j. Denoted by X and Y the set of pure strategies
of Player I and II respectively.
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Note that since the set of vertices T is finite, both X and Y are finite
sets and we have

|X| = |L11| × |L12| × · · · × |L1k1| and |Y | = |L21| × |L22| × · · · × |L2k2|.

A referee, given (x, y) ∈ X×Y , could play the game, playing the appropriate
move from x whenever the game enters one of Player I’s information sets,
playing the appropriate move from y whenever the game enters one of Player
II’s information sets.

Example 4.2.2 (Matching pennies). Consider the matching pennies game
(Example 4.1.10). Player I has one information set (consisting of one vertex)
with two labels ”head” and ”tail”. So Player I has two strategies ”head” and
”tail”. On the other hand, Player II has one information set (consisting of
two vertices) with two labels ”head” and ”tail”. So Player II also has two
pure strategies ”head” and ”tail”.

Example 4.2.3 (Battle of the sexes). Consider the battle of the sexes game
(Example 4.1.7). Alice has two pure strategies O and F . Bob has two in-
formation sets and each of them has two labels O and F . So Bob has 4
strategies OO, OF , FO, FF . For example, OO mean Bob uses O no matter
what Alice uses, and FO means Bob uses F if Alice uses O while Bob would
use O if Alice uses F . If Alice uses F and Bob uses FO, then Alice plays F ,
Bob plays O and the payoff pair is (0, 0). If Alice uses O and Bob uses OF ,
then Alice plays O, Bob plays O and the payoff pair is (2, 1).

If there are chance moves, the move is played at random with the indicated
probabilities. The actual outcome of the game for given (x, y) ∈ X × Y
depends on the chance moves selected, and is therefore a random quantity.
Strictly speaking, random payoffs were not provided for in our definition
of games in normal form. However, we are quite used to replacing random
payoffs by their average values (expected values) when the randomness is due
to the use of mixed strategies by the players. We adopt the same convention
in dealing with random payoffs when the randomness is due to the chance
moves. If for fixed pure strategies of the players, (x, y) ∈ X×Y , the payoff is
a random variable, we replace the payoff by the expected value, and denote
this expected payoff by A(x, y).

Example 4.2.4 (Silver dollar). Player II chooses one of two rooms, room
A and room B, in which to hide a silver dollar. Then, Player I, not knowing
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which room contains the dollar, selects one of the rooms to search. However,
the search is not always successful. In fact, if the dollar is in room A and
Player I searches there, then (by a chance move) he has only probability 1/2
of finding it, and if the dollar is in room B and Player I searches there, then
he has only probability 1/4 of finding it. Of course, if he searches the wrong
room, he certainly won’t find it. If he does find the coin, Player II pays $8
to Player I; otherwise Player I pays $2 to Player II.

The game tree of the silver dollar game is shown in Figure 12.

Figure 12: Silver dollar

There are 3 non-terminal vertices in the game tree. One vertex, namely
the initial vertex, is associated with Player II. The other two vertices, which
are followers of the initial vertex, are associated with Player I. Theses two
vertices are connected by a dotted line which shows that they belong to the
same information set. Both Player I and Player II have one information
set and each of them has two strategies labeled A and B.

To find the expected payoff of Player I, if the two players use different
strategies, then Player can never find the silver dollar and the expected payoff
is −2. If both players play A, then the probability that Player I finds the silver
dollar is 1/2 and the expected payoff to player I is

8× (1/2) + (−2)× (1/2) = 3.

If both players play B, then the probability that Player I finds the silver dollar
is 1/4 and the expected payoff to player I is

8× (1/4) + (−2)× (3/4) = 1.
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Thus the strategic form of the game is given by the 2× 2 matrix(
3 −2
−2 1

)
.

Now we can calculate that the maximin strategy for Player I is (0.375, 0.625)
and the minimax strategy for Player II is (0.375, 0.625). The value of the
game is v = −1/8.

Example 4.2.5 (Bluffing game). Let us find the equivalent strategic form to
the bluffing game (Example 4.1.8), whose tree is shown in Figure 8. Player
I has two information sets. In each set he must make a choice from among
two options. He therefore has 2×2 = 4 pure strategies. We may denote them
by

• (b, b): bet with a winning card or a losing card.

• (b, c): bet with a winning card, check with a losing card.

• (c, b): check with a winning card, bet with a losing card.

• (c, c): check with a winning card or a losing card.

Therefore, X = {(b, b), (b, c), (c, b), (c, c)}. We include in X all pure strate-
gies whether good or bad (in particular, (c, b) seems a rather perverse sort of
strategy.) Player II has only one information set. Therefore, Y = {c, f},
where

• c: if Player I bets, call.

• f : if Player I bets, fold.

Now we find the payoff matrix. Suppose Player I uses (b, b) and Player II
uses c. Then if Player I gets a winning card (which happens with probability
1/4), he bets, Player II calls, and Player I wins 3 dollars. But if Player I
gets a losing card (which happens with probability 3/4), he bets, Player II
calls, and Player I loses 3 dollars. Player I’s average or expected winnings
is

A((b, b), c) =
1

4
(3) +

3

4
(−3) = −3

2
.

This gives the upper left entry in the following matrix. The other entries may
be computed similarly and are left as exercises.
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c f
(b, b)
(b, c)
(c, b)
(c, c)


−3/2 1

0 −1/2
−2 1
−1/2 −1/2


Let us solve this 4 by 2 game. The third row is dominated by the first row,
and the fourth row is dominated by the second row. In terms of the original
form of the game, this says something you may already have suspected: that
if Player I gets a winning card, it cannot be good for him to check. By betting
he will win at least as much, and maybe more. With the bottom two rows
eliminated the matrix becomes(

−3/2 1
0 −1/2

)
,

whose solution is easily found. The value is v = −1/4. The maximin strategy
for Player I is (1/6, 5/6, 0, 0) and the minimax strategy for Player II is
(1/2, 1/2). That means Player I’s optimal strategy is to mix (b, b) and (b, c)
with probabilities 1/6 and 5/6 respectively, while Player II’s optimal strategy
is to mix c and f with equal probabilities 1/2 each. The strategy (b, b) is
Player I’s ”bluffing” strategy. Its use entails betting with a losing hand. The
strategy (b, c) is Player I’s ”honest” strategy, bet with a winning hand and
check with a losing hand. Player I’s optimal strategy requires some bluffing
and some honesty.

In a game of perfect information, each player when called upon to make a
move knows the exact position in the tree. In particular, each player knows
all the past moves of the game including the chance ones. Examples include
tic-tac-toe, chess, backgammon, craps, etc. Games of perfect information
have a particularly simple mathematical structure. The main result is that
every game of perfect information when reduced to strategic form has a
saddle point; both players have optimal pure strategies. Moreover, the saddle
point can be found by removing dominated rows and columns. This has an
interesting implication for the game of chess for example. Since there are no
chance moves, every entry of the game matrix for chess must be either +1 (a
win for Player I), or −1 (a win for Player II), or 0 (a draw). A saddle point
must be one of these numbers. Thus, either Player I can guarantee himself
a win, or Player II can guarantee himself a win, or both players can assure
themselves at least a draw. From the game-theoretic viewpoint, chess is a
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very simple game. One needs only to write down the matrix of the game. If
there is a row of all +1’s, Player I can win. If there is a column of all −1’s,
then Player II can win. Otherwise, there is a row with all +1’s and 0’s and
a column with all −1’s and 0’s, and so the game is drawn with best play. Of
course, the real game of chess is so complicated, there is virtually no hope of
ever finding an optimal strategy.

For games in extensive form, it is useful to consider a different method of
randomization for choosing among pure strategies. All a player really needs
to do is to make one choice of an edge for each of his information sets in the
game. A behavioral strategy is a strategy that assigns to each information
set a probability distributions over the choices of that set. For example,
suppose the first move of a game is the deal of one card from a deck of 52
cards to Player I. After seeing his card, Player I either bets or passes, and
then Player II takes some action. Player I has 52 information sets each with
2 choices of action, and so he has 252 pure strategies. Thus, a mixed strategy
for Player I is a vector of 252 components adding to 1 (a probability vector of
dimension 252) which is an element in P252 . On the other hand, a behavioral
strategy for Player I simply given by the probability of betting for each card
he may receive, and so is specified by only 52 numbers (52 probability vectors
of dimension 2) which is an element in (P2)52.

Definition 4.2.6 (Behavioral strategy). A behavioral strategy of a player
of a game in extensive form is a strategy that assigns to each information set
of the player a probability distribution over the choices of that set. In other
words, a behavioral strategy of Player I is an element of the form

x = (x1,x2, · · · ,xk1)

where xi = (xi1, · · · , ximi
) ∈ Pmi, mi = |L1i|, is a probability vector and

0 ≤ xik ≤ 1 represents the probability that Player I would choose the edge
labeled with k in the set L1i when player I arrives at the information set T1i.
Similarly a behavioral strategy of Player II is an element of the form

y = (y1,y2, · · · ,yk2)

where yj = (yj1, · · · , yjnj
) ∈ Pnj , nj = |L2j|, is a probability vector.

In general, the space of behavioral strategies for the two players is

(Pm1 × · · · × Pmk1 )× (Pn1 × · · · × Pnk2 )
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which is much smaller than the space of mixed strategies

P |X| × P |Y | = Pm1m2···mk1 × Pn1n2···nk2 .

Here is an example of a mixed strategy that is not a behavioral strategy.

Example 4.2.7 (Battle of sexes). Consider the battle of the sexes (Example
4.1.7) with perfect information, where Alice moves first. The game tree is
shown in Figure 5. Bob has four pure strategies OO, OF , FO, FF . A
mixed strategy of Bob is using OO with a probability 0.3 and using FF with
a probability 0.7. The strategies OF and FO will never be used. We can
use the vector y1 = (0.3, 0, 0, 0.7) to represent this mixed strategy where the
numbers in the vector represents the probability that Bob uses OO, OF , FO,
FF respectively. This mixed strategy is not induced by any behavioral strategy
because the actions Bob takes at its two nodes are correlated. A mixed strategy
induced by behavioral strategy would be y2 = (0.09, 0.21, 0.21, 0.49) where Bob
is to play O with probability 0.3 and to play F with a probability 0.7 at each
node independently. Note that for any strategy of Alice, the expected payoff
for the two players are the same with the strategies y1 and y2. Suppose Alice
uses O. If Bob uses y1 = (0.3, 0, 0, 0, 7), the expected payoff pair is

A(O,y1) = 0.3(2, 1) + 0.7(0, 0) = (0.6, 0.3).

and if Bob uses y2 = (0.09, 0.21, 0.21, 0.49), the expected payoff pair is

A(O,y2) = 0.09(2, 1) + 0.21(2, 1) + 0.21(0, 0) + 0.49(0, 0) = (0.6, 0.3).

Similarly, the expected payoff pair are the same if Alice uses F and we have

A(F,y1) = A(F,y2) = (0.7, 1.4).

The question arises: Can we do as well with behavioral strategies as we
can with mixed strategies? The answer is we can if both players in the
game have perfect recall. The basic theorem, due to Kuhn says that in finite
games with perfect recall, any distribution over the payoffs achievable by
mixed strategies is achievable by behavioral strategies as well.

Theorem 4.2.8 (Kuhn’s theorem). Consider a game in extensive form of
perfect recall. For any mixed strategies x and y of Player I and Player II
respectively, there exists strategies xb and yb induced by behavioral strategies
such that (x,y), (xb,y), (x,yb) have the same expected payoff pairs, that is,

A(x,y) = (xb,y) = (x,yb).
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While a Nash equilibrium in mixed strategies always exists via reduction
to the normal form case, it is not obvious that a Nash equilibrium in be-
havioral strategies exists. This is true thanks to Kuhn’s theorem (Theorem
4.2.8).

Theorem 4.2.9. In a finite game in extensive form of perfect recall, there
is a Nash equilibrium in behavioral strategies.

4.3 Subgame perfect Nash equilibrium

Backward induction is a powerful solution concept with some intuitive ap-
peal. Unfortunately, it can be applied only to perfect information games. Its
intuition, however, can be extended beyond these games through subgame
perfection. This section defines the concept of subgame-perfect equilibrium
and illustrates how one can check whether pure strategy pair is a subgame
perfect equilibrium.

Definition 4.3.1 (Subgame). A subgame of a game G in extensive form
is a game G′ such that

1. all vertices of G′ are vertices of G, and

2. if x is a vertex in G′, then all followers of x are vertices of G′.

A main property of backward induction is that, when restricted to a
subgame of the game, the equilibrium computed using backward induction
remains an equilibrium of the subgame.

Definition 4.3.2 (Subgame perfect Nash equilibrium). A Nash equilibrium
of a game in extensive form is said to be subgame perfect if it is Nash
equilibrium in every subgame of the game.

Any subgame other than the entire game itself is called proper sub-
game. Observe that the pure strategy pair of a subgame obtained by back-
ward induction coincides with the strategy pair obtained by applying back-
ward induction to the entire game. We see that the strategies obtained by
backward induction is a subgame perfect Nash equilibrium.

Theorem 4.3.3. Every finite game in extensive form with perfect informa-
tion has a subgame perfect pure Nash equilibrium which can be computed by
backward induction.
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Figure 13: Proper subgames of centipede
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Example 4.3.4. Then centipede game (Example 4.1.6) has two proper sub-
games as shown in Figure 13. The equilibrium obtained by backward in-
duction, that is player I uses Dδ and Player II uses d, remains to be an
equilibrium of each subgame.

Example 4.3.5 (Matching pennies). Consider the matching penny game
with perfect information (Example 4.1.10). This game has three subgames:
one after Player I chooses Head, one after Player I chooses Tail, and the
game itself. Again, the equilibrium computed through backward induction is
a Nash equilibrium at each subgame.

We consider a game with imperfect information.

Example 4.3.6 (Imperfect information game). Consider the game in Figure
14.
One cannot apply backward induction in this game because it is not a perfect

Figure 14: Imperfect information game

information game. One can compute the subgame-perfect equilibrium, how-
ever. This game has two subgames: one starts after Player I plays E; the
second one is the game itself. The subgame perfect equilibria are computed
as follows. First compute a Nash equilibrium of the subgame, then fixing the
equilibrium actions as they are (in this subgame), and taking the equilibrium
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payoffs in this subgame as the payoffs for entering the subgame, compute a
Nash equilibrium in the remaining game.

The subgame has only one Nash equilibrium, as T dominates B, and R
dominates L. In the unique Nash equilibrium, Player I plays T and Player
II plays R, yielding the payoff vector (3, 2), as illustrated in Figure 15.

Figure 15: Equilibrium in a subgame

Given this, the game reduces to a game shown in Figure 16.
Player I chooses E in this reduced game. Therefore, the subgame-perfect

Figure 16: Reduced game

equilibrium is as in Figure 17. First, Player I uses ET and Player II uses
R.
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Figure 17: Subgame perfect equilibrium

The above example illustrates a technique to compute the subgame-
perfect equilibria in finite games.

• Step 1. Pick a subgame that does not contain any other subgame.

• Step 2. Compute a Nash equilibrium of this game.

• Step 3. Assign the payoff vector associated with this equilibrium to the
starting node, and eliminate the subgame.

• Step 4. Iterate this procedure until a move is assigned at every contin-
gency, when there remains no subgame to eliminate.

As in backward induction, when there are multiple equilibria in the picked
subgame, one can choose any of the Nash equilibrium, including one in a
mixed strategy. Every choice of equilibrium leads to a different subgame-
perfect Nash equilibrium in the original game. By varying the Nash equilib-
rium for the subgames at hand, one can compute all subgame perfect Nash
equilibria. A subgame-perfect Nash equilibrium is a Nash equilibrium be-
cause the entire game is also a subgame. The converse is not true. There
can be a Nash equilibrium that is not subgame-perfect.

Example 4.3.7. The game in Example 4.3.6 has the following equilibrium:
Player I uses XB and Player II uses L. You should be able to check that
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this is a Nash equilibrium. (Player II cannot improve his payoff by changing
his strategy L alone.) But it is not subgame perfect: Player II plays a strictly
dominated strategy in the proper subgame.

Sometimes subgame-perfect equilibrium can be highly sensitive to the
way we model the situation. For example, consider the game in Figure 18.
This is essentially the same game as Example 4.3.6. The only difference is

Figure 18: Game equivalent to Figure 14

that Player I makes his choices here at once. (There is no strategy E in the
first move.) One would have thought that such a modeling choice should not
make a difference in the solution of the game. It does make a huge difference
for subgame-perfect Nash equilibrium nonetheless. In the new game, the only
subgame of this game is itself, hence any Nash equilibrium is subgame perfect.
In particular, the non-subgame-perfect Nash equilibrium of the game above
is subgame perfect. In the new game, it is formally written as Player I uses
X and Player II uses L as shown in Figure 18. Clearly, one could have used
the idea of sequential rationality to solve this game. That is, by sequential
rationality of Player II at her information set, she must choose R. Knowing
this, Player I must choose T . Therefore, subgame perfect equilibrium does
not fully formalize the idea of sequential rationality. It does yield reasonable
solutions in many games, and it is widely used in game theory. It will also
be used in this course frequently.

Example 4.3.8 (Market entry). Suppose Pluto is considering whether to
enter a market and Venus is a provider of the market. If Pluto enters, both
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firms simultaneously decide whether to act tough (T) or accommodate (A).
This leads to an extensive form game with imperfect information whose game
tree representation is given in Figure 19, where the first number in a payoff
vector belongs to Pluto and the second to Venus. In this game, Pluto has

Figure 19: Market entry game

two information sets and each information set has two labels. Thus Pluto
has 4 strategies OT,OA,ET,EA. Here O stands for ”out” and E stands for
”enter”. For example, OA means Pluto stays out of the market and chooses
to accommodate if he enters the market. ET means Pluto enters the market
and chooses to act tough. Venus has two strategies T and A. The strategic
form of the market entry game is given below.

T A
OT (0, 5) (0, 5)
OA (0, 5) (0, 5)
ET (−2,−1) (0,−3)
EA (−3, 1) (1, 2)

There are three Nash equilibria of this game: (OT, T ), (OA, T ), (EA,A). In
the second Nash equilibrium Pluto is supposed to accommodate and Venues
is supposed to act tough, following Pluto entering the market. Is that rea-
sonable? In other words, suppose, the game actually reached that stage, that
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is Pluto actually entered. Now, is (A, T ) a reasonable outcome? One way of
asking the same question is to check if both players are acting rationally, i.e.,
best responding to each other’s strategies, conditional upon Pluto entering the
market. Notice that conditional upon Pluto entering the market we have the
subgame in Figure 20. The strategic form of the subgame is given below.

Figure 20: Subgame of market entry

T A
T (−2,−1) (0,−3)
A (−3, 1) (1, 2)

If Pluto anticipates Venus to play T , then its best response is T as well, not
A. (Neither is T a best response for Pluto to A.) Therefore, to the extent
that we regard only Nash equilibrium outcomes as reasonable, we conclude
that (A, T ) is not reasonable. It follows that the Nash equilibrium (OA, T ) is
not subgame-perfect. In contrast, (OT, T ) and (EA,A) are subgame-perfect
equilibria.

4.4 Recursive games

We consider now matrix games in which the outcome of a particular choice
of pure strategies of the players may be that the players have to play another
game. Let us take a simple example.
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Example 4.4.1. Let G1 and G2 denote 2× 2 games with matrices

G1 =

(
0 3
2 −1

)
and G2 =

(
0 1
4 3

)
and let G denote the 2× 2 game whose matrix is represented by

G =

(
G1 4
5 G2

)
.

The game G is played in the usual manner with Player I choosing a row and
Player II choosing a column. If the entry in the chosen row and column is
a number, Player II pays Player I that amount and the game is over. If
Player I chooses row 1 and Player II chooses column 1, then the game G1

is played. If Player I chooses row 2 and Player II chooses column 2, then
G2 is played. We may analyze the game G by first analyzing G1 and G2.

G1: Maximin strategy for Player I is (1/2, 1/2)
Minimax strategy for Player II is (2/3, 1/3)
value of G1 is v(G1) = 1

G2: Maximin strategy for Player I is (0, 1)
Minimax strategy for Player II is (0, 1)
value of G2 is v(G2) = 3

If after playing the game G the players end up playing G1, then they can
expect a payoff of the value of G1, namely 1, on the average. If the players
end up playing G2, they can expect an average payoff of the value of G2,
namely 3. Therefore, the game G can be considered equivalent to the game
with matrix (

1 4
5 3

)
G: Maximin strategy for Player I is (2/5, 3/5)

Minimax strategy for Player II is (1/5, 4/5)
value of G is v(G) = 17/5

This method of solving the game G may be summarized as follows. If the
matrix of a game G has other games as components, the solution of G is the
solution of the game whose matrix is obtained by replacing each game in the
matrix of G by its value.
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This example may be written as a 4 × 4 matrix game. The four pure
strategies of Player I may be denoted {(1, 1), (1, 2), (2, 1), (1, 2)}, where (i, j)
represents: use row i in G, and if this results in Gi being played use row j. A
similar notation may be used for Player II. The 4× 4 game matrix becomes

G =


0 3
2 −1

4 4
4 4

5 5
5 5

0 1
4 3

 .

Conversely, suppose we are given a game G and suppose after some rear-
rangement of the rows and of the columns the matrix may be decomposed
into the form

G =

(
G11 G12

G21 G22

)
where G11 and G22 are arbitrary matrices and G12 and G21 are constant
matrices. (A constant matrix has the same numerical value for all of its
entries.) Then we can solve G by the above method, pretending that as the
first move the players choose a row and column from the 2 × 2 decomposed
matrix.

Of course, a game that is the component of some matrix game may itself
have other games as components, in which case one has to iterate the above
method to obtain the solution. This works if there are a finite number of
stages.

Example 4.4.2 (Inspection game). Player II must try to perform some
forbidden action in one of the next n time periods. Player I is allowed to
inspect Player II secretly just once in the next n time periods. If Player II
acts while Player I is inspecting, Player II loses 1 unit to Player I. If Player
I is not inspecting when Player II acts, the payoff is zero. Let Gn denotes
this game. Player I has two strategies: inspect and wait; and Player II has
two strategies: act and wait. The game tree of the game is shown is Figure
21 We obtain the iterative strategic form

Gn =

(
1 0
0 Gn−1

)
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Figure 21: Game tree of Gn

for n = 2, 3, 4, · · · , with boundary condition G1 = (1). We may solve for
value of Gn iteratively as

v(G1) = 1

v(G2) = v

(
1 0
0 1

)
= 1/2

v(G3) = v

(
1 0
0 1/2

)
= 1/3

· · ·

v(Gn) = v

(
1 0
0 1/(n− 1)

)
= 1/n

since inductively, the value of Gn is v(Gn) = 1/n. The optimal strategy in
the game Gn for both players is (1/n, (n− 1)/n).

The following multistage game is loosely related to the game of Cluedo.

Example 4.4.3 (Cluedo). From a deck with m+n+1 distinct cards, m cards
are dealt to Player I, n cards are dealt to Player II, and the remaining card,
called the ”target card”, is placed face down on the table. Players knows their
own cards but not those of their opponent. The objective is to guess correctly
the target card. Players alternate moves, with Player I starting. At each
move, a player may either
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• guess at the target card, in which case the game ends, with the winner
being the player who guessed if the guess is correct, and his opponent if
the guess is incorrect, or

• ask if the other player holds a certain card. If the other player has the
card, that card must be shown and is removed from play.

With a deck of say 11 cards and each player receiving 5 cards, this is a nice
playable game that illustrates need for bluffing in a clear way. If a player
asks about a card that is in his own hand, he knows what the answer will be.
We call such a play a bluff. If a player asks about a card not in his hand,
we say he is honest. If a player is always honest and the card he asks about
is the target card, the other player will know that the requested card is the
target card and so will win. Thus a player must bluff occasionally. Bluffing
may also lure the opponent into a wrong guess at the target card.

Let us denote this game with Player I to move by Gm,n. The game Gm,0

is easy to play. Player I can win immediately. Since his opponent has no
cards, he can tell what the target card is. Similarly, the game G0,n is easy
to solve. If Player I does not make a guess immediately, his opponent will
win on the next move. However, his probability of guessing correctly is only
1/(n+1). Valuing 1 for a win and 0 for a loss from Player I’s viewpoint, the
value of the game is just the probability Player I wins under optimal play.
We have v(Gm,0) = 1, for any m ≥ 0,

v(G0,n) =
1

n+ 1
, for any n ≥ 0.

If Player I asks for a card that Player II has, that card is removed from play
and it is Player II’s turn to move, holding n − 1 cards to her opponent’s
m cards. This is exactly the game Gn−1,m but with Player II to move. We
denote this game by Ḡn−1,m. Since the probability that Player I wins is one
minus the probability that Player II wins, we have

v(Ḡn−1,m) = 1− v(Gn,m), for any m,n.

Suppose Player I asks for a card that Player II does not have. Player II
must immediately decide whether or not Player I was bluffing. If she decides
Player I was honest, she will announce the card Player I asked for as her
guess at the target card, and win if she was right and lose if she was wrong.
If she decides Player I was bluffing and she is wrong, Player I will win on
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his turn. If she is correct, the card Player I asked for is removed from his
hand, and the game played next is Ḡn,m−1. Using such considerations, we
may write the game as a multistage game in which a stage consists of three
pure strategies for Player I (honest, bluff, guess) and two pure strategies for
Player II (ignore the asked card, call the bluff by guessing the asked card).
In summary, Player I has three strategies: honest, bluff, guess; and Player
II has two strategies: ignore, call. The game tree is shown in Figure 22.

Figure 22: Game tree of Gm,n

The game matrix becomes, for m ≥ 1 and n ≥ 1,

Gm,n =

 n
n+1

Ḡn−1,m + 1
n+1

n
n+1

Ḡn−1,m
Ḡn,m−1 1

1
n+1

1
n+1

 .

This assumes that if Player I asks honestly, he chooses among the n + 1
unknown cards with probability 1/(n + 1) each; also if he bluffs, he chooses
among his m cards with probability 1/m each.

As an example, the upper left entry of the matrix is found as follows.
With probability n/(n+ 1), Player I asks a card that is in Player II’s hand
and the game becomes Ḡn−1,m; with probability 1/(n + 1), Player I asks the
target card, Player II ignores it and Player I wins on his next turn, i.e.
gets 1. The upper right entry is similar, except this time if the asked card
is the target card, Player II guesses it and Player I gets 0. It is reasonable
to assume that if m ≥ 1 and n ≥ 1, Player I should not guess, because the
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probability of winning is too small. In fact if m ≥ 1 and n ≥ 1, there is
a strategy for Player I that dominates guessing, so that the last row of the
matrix may be deleted. This strategy is: On the first move, ask any of the
m + n + 1 cards with equal probability 1/(m + n + 1) (i.e. use row 1 with
probability (n + 1)/(m + n + 1) and row 2 with probability m/(m + n + 1),
and if Player II doesn’t guess at her turn, then guess at the next turn. We
must show that Player I wins with probability at least 1/(n + 1) whether or
not Player II guesses at her next turn. If Player II guesses, her probability
of win is exactly 1/(m+ 1) whether or not the asked card is one of hers. So
Player I’s win probability is m/(m+ 1) ≥ 1/2 ≥ 1/(n+ 1). If Player II does
not guess, then at Player I’s next turn, Player II has at most n cards (she
may have n− 1) so again Player I’s win probability is at least 1/(n+ 1). So
the third row of Gm,n may be removed and the games reduce to

Gm,n =

(
n
n+1

Ḡn−1,m + 1
n+1

n
n+1

Ḡn−1,m
Ḡn,m−1 1

)
.

for m ≥ 1 and n ≥ 1. These 2× 2 games are easily solved recursively, using

the boundary conditions v(Gm,0) = 1 and v(G0,n) =
1

n+ 1
for m,n ≥ 0. One

can find the value and optimal strategies of Gm,n after one finds the values
of Gn,m−1 and Gn−1,m. For example, the game G1,1 reduces to the game with
matrix

G1,1 =

(
1
2
Ḡ0,1 + 1

2
1
2
Ḡ0,1

Ḡ1,0 1

)
.

Thus the value of the game is

v(G1,1) = v

(
1
2
(1− v(G0,1)) + 1

2
1
2
(1− v(G0,1))

1− v(G1,0) 1

)
= v

(
1
2
(1− 1

2
) + 1

2
1
2
(1− 1

2
)

1− 1 1

)
= v

(
3
4

1
4

0 1

)
=

1

2
.

The maximin strategy for Player I is (2/3, 1/3) (i.e. bluff with probability
1/3), and the minimax strategy of player II is (1/2, 1/2). One can also show
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that Gm,n has no saddle point for m,n ≥ 1. If we let vm,n = v(Gm,n), the
game Gm,n is equivalent to the game with 2× 2 game matrix( n+1−nvn−1,m

n+1

n−nvn−1,m

n+1

1− vn,m−1 1

)
.

Recall that for 2× 2 game matrix with no saddle points

A =

(
a b
c d

)
we have

value of A: v =
ad− bc

a− b− c+ d

maximin strategy for Player I: p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
minmax strategy for Player II: q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
We obtain the recursive formula for the value vm,n, the maximin strategy pm,n
and the minimax strategy qm,n of Gm,n given by

vm,n = v

( n+1−nvn−1,m

n+1

n−nvn−1,m

n+1

1− vn,m−1 1

)
=

1 + n(1− vn−1,m)vn,m−1
1 + (n+ 1)vn,m−1

pm,n =

(
(n+ 1)vn,m−1

1 + (n+ 1)vn,m−1
,

1

1 + (n+ 1)vn,m−1

)
qm,n =

(
1 + nvn−1,m

1 + (n+ 1)vn,m−1
,
(n+ 1)vn,m−1 − vn−1,m

1 + (n+ 1)vn,m−1

)
for m,n ≥ 1 and {

vm,0 = 1, for m ≥ 0

v0,n = 1
n+1

, for n ≥ 0

This provides a simple direct way to compute the values recursively. For
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example

v2,1 =
1 + (1− v0,2)v1,1

1 + 2v1,1

=
1 + (1− 1

3
)1
2

1 + 2(1
2
)

=
2

3

v1,2 =
1 + 2(1− v1,1)v2,0

1 + 3v2,0

=
1 + 2(1− 1

2
)

1 + 3

=
1

2

v2,2 =
1 + 2(1− v1,2)v2,1

1 + 3v2,1

=
1 + 2(1− 1

2
)2
3

1 + 3(2
3
)

=
5

9

The following table shows the values of vm,n, pm,n and qm,n for 2 ≤ m+n ≤ 4.

Gm,n G1,1 G1,2 G2,1 G1,3 G2,2 G3,1

value vm,n
1
2

1
2

2
3

2
5

5
9

11
16

maximin strategy pm,n (1
3
, 2
3
) (1

4
, 3
4
) (1

2
, 1
2
) (4

5
, 1
5
) (1

3
, 2
3
) (1

2
, 1
2
)

minimax strategy qm,n (1
2
, 1
2
) (1

2
, 1
2
) (1

3
, 2
3
) (3

5
, 2
5
) (1

3
, 2
3
) (5

8
, 3
8
)

Exercise 4

1. In a bargaining game, the buyer moves first by offering either $500 or
$100 for a product that she values $600. The seller, for whom the value
of the object is $50, responds by either accepting (A) or rejecting (R)
the offer.

(a) Draw the game tree of the bargaining game.
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(b) Use backward induction to solve the game.

2. Albert and Benson start with $16 in each of their piles. They take
turns choosing one of two actions, continue or stop with Albert chooses
first. Each time a player says continue, half of the amount in his pile
will move to the other player’s pile, and then extra $16 will be added to
his pile. The game automatically stop when the total amount in their
piles reaches $96.

(a) Draw the game tree of the game.

(b) Use backward induction to solve the game and write down the
payoffs of the players in the solution.

3. Armies I and II are fighting over an island initially held by a battalion
of army II. Army I has 3 battalions and army II has 4, including the
battalion occupying the island. Whenever the island is occupied by one
army the opposing army can launch an attack with all its battalions.
The outcome of the attack is that the army with more battalions will
win and occupy the island with the surviving battalions which is equal
to the difference of the number of battalions while the battalions of the
loser will all be destroyed. The commander of each army is interested
in maximizing the number of surviving battalions but also regards the
occupation of the island as worth one and a half battalions.

(a) Draw the game tree of the game.

(b) Solve the game.

4. In a senate race game, a senate seat is currently occupied by Gray
(the incumbent). A potential challenger for Gray’s seat is Green. Gray
moves first and decide whether to launch a preemptive advertising cam-
paign and Green has to decide whether to enter the race. Green will
win the senate seat only if Gray does not advertise and Green enters
the race. Otherwise Gray will win the Senate Seat. Both Gray and
Green value the senate seat as 5 units. However, 2 units of advertising
cost will be deducted from the payoff of Gray if he launches the adver-
tising and 1 unit of running cost will be deducted from the payoff of
Green if he enters the race.

(a) Draw the game tree of the senate race game.
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(b) Use backward induction to solve the game.

(c) Suppose Green does not know whether Gray has launched an ad-
vertising before he decides whether to enter the race. Draw the
game tree and write down the strategic form of the game.

5. Consider the game tree

(a) Write down all pure strategies for Player I and Player II.

(b) Write down the strategic form (game bimatrix) of the game.

6. Consider the game tree

(a) Write down all pure strategies for Player I and Player II.
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(b) Write down the strategic form (game bimatrix) of the game.

(c) Solve the subgame after Player I chooses a.

(d) Find all Nash equilibria of the game.

7. Consider the game tree

(a) Write down all pure strategies for Player I and Player II.

(b) Write down the strategic form (game bimatrix) of the game.

(c) Find all pure Nash equilibrium of the game.

(d) State whether each of the Nash equilibria is subgame perfect.

8. In a game show, there is $5 in a green envelope and $7 in a yellow
envelope. A player Alan chooses an envelope and the amount inside
the envelope is increased by $4. Another player Bonnie, not knowing
which envelope Alan has chosen, chooses an envelope and the amount
inside the envelope is doubled. Then Alan, not knowing which envelope
Bonnie has chosen, chooses envelope and gets the money inside. Bonnie
will get the money inside the other envelope.

(a) Draw the game tree of the game.

(b) Write down all strategies of Alan and Bonnie.

(c) Write down the strategic form (game bimatrix) of the game.

(d) Find the Nash equilibrium of the game.
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9. Consider the game tree

After Pioneer has made the first move, the chance of High and Low are
equal.

(a) Write down the strategies of Pioneer and Voyager.

(b) Write down the strategic form (game bimatrix) of the game.

(c) Find the Nash equilibrium of the game.

10. Both Steve and Tony put $1 to the pot. Steve draws a card from a
winning card and a losing card randomly. Steve sees his card but keeps
it hidden from Tony. Steve then bets or Checks. If Steve bets, he
puts $6 more into the pot and Tony, not knowing what card Steve has,
must fold or call. If Tony folds, he loses $1 to Steve no matter what
card Steve has. If Tony calls, Steve wins $7 from Tony if Steve has the
winning card and Steve loses $7 to Tony if Steve has the losing card. If
Steve checks, his card is inspected. Steve wins $1 from Tony if he has
the winning card, and otherwise he loses $1 to Tony.

(a) Draw the game tree of the game.

(b) Write down the strategies of Steve and Tony.

(c) Write down the strategic form (game matrix) of the game.

(d) Solve the game.

11. Players I and II play the following bluffing game. Each player bet $1.
Player I is given a card which is high or low; each is equally likely.



Extensive form 124

Player I sees the card, player II doesn’t. Player I can raise the bet to
$2 or fold. If player I raises, player II can call or fold. If player II
folds, he loses $1 to player I no matter what the card is. If player II
calls, then player I wins $2 from player II if his card is high and loses
$2 to player II if the card is low.

(a) Draw the game tree of the game.

(b) Write down all pure strategies of the players.

(c) Write down the strategic form (game matrix) of the game.

(d) Solve the game.

12. Two firms, an entrant (I) and an incumbent (II) play an market entry
game. The entrant moves first, deciding to stay Out or to Enter the
market. If the entrant stays Out, he gets a payoff of 0, while the
incumbent gets the monopoly profit of 3. If the entrant Enters, the
incumbent must choose between Fighting (so that both players obtain
−1) or Accommodating (so that both players obtain the duopoly profit
of 1).

(a) Draw the game tree of the game.

(b) Write down all pure strategies of the players.

(c) Write down the strategic form of the game.

(d) Solve the game.

13. Player I has two coins. One is fair (probability 1/2 of heads and 1/2 of
tails) and the other is biased with probability 1/3 of heads and 2/3 of
tails. Player I knows which coin is fair and which is biased. He selects
one of the coins and tosses it. The outcome of the toss is announced to
Player II. Then II must guess whether I chose the fair or biased coin.
If II is correct there is no payoff. If II is incorrect, she loses 1 dollar.

(a) Draw the game tree.

(b) Solve the game.

14. A fair coin (probability 1/2 of heads and 1/2 of tails) is tossed and
the outcome is shown to Player I. On the basis of the outcome of this
toss, Player I decides whether to bet 1 or 2. Then Player II hearing
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the amount bet but not knowing the outcome of the toss, must guess
whether the coin was heads or tails. Player II wins if her guess is
correct and loses if her guess is incorrect. The absolute value of the
amount won is the amount bet if the coin comes up tail and the amount
bet plus 1 if the coin comes up heads.

(a) Draw the game tree.

(b) Write down the strategic form of the game.

(c) Solve the game.

15. Coin A has probability 1/2 of heads and 1/2 of tails. Coin B has
probability 1/3 of heads and 2/3 of tails. Player I must predict ”heads”
or ”tails”. If he predicts heads, coin A is tossed. If he predicts tails,
coin B is tossed. Player II is informed as to whether I’s prediction
was right or wrong (but she is not informed of the prediction or the
coin that was used), and then must guess whether coin A or coin B
was used. If Player II guesses correctly she wins 1 dollar from Player
I. If Player II guesses incorrectly and Player I’s prediction was right,
Player I wins 2 dollars from Player II. If both are wrong there is no
payoff.

(a) Draw the game tree of the game.

(b) Write down the strategic form of the game.

(c) Solve the game.

16. Consider the two games

G1 =

(
6 0
0 0

)
and G2 =

(
3 0
0 6

)
.

One of these games is chosen to be played at random with probability
1/3 for G1 and probability 2/3 for G2. The game chosen is revealed
to Player I but not to Player II. Then Player I selects a row, 1 or
2, and simultaneously Player II chooses a column, 1 or 2, with payoff
determined by the selected game.

(a) Draw the game tree.

(b) Solve the game.
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17. Player I draws a card at random from a full deck of 52 cards. After
looking at the card, he bets either 1 or 5 that the card he drew is a face
card (king, queen or jack). Then Player II either concedes or doubles.
If she concedes, she pays Player I the amount bet (no matter what the
card was). If she doubles, the card is shown to her, and Player I wins
twice his bet if the card is a face card, and loses twice his bet otherwise.

(a) Draw the game tree.

(b) Write down the strategic form of the game.

(c) Solve the game.

18. Player II must count from n down to zero by subtracting either one or
two at each stage. Player I must guess at each stage whether Player II
is going to subtract one or two. If Player I ever guesses incorrectly at
any stage, the game is over and there is no payoff. Otherwise, if Player
I guesses correctly at each stage, he wins 1 from Player II. Let Gn

denote this game, and use the initial conditions G0 = (1) and G1 = (1).
Let vn be the value of Gn.

(a) Find v3, v4 and v5.

(b) Find vn. (You may use Fn to denote the Fibonacci sequence,
0, 1, 1, 2, 3, 5, 8, 13, · · · , with definition F0 = 0, F1 = 1, and for
Fn = Fn−1 + Fn−2 for n ≥ 2.)

19. There is one point to go in the match. The player that wins the last
point while serving wins the match. The server has two strategies, high
and low. The receiver has two strategies, near and far. The probability
the server wins the point is given in the accompanying table.

near far
high 0.8 0.5
low 0.6 0.7

If the server misses the point, the roles of the players are interchanged
and the win probabilities for given pure strategies are the same for the
new server. Find optimal strategies for server and receiver, and find
the probability the server wins the match.
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20. Player I tosses a coin with probability p of heads. For each k = 1, 2, · · · ,
if Player I tosses k heads in a row he may stop and challenge Player II
to toss the same number of heads; then Player II tosses the coin and
wins if and only if he tosses k heads in a row. If Player I tosses tails
before challenging Player II, then the game is repeated with the roles
of the players reversed. If neither player ever challenges, the game is a
draw.

(a) Solve the game when p = 1/2.

(b) For arbitrary p, find the optimal strategies of the players and the
probability that Player I wins.



5 Cooperative games

In a cooperative game, players can make binding agreements about which
strategies to play. In the last chapter, we studied Nash bargaining solution
for 2-person cooperative games with non-transferable utility. In this chapter,
we study n-person cooperative games with transferable utility. In such
a game, players may share their payoffs according to the agreements made
by the players in advance. However there is no universally accepted rules
to determine how the payoffs should be shared among the players. Different
solution concepts may be used in different situations. In this chapter, we are
going to study two solution concepts namely core and Shapley value.

5.1 Characteristic form and imputations

First we define the strategic form of a cooperative game.

Definition 5.1.1. Let A = {A1, A2, · · · , An} be the set of players. Let Xi,
i = 1, 2, · · · , n, be the set of strategies of player Ai ∈ A.

1. The strategic form of a game is a function

π = (π1, π2, · · · , πn) : X1 ×X2 × · · · ×Xn → Rn

2. A coalition is a subset S ⊂ A of the set of players. For each i =
1, 2, · · · , n, the set {Ai}, consists of one player, is a coalition. The
whole set A of all players is also a coalition which is called the grand
coalition.

3. Let S ⊂ A be a coalition. The counter coalition of S is the comple-
ment Sc = A \ S ⊂ A of S in A.

4. The characteristic function is the function ν : P(A) → R, where
P(A) is the power set of A, defined as follows. For any coalition S ⊂ A,
define ν(S) as the maximin total payoff to the players in S when the
game is considered as a 2-person non-cooperative game between S and
Sc. For a coalition with one single player S = {Ai}, Ai ∈ A, we will
use an abuse of notation and write ν(Ai) for ν({Ai}).

Example 5.1.2 (3-person constant sum game). Let A = {A1, A2, A3} be the
player set and Xi = {0, 1}, for i = 1, 2, 3, be the strategy set for Ai. Suppose
the payoffs to the players are given by the following table.
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Strategy Payoff vector
(0, 0, 0) (−2, 1, 2)
(0, 0, 1) (1, 1,−1)
(0, 1, 0) (0,−1, 2)
(0, 1, 1) (−1, 2, 0)
(1, 0, 0) (1,−1, 1)
(1, 0, 1) (0, 0, 1)
(1, 1, 0) (1, 0, 0)
(1, 1, 1) (1, 2,−2)

For coalition S = {A1, A2}, we compute ν(S) and ν(Sc) as follows. First
the game bimatrix for the 2-person game between S and Sc is

Strategy of A3

0 1

Strategy of {A1, A2}

(0, 0) (−1, 2) (2,−1)
(0, 1) (−1, 2) (1, 0)
(1, 0) (0, 1) (0, 1)
(1, 1) (1, 0) (3,−2)

The game has a saddle point with payoff pair (1, 0). Thus ν({A1, A2}) = 1
and ν({A3}) = 0. For S = {A1, A3}, the game bimatrix is

Strategy of A2

0 1

Strategy of {A1, A3}

(0, 0) (0, 1) (2,−1)
(0, 1) (0, 1) (−1, 2)
(1, 0) (2,−1) (1, 0)
(1, 1) (1, 0) (−1, 2)

Now the payoff matrix for the coalition S = {A1, A3} is
0 2
0 −1
2 1
1 −1


Observe that the sum of the payoffs to S and Sc is always equal to 1. The
non-cooperative game between S and Sc can be considered as a zero sum
game. The value of ν({A2, A3}) is equal to the value of the above game
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matrix which is equal to 4
3
. Moreover, ν({A1}) = −1

3
since the sum of the

payoffs to S and Sc is always equal to 1. The values of ν(S) for varies
coalitions S are given in the following table.

S ν(S)
∅ 0
{A1} 1

4

{A2} −1
3

{A3} 0
{A1, A2} 1
{A2, A3} 3

4

{A1, A3} 4
3

{A1, A2, A3} 1

�
Suppose S and T are two disjoint coalitions. The two coalitions can com-

bine and form a larger coalition S ∪ T which is called the union coalition.
We always have ν(S ∪ T ) ≥ ν(S) + ν(T ). This property is called superaddi-
tivity.

Theorem 5.1.3 (Superadditivity). Let ν be the characteristic function of
a game in strategic form. Then ν is superadditive. That is to say, if
S, T ⊂ A are two coalitions with S ∩ T = ∅, then

ν(S ∪ T ) ≥ ν(S) + ν(T )

In particular

ν(A) ≥
n∑
i=1

ν(Ai)

Proof. Let S and T be two coalitions with S ∩ T = ∅. Let p and q be the
maximin strategies for the coalitions S and T respectively. By combining
p and q which is a strategy of S ∪ T , the coalition S ∪ T may guarantee a
payoff of at least ν(S) + ν(T ). Therefore we have ν(S ∪ T ) ≥ ν(S) + ν(T ).
The second statement is a direct consequence of the first.

Definition 5.1.4 (Characteristic form). The characteristic form of a
game is an ordered pair (A, ν) where A is the set of player and ν : P(A)→ R,
where P(A) is the power set of A, is a function, such that
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1. ν(∅) = 0

2. (Superadditivity) If S, T ⊂ A are subset of A with S ∩ T = ∅, then

ν(S ∪ T ) ≥ ν(S) + ν(T )

The function ν is called the characteristic function of the game.

The players have a tendency to cooperate only when the game is essential.

Definition 5.1.5. We say that a game (A, ν) in characteristic form is es-
sential if

ν(A) >
n∑
i=1

ν(Ai)

Otherwise, it is said to be inessential.

If a game is essential, then the total payoff to all players when they
cooperate is larger than the sum of the payoffs to the players when they play
the game individually. This gives an incentive for the players to cooperate.
If a game is inessential, then no player can gain more by cooperation.

Theorem 5.1.6. If (A, ν) is inessential, then for any coalition S ⊂ A, we
have

ν(S) =
∑
Ai∈S

ν(Ai)

Proof. For any coalition S ⊂ A, by superadditivity, we have

ν(S) ≥
∑
Ai∈S

ν(Ai) and ν(Sc) ≥
∑
Aj∈Sc

ν(Aj)

Now if (A, ν) is inessential, then

ν(A) ≤
n∑
i=1

ν(Ai)

which implies, by superadditivity again,

ν(A) =
n∑
i=1

ν(Ai)
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Hence

ν(A) =
n∑
i=1

ν(Ai)

=
∑
Ai∈S

ν(Ai) +
∑
Aj∈Sc

ν(Aj)

≤ ν(S) + ν(Sc)

≤ ν(A)

Thus all inequalities above become equality and therefore

ν(S) =
∑
Ai∈S

ν(Ai)

In a cooperative game with transferable utility, the players may benefit
by forming the grand coalition A. The total amount received by the players
is ν(A). The problem is to agree on how this amount should be split among
the players. The first criterion is that each player should receive no less than
the amount before cooperation. We call a splitting of total payoffs to the
players an imputation if it satisfies this criterion.

Definition 5.1.7 (Imputation). Let ν : P(A)→ R be a characteristic func-
tion. A vector (x1, x2, · · · , xn) ∈ Rn is called an imputation for ν if

1. (Individual rationality) For any i = 1, 2, · · · , n, we have xi ≥ ν(Ai).

2. (Efficiency4)
n∑
i=1

xi = ν(A)

The set of imputations for ν is denoted by I(ν).

In an inessential game, no player may receive more by cooperation and
there is only one imputation for the game. For essential games, there are
infinitely many ways to split the payoffs which satisfy individual rationality.

Theorem 5.1.8. Let ν be a characteristic function and I(ν) be the set of
imputations.

4It is also called collective rationality.
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1. If ν is inessential, then I(ν) = {(ν(A1), ν(A2), · · · , ν(An))}.

2. If ν is essential, then I(ν) is an infinite set.

Proof. 1. If ν is inessential, then for any imputation (x1, x2, · · · , xn) ∈
I(ν), we have

ν(A) =
n∑
i=1

xi ≥
n∑
i=1

ν(Ai) = ν(A)

Thus xi = ν(Ai) for i = 1, 2, · · · , n and I(ν) = {(ν(A1), ν(A2), · · · , ν(An))}.

2. Suppose ν is essential. Let

β = ν(A)−
n∑
i=1

ν(Ai) > 0

Then there are infinitely many solutions to the equation
n∑
i=1

αi = β

for variables α1, α2, · · · , αn > 0 and each of the solutions gives an
imputation by putting xi = ν(Ai) + αi for i = 1, 2, · · · , n.

5.2 Core

The core of a cooperative game is the set of imputations that are not domi-
nated by other imputations through any coalition.

Definition 5.2.1. Let x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈ I(ν) be
two imputations. We say that x is dominated by y through a coalition S ⊂ A
and write x ≺S y if

1. If Ai ∈ S, then xi < yi.

2.
∑
Ai∈S

yi ≤ ν(S)

We write x 6≺S y if x is not dominated by y through S.

Example 5.2.2. Consider the 3-person constant sum game (Example 5.1.2)
with characteristic function
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S ν(S)
∅ 0
{A1} 1

4

{A2} −1
3

{A3} 0
{A1, A2} 1
{A2, A3} 3

4

{A1, A3} 4
3

{A1, A2, A3} 1

We have (
1

3
,
1

3
,
1

3

)
≺{A1,A2}

(
1

2
,
1

2
, 0

)
(1, 0, 0) ≺{A2,A3}

(
1

3
,
1

3
,
1

3

)
(

1

3
,
1

3
,
1

3

)
≺{A2,A3}

(
1

4
,
3

8
,
3

8

)
�

For imputation x ∈ I(ν), if there exists imputation y ∈ I(ν) and coalition
S ⊂ A such that x 6≺S y, then there will be a tendency for coalition S to
form and upset the proposal x because such a coalition could guarantee each
of its members more than they could receive from x. Thus it reasonable to
require the splitting of payoff to the players to be an imputation which is not
dominated by any other imputation through any coalition.

Definition 5.2.3 (Core). The core C(ν) of a characteristic function is the
set of all imputations that are not dominated by any other imputation through
any coalition, that is

C(ν) = {x ∈ I(ν) : x 6≺S y for any y ∈ I(ν) and S ⊂ A}

There is an easy way to check whether an imputation lies in the core.

Theorem 5.2.4. Let x = (x1, x2, · · · , xn) ∈ I(ν) be an imputation. Then
x ∈ C(ν) if and only if ∑

Ai∈S

xi ≥ ν(S)

for any coalition S ⊂ A.
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Proof. Suppose x = (x1, x2, · · · , xn) ∈ I(ν) does not lie in the core C(ν).
Then there exists imputation y ∈ I(ν) and coalition S ⊂ A such that xi < yi
for any Ai ∈ S and

∑
Ai∈S yi ≤ ν(S). Thus we have∑

Ai∈S

xi <
∑
Ai∈S

yi ≤ ν(S)

On the other hand, suppose x = (x1, x2, · · · , xn) ∈ I(ν) is an imputation
such that ∑

Ai∈S

xi < ν(S)

for some coalition S. Then S 6= A and since∑
Ai∈S

xi +
∑
Aj∈Sc

xj =
n∑
i=1

xi = ν(A) ≥ ν(S) + ν(Sc) >
∑
Ai∈S

xi +
∑
Aj∈Sc

ν(Aj)

by superadditivity, there exists Ak ∈ Sc such that xk > ν(Ak). Define

yi =


xi + α

|S| for Ai ∈ S
xk − α for i = k

xi for Ai ∈ Sc and i 6= k

where

α = min

{
xk − ν(Ak), ν(S)−

∑
Ai∈S

xi

}
> 0

By taking y = (y1, y2, · · · , yn), we have x ≺S y. Therefore x does not lie in
the core C(ν) and the proof of the theorem is complete.

Theorem 5.2.5. The core C(ν) is a convex set if it is not empty.

Proof. Let x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈ C(ν) be two imputa-
tions in the core. Then for any coalition S, we have∑

Ai∈S

xi,
∑
Ai∈S

yi ≥ ν(S)

by Theorem 5.2.4. Now for any real number 0 ≤ λ ≤ 1, we have∑
Ai∈S

(λxi + (1− λ)yi) ≥ ν(S)

which implies λx + (1− λ)y ∈ C(ν). Therefore C(ν) is convex.



Cooperative games 136

Example 5.2.6 (3-person constant sum game). Let ν be the characteristic
function of the 3-person constant sum game (Example 5.2.2). Find the core
C(ν) of ν.

Solution. For any imputation x = (x1, x2, x3) ∈ I(ν), we have x ∈ C(ν) if
and only if 

x1 ≥
1

4
, x2 ≥ −

1

3
, x3 ≥ 0

x1 + x2 ≥ 1, x2 + x3 ≥
3

4
, x1 + x3 ≥

4

3
x1 + x2 + x3 = ν(A) = 1

First of all, we have

x3 = (x1 + x2 + x3)− (x1 + x2) ≤ 1− 1 = 0

which implies x3 = 0. Then

x1 + x2 = (x1 + x3) + (x2 + x3) ≥
4

3
+

3

4
> 1

which leads to a contradiction. Therefore C(ν) = ∅. �

Example 5.2.7. Suppose ν(A1) = ν(A2) = ν(A3) = 0 and

S ν(S)
{A1, A2} 1

3

{A1, A3} 1
2

{A2, A3} 1
4

{A1, A2, A3} 1

Find the core C(ν) of ν.

Solution. Let x = (x1, x2, x3) ∈ I(ν) be an imputation. Then x ∈ C(ν) if
and only if 

x1, x2, x3 ≥ 0

x1 + x2 ≥
1

3
, x1 + x3 ≥

1

2
, x2 + x3 ≥

1

4
x1 + x2 + x3 = ν(A) = 1

Now
0 ≤ x1 = 1− x2 − x3 ≤ 1− 1

4
= 3

4

0 ≤ x2 = 1− x1 − x3 ≤ 1− 1
2

= 1
2

0 ≤ x3 = 1− x1 − x2 ≤ 1− 1
3

= 2
3



Cooperative games 137

The above system of inequalities is equivalent to
0 ≤ x1 ≤ 3

4

0 ≤ x2 ≤ 1
2

0 ≤ x3 ≤ 2
3

x1 + x2 + x3 = ν(A) = 1

We may consider x1 and x2 as independent variables and x3 = 1 − x1 − x2
depends on x1, x2. Then x1 and x2 satisfy the constraints

0 ≤ x1 ≤ 3
4

0 ≤ x2 ≤ 1
2

1

3
≤ x1 + x2 ≤ 1

We may represent the core on the x1 − x2 plane

�
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Example 5.2.8 (Used car game). A man named Andy has an old car he
wishes to sell. He no longer drives it, and it is worth nothing to him unless
he can sell it. Two people are interested in buying it, Ben and Carl. Bill
values the car at $500 and Carl thinks it is worth $700. The game consists of
each of the prospective buyers bidding on the car, and Andy either accepting
one of the bids (presumably the higher one), or rejecting both of them. Find
the core of the game and represent it on the x1 − x2 plane.

Solution. If there is no deal, no player gets anything and we have ν(A1) =
ν(A2) = ν(A3) = 0. The characteristic values of other coalitions are listed
below.

S ν(S)
{A1, A2} 500
{A1, A3} 700
{A2, A3} 0
{A1, A2, A3} 700

Let x = (x1, x2, x3) ∈ I(ν) be an imputation. Then x ∈ C(ν) if and only if
x1, x2, x3 ≥ 0

x1 + x2 ≥ 500, x1 + x3 ≥ 700, x2 + x3 ≥ 0

x1 + x2 + x3 = 700

Observe that

0 ≤ x2 = (x1 + x2 + x3)− (x1 + x3) ≤ 700− 700 = 0
0 ≤ x3 = (x1 + x2 + x3)− (x1 + x2) ≤ 700− 500 = 200
x1 = x1 + x2 ≥ 500
x1 ≤ x1 + x2 + x3 ≤ 700

The above system of inequalities is equivalent to
500 ≤ x1 ≤ 700

x2 = 0

x3 = 700− x1

The core of the used car game is shown in the following figure.
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�

Example 5.2.9 (Mayor and council). In a city, there is a Mayor and a city
council with 7 members. A bill can be passed to a law if either

1. the majority of the council members passes it and the Mayor signs it,
or

2. the Mayor vetoes it but at least 6 council members vote to override the
veto.

Find the core of the game.

Solution. Let A = {M, 1, 2, 3, 4, 5, 6, 7} be the set of players. Then

• ν(S) = 1 if

1. S contains the mayor and at least 4 council members, or

2. S contains at least 6 council members.

• ν(S) = 0 otherwise.
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Then x = (xM , x1, · · · , x7) ∈ I(ν) if and only if{
xM , x1, x2, · · · , x7 ≥ 0

xM + x1 + x2 + · · ·+ x7 = 1

Suppose x ∈ C(ν). Then for any k = 1, 2, · · · , 7,∑
i 6=k

xi ≥ 1

which implies x1 + x2 + · · ·+ x7 ≥ 1 and

xM = xM + x1 + x2 · · ·+ x7 − (x1 + x2 + · · ·+ x7) ≤ 1− 1 = 0

Moreover for any k = 1, 2, · · · , 7,

xk = (x1 + x2 + · · ·+ x7)−
∑
i 6=k

xi ≤ 1− 1 = 0

which contradicts xM + x1 + x2 + · · ·+ x7 = 1. Therefore C(ν) = ∅. �

Definition 5.2.10. A characteristic function ν is constant sum if

ν(S) + ν(Sc) = ν(A)

for any coalition S ⊂ A.

Theorem 5.2.11. If ν is both essential and constant sum, then C(ν) = ∅.

Proof. Suppose ν is constant sum and its core C(ν) is nonempty. It suffices
to show that ν is inessential. To this end, let x = (x1, x2, · · · , xn) ∈ C(ν) be
an imputation lying in the core. Then for any k = 1, 2, · · · , n, we have

xk ≥ ν(Ak) and
∑
i 6=k

xi ≥ ν({Ak}c)

Thus by Theorem 5.2.4, we have

ν(A) = ν(Ak) + ν({Ak}c) ≤ xk +
∑
i 6=k

xi = ν(A)

It follows that xk = ν(Ak) and we have

n∑
k=1

ν(Ak) = ν(A)

which means ν is inessential and the proof of the theorem is complete.
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Definition 5.2.12. Two characteristic functions µ and ν are strategically
equivalent if there exists real numbers k > 0 and c1, c2, · · · , cn such that for
any coalition S ⊂ A,

µ(S) = kν(S) +
∑
Ai∈S

ci

It is obvious that being strategically equivalent is an equivalence relation.
Two games share very similar properties when their characteristic functions
are strategically equivalent.

Theorem 5.2.13. Suppose µ and ν are strategically equivalent characteristic
functions. Let k > 0, c1, c2, · · · , cn be real numbers such that

µ(S) = kν(S) +
∑
Ai∈S

ci

Write c = (c1, c2, · · · , cn). We have

1. µ is essential if and only if ν is essential.

2. I(µ) = {y : y = kx + c for some x ∈ I(ν)}

3. C(µ) = {y : y = kx + c for some x ∈ C(ν)}

Definition 5.2.14 ((0, 1) reduced form). We say that a characteristic func-
tion µ is a (0, 1) reduced form if

1. µ(Ai) = 0 for any i = 1, 2, · · · , n

2. µ(A) = 1

Every inessential game is strategically equivalent to a trivial game. Every
essential game is strategically equivalent to a unique (0, 1) reduced form.

Theorem 5.2.15. Let ν be a characteristic function.

1. If ν is inessential, then ν is strategically equivalent to the zero game,
that is, a game with characteristic function identically equal to zero.

2. If ν is essential, then ν is strategically equivalent to a unique game in
(0, 1) reduced form.

Proof. Let ν be a characteristic function.
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1. Suppose ν is inessential. By Theorem 5.1.6, for any coalition S ⊂ A,

ν(S) =
∑
Ai∈S

ν(Ai)

Taking k = 1 and ci = −ν(Ai) for i = 1, 2, · · · , n, we have ν is strate-
gically equivalent to the characteristic function

µ(S) = ν(S)−
∑
Ai∈S

ν(Ai)

and µ(S) = 0 for any coalition S which means µ is the trivial game.

2. Suppose ν is essential. Taking

k =
1

ν(A)−
n∑
j=1

ν(Aj)
and ci =

−ν(Ai)

ν(A)−
n∑
j=1

ν(Aj)
for i = 1, 2, · · · , n

ν is strategically equivalent to the characteristic function

µ(S) =

ν(S)−
∑
Ai∈S

ν(Ai)

ν(A)−
n∑
j=1

ν(Aj)

for S ⊂ A. Now µ(A) = 1 and µ(Ai) = 0 for any i = 1, 2, · · · , n.
Therefore ν is strategically equivalent to the (0, 1) reduced form µ.
Suppose µ′ is another (0, 1) reduced form strategically equivalent to ν.
Then µ′ is strategically equivalent to µ. Thus there exists constants
k > 0 and c1, c2, · · · , cn such that

µ′(S) = kµ(S) +
∑
Ai∈S

ci

for any coalition S. Taking S = {Ai}, i = 1, 2, · · · , n, we have c1 = c2 =
· · · = cn = 0 since µ′({Ai}) = µ({Ai}) = 0. Moreover taking S = A,
we have µ′(A) = kµ(A) which implies k = 1 since µ′(A) = µ(A) = 1.
Therefore µ′ = µ and the (0, 1) reduced form of ν is unique.
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Suppose ν is the characteristic function of a 3-person game and µ is the
(0, 1) reduced form of ν. Then an imputation (y1, y2, y3) ∈ I(µ) of µ lies in
the core of µ if and only if

0 ≤ y1 ≤ 1− µ({A2, A3})
0 ≤ y2 ≤ 1− µ({A1, A3})
0 ≤ y3 ≤ 1− µ({A1, A2})
y1 + y2 + y3 = 1

and on the x1 − x2 plane, it can be represented by the region
0 ≤ y1 ≤ 1− µ({A2, A3})
0 ≤ y2 ≤ 1− µ({A1, A3})
µ({A1, A2}) ≤ y1 + y2 ≤ 1

Example 5.2.16 (3-person constant sum game). Let ν be the characteristic
function of the 3-person constant sum game (Example 5.1.2 and Example
5.2.2). Let µ be the (0, 1) reduced form of ν. Find µ and its core C(µ).
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Solution. First we have

µ(A1) = µ(A2) = µ(A3) = 0

and
µ(A) = 1

Next we calculate

k =
1

ν(A)− (ν(A1) + ν(A2) + ν(A3))
=

1

1− (1
4

+ (−1
3
) + 0)

=
12

13

and we have

µ({A1, A2}) = k(ν({A1, A2})− (ν(A1) + ν(A2)))

=
12

13

(
1−

(
1

4
− 1

3

))
= 1

µ({A1, A3}) = k(ν({A1, A3})− (ν(A1) + ν(A3)))

=
12

13

(
4

3
−
(

1

4
+ 0

))
= 1

µ({A2, A3}) = k(ν({A2, A3})− (ν(A2) + ν(A3)))

=
12

13

(
3

4
−
(
−1

3
+ 0

))
= 1

Now an imputation (y1, y2, y3) ∈ I(µ) lies in the core C(µ) of µ if and only if
0 ≤ y1 ≤ 1− µ({A2, A3}) = 0

0 ≤ y2 ≤ 1− µ({A1, A3}) = 0

0 ≤ y3 ≤ 1− µ({A1, A2}) = 0

y1 + y2 + y3 = 1

which has no solution. Thus C(µ) = ∅. (Note that C(ν) is also empty.) �

Example 5.2.17 (Used car game). Let ν be the characteristic function of
the used car game (Example 5.2.8). Let µ be the (0, 1) reduced form of ν.
Find µ and the core C(ν) of ν.
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Solution. First we have

µ(A1) = µ(A2) = µ(A3) = 0 and µ(A) = 1

Now

k =
1

ν(A)− (ν(A1) + ν(A2) + ν(A3))
=

1

700

and we have

µ({A1, A2}) = k(ν({A1, A2})− (ν(A1) + ν(A2)))

=
500− 0

700

=
5

7
µ({A1, A3}) = k(ν({A1, A3})− (ν(A1) + ν(A3)))

=
700− 0

700
= 1

µ({A2, A3}) = k(ν({A2, A3})− (ν(A2) + ν(A3)))

=
0− 0

700
= 0

Now an imputation (y1, y2, y3) ∈ I(µ) lies in the core C(µ) of µ if and only if
0 ≤ y1 ≤ 1− µ({A2, A3}) = 1− 0 = 1

0 ≤ y2 ≤ 1− µ({A1, A3}) = 1− 1 = 0

0 ≤ y3 ≤ 1− µ({A1, A2}) = 1− 5

7
=

2

7
y1 + y2 + y3 = 1

which is equivalent to 
5

7
≤ y1 ≤ 1

y2 = 0

y3 = 1− y1
�
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5.3 Shapley value

In the last section, we studied cores of characteristic functions. The core has
a disadvantage that it may be empty and usually contains an infinite number
of elements when it is nonempty. In this section, we study another solution
concept called Shapley value which always exists and is unique.

Definition 5.3.1 (Shapley value). Let ν be a characteristic function. The
Shapley value of the player Ak, k = 1, 2, · · · , n, is defined as

φk =
∑

S∈P(A)\{∅}

(n− |S|)!(|S| − 1)!

n!
(ν(S)− ν(S \ {Ak}))

The vector φ = (φ1, φ2, · · · , φn) is called the Shapley vector of ν.

The Shapley value of a player can be interpreted in the following way.
Suppose we form the grand coalition A by entering the players one after
another. As player Ak enters the coalition, he receives the amount by which
his entry inceases the value of the coalition he enters. This amount is equal
to δk(S) = ν(S)− ν(S \ {Ak}) where S is the coalition after Ak has entered.
The amount a player receives depends on the order in which the players are
entered. The Shapley value φk is the average amount that Ak receives over
all orders of entering of players in forming the grand coalition.

Let S be a coalition which contains player Ak. There are (|S|−1)! number
of ways for other players in S to enter the coalition before Ak. Then player
Ak enters the coalition to form the coalition S and there are (n−|S|)! number
of ways for the remaining players to enter to form the grand coalition. Thus
among all n! permutations of players in forming the grand coalition, there are
(n− |S|)!(|S| − 1)! of which the coalition S would form at the moment that
player Ak enters into the coalition and Ak would receive ν(S)− ν(S \ {Ak}).
Therefore the average amount that Ak receives is given by the formula in
Definition 5.3.1. This also shows the following alternative formula for the
Shapley values.

Theorem 5.3.2. The Shapley value of the player Ak is given by

φk =
1

n!

∑
σ∈Sn

(ν(Sσk )− ν(Sσk \ {Ak}))

where Sn is the set of all permutations of 1, 2, · · · , n, and Sσk = {Aσ(1), Aσ(2),
· · · , Aσ(i)} where i is determined by σ(i) = k. In other words, Sσk is the set
of players in A which precede Ak in permutation σ, including Ak.
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Remarks:

1. The quantity δk(S) = ν(S) − ν(S \ {Ak}) is the amount the player
Ak contributes to the coalition S. In particular δk(S) = 0 if Ak 6∈ S.
Therefore to find φk, we only need to sum over S with Ak ∈ S.

2. The formula for φk can also be written as

φk =
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(ν(S ∪ {Ak})− ν(S))

3. Suppose n = 3 and ν(Ak) = 0 for k = 1, 2, 3. To find the Shapley
value φ1 of A1, we need to calculate, for each permutation of players,
the value of δ1(S) where S is the coalition right after the joining of A1.
The values of δ1(S) for the permutations of players are shown in the
following table.

Permutation S S \ {A1} δ1(S)
123 {A1} ∅ 0
132 {A1} ∅ 0
213 {A1, A2} {A2} ν({A1, A2})
231 {A1, A2, A3} {A2, A3} ν({A1, A2, A3})− ν({A2, A3})
312 {A1, A3} {A3} ν({A1, A3})
321 {A1, A2, A3} {A2, A3} ν({A1, A2, A3})− ν({A2, A3})

The Shapley value φ1 of A1 is the average value in the last column.
Thus we have

φ1 =
2ν({A1, A2, A3}) + ν({A1, A2}) + ν({A1, A3})− 2ν({A2, A3})

6

We have similar formula for φ2 and φ3.

Now we prove that the Shapley vector is always an imputation.

Theorem 5.3.3. Let ν be a characteristic function and φ = (φ1, φ2, · · · , φn)
be the Shapley vector of ν. Then φ ∈ I(ν). In other words, we always have

1. φi ≥ ν(Ai) for any i = 1, 2, · · · , n

2.
n∑
i=1

φi = ν(A)
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Proof. 1. For any Ai and any coalition S ⊂ A with Ai ∈ S, we have

ν(Ai) + ν(S \ {Ai}) ≤ ν(S)

by supperadditivity. Therefore

φi =
∑
S ⊂ A
Ai ∈ S

(|S| − 1)!(n− |S|)!
n!

(ν(S)− ν(S \ {Ai}))

≥
∑
S ⊂ A
Ai ∈ S

(|S| − 1)!(n− |S|)!
n!

ν(Ai)

= ν(Ai)

2.
n∑
i=1

φi =
n∑
i=1

∑
S ⊂ A
Ai ∈ S

(n− |S|)!(|S| − 1)!

n!
(ν(S)− ν(S \ {Ai}))

=
∑
S⊂A

∑
Ai∈S

(n− |S|)!(|S| − 1)!

n!
(ν(S)− ν(S \ {Ai}))

=
∑
S⊂A

∑
Ai∈S

(n− |S|)!(|S| − 1)!

n!
ν(S)

−
∑
S⊂A

∑
Ai∈S

(n− |S|)!(|S| − 1)!

n!
ν(S \ {Ai})

=
∑
S⊂A
|S|(n− |S|)!(|S| − 1)!

n!
ν(S)

−
∑
T⊂A

∑
Aj 6∈T

(n− |T | − 1)!|T |!
n!

ν(T )

=
∑
S⊂A
|S|(n− |S|)!(|S| − 1)!

n!
ν(S)

−
∑
T⊂A

(n− |T |)(n− |T | − 1)!|T |!
n!

ν(T )

=
∑
S⊂A

(n− |S|)!|S|!
n!

ν(S)

−
∑

T ⊂ A
T 6= A

(n− |T |)!|T |!
n!

ν(T )

= ν(A)
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Example 5.3.4 (3-person constant sum game). Let ν be the characteris-
tic function of the 3-person constant sum game (Example 5.2.2). Find the
Shapley value of each player.

Solution. To find the Shapley value φ1 of A1, observe that the coalitions
containing A1 are {A1}, {A1, A2}, {A1, A3} and {A1, A2, A3}. Thus

φ1

=
(3− 1)!(1− 1)!

3!
(ν(A1)− ν(∅)) +

(3− 2)!(2− 1)!

3!
(ν({A1, A2})− ν(A2))

+
(3− 2)!(2− 1)!

3!
(ν({A1, A3})− ν(A3))

+
(3− 3)!(3− 1)!

3!
(ν({A1, A2, A3})− ν({A2, A3}))

=
2

6

(
1

4

)
+

1

6

(
1−

(
−1

3

))
+

1

6

(
4

3
− 0

)
+

2

6

(
1− 3

4

)
=

11

18

Similarly, we have

φ2 =
1

36
and φ3 =

13

36
�

Example 5.3.5 (Used car game). Let ν be the characteristic function of the
used car game (Example 5.2.8). Find the Shapley values of the players.

Solution. Since ν(A1) = ν(A2) = ν(A3) = 0, we may use the formula

φ1 =
2ν({A1, A2, A3}) + ν({A1, A2}) + ν({A1, A3})− 2ν({A2, A3})

6

=
2(700) + 500 + 700− 2(0)

6

=
1300

3

φ2 =
2ν({A1, A2, A3}) + ν({A1, A2}) + ν({A2, A3})− 2ν({A1, A3})

6

=
2(700) + 500 + 0− 2(700)

6

=
250

3
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φ3 =
2ν({A1, A2, A3}) + ν({A1, A3}) + ν({A2, A3})− 2ν({A1, A2})

6

=
2(700) + 700 + 0− 2(500)

6

=
550

3

Hence the Shapley vector is φ = (1300
3
, 250

3
, 550

3
). �

Example 5.3.6 (Mayor and council). Let ν be the characteristic function of
the Mayor and council game (Example 5.2.9). Find the Shapley values of the
players.

Solution. Recall that

1. ν(S) = 1 if M ∈ S and |S \ {M}| ≥ 4, or |S| ≥ 6.

2. ν(S) = 0 otherwise.

Thus we have

φM =

(
7

4

)
(8− 5)!(5− 1)!

8!
(1) +

(
7

5

)
(8− 6)!(6− 1)!

8!
(1) =

1

4

By symmetry, for each i = 1, 2, · · · , 7, we have

φi =
1

7

(
1− 1

4

)
=

3

28

�

Example 5.3.7 (Voting game). In a council there are 100 members. The
red, blue, green, white parties has 40, 30, 25, 5 members in the council. For
a resolution to pass, it is necessary to have more than 50 affirmative votes.
The set of players is A = {R,B,G,W}. For any coalition S ⊂ A, define

1. ν(S) = 1 if the total votes of S is larger than 50.

2. ν(S) = 0 otherwise.

Find the Shapley values of the players.
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Solution. We have ν(R) = ν(B) = ν(G) = ν(W ) = 0 and
ν({R,B} = ν({R,G} = ν({B,G} = 1

ν({R,W} = ν({B,W} = ν({G,W} = 0

ν(S) = 1 for any S with |S| ≥ 3

Thus

φR = 2

(
(4− 1)!(2− 1)!

4!

)
(1− 0) + 2

(
(4− 3)!(3− 1)!

4!

)
(1− 0)

=
1

3

Similarly, we have

φB = φG =
1

3
φW = 1− (φR + φB + φG) = 0

�
The Shapley value can be defined using the axiomatic approach as follows.

The Shapley vector is the unique allocation of payoffs which satisfies the 4
properties listed in the following theorem. The efficiency property requires
that φ allocates the total worth of the grand coalition ν(A). The symmetry
property asks φ to allocate same payoff to players with identical contributions
to coalitions. The null player properties says that players who contribute
nothing to every coalition should receive nothing. The linearity properties
looks very natural mathematically but there is no good reason to impose
such condition in the sense of fairness.

Theorem 5.3.8 (Axioms for Shapley values). The Shapley vector φ(ν) =
(φ1, · · · , φn) is the unique payoff allocation which satisfies the following ax-
ioms for Shapley values.

1. (Efficiency)
n∑
i=1

φi = ν(A)

2. (Symmetry) If Ai, Aj ∈ A satisfy ν(S ∪ {Ai}) = ν(S ∪ {Aj}) for any
coalition S not containing Ai and Aj, then φi = φj.

3. (Null player) If ν(S ∪ {Ai}) = ν(S) for any coalition S, then φi = 0.
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4. (Linearity) Let µ and ν be two characteristic functions and a, b be two
real numbers. Then

φ(aµ+ bν) = aφ(µ) + bφ(ν)

Proof. First we prove that φ(ν) satisfies the 4 axioms for Shapley values.

1. It has been proved in Theorem 5.3.3.

2. Suppose ν(S ∪ {Ai}) = ν(S ∪ {Aj}) for any coalition S not containing
Ai and Aj. For any coalition S ⊂ A, denote by S ′ the coalition obtained
by replacing Ai by Aj if Ai ∈ S and replacing Aj by Ai if Aj ∈ S. Note
that |S ′| = |S|. We are going to prove that for any coalition S, we have

ν(S ∪ {Ai}) = ν(S ′ ∪ {Aj})

First if Aj ∈ S, then S ∪ {Ai} = S ′ ∪ {Aj} and thus ν(S ∪ {Ai}) =
ν(S ′ ∪ {Aj}). On the other hand, if Aj 6∈ S, then S \ {Ai} = S ′ \ {Aj}
and we also have

ν(S ∪ {Ai}) = ν((S \ {Ai}) ∪ {Ai})
= ν((S ′ \ {Aj}) ∪ {Ai})
= ν((S ′ \ {Aj}) ∪ {Aj})
= ν(S ′ ∪ {Aj})

Thus we proved that ν(S ∪ {Ai}) = ν(S ′ ∪ {Aj}) for any coalition S.
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Therefore

φi

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(ν(S ∪ {Ai})− ν(S))

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

ν(S ∪ {Ai})−
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

ν(S)

=
∑

S∈P(A)\{A}

(n− |S ′| − 1)!|S ′|!
n!

ν(S ′ ∪ {Aj})−
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

ν(S)

=
∑

T∈P(A)\{A}

(n− |T | − 1)!|T |!
n!

ν(T ∪ {Aj})−
∑

T∈P(A)\{A}

(n− |T | − 1)!|T |!
n!

ν(T )

=
∑

T∈P(A)\{A}

(n− |T | − 1)!|T |!
n!

(ν(T ∪ {Aj})− ν(T ))

= φj

3. Suppose ν(S ∪ {Ai}) = ν(S) for any coalition S. Then

φi =
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(ν(S ∪ {Ai})− ν(S))

= 0

4. Let µ and ν be two characteristic functions and a, b be two real numbers.
Then

φi(aµ+ bν)

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

((aµ+ bν)(S ∪ {Ai})− (aµ+ bν)(S))

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(a(µ(S ∪ {Ai})− µ(S)) + b(ν(S ∪ {Ai})− ν(S)))

= aφi(µ) + bφi(ν)

Next we prove the uniqueness. Suppose φ satisfies the four axioms for Shapley
values. For each non-empty coalition S ⊂ A, S 6= ∅, define a characteristic
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function νS by

νS(T ) =

{
1 if S ⊂ T

0 otherwise

Observe that if Ai 6∈ S, then νS(T ∪ {Ai}) = νS(T ) for any T ⊂ A. Thus Ai
is a null player of νS and we have

φi(νS) = 0 if Ai 6∈ S

by the axiom for null player. By symmetry, we have φi(νS) = φj(νS) when-
ever Ai, Aj ∈ S which implies, by efficiency, that

φi(νS) =
1

|S|
if Ai ∈ S

In conclusion we have

φi(νS) =


1

|S|
if Ai ∈ S

0 if Ai 6∈ S

To prove uniqueness, it suffices to prove that any characteristic function ν
can be written uniquely as

ν =
∑

S∈P(A)\{∅}

cSνS

for some constants cS, S ∈ P(A) \ {∅}. Then

φ(ν) =
∑

S∈P(A)\{∅}

cSφ(νS)

is uniquely determined. We are going to determined cS by induction on |S|.
Suppose |S| = 1, that is S = {Ai} for some i = 1, 2, · · · , n. Now for any
coalition T ⊂ A, if T = {Ai}, then T ⊂ S and νT (S) = νT (Ai) = 1. On the
other hand, if T 6= {Ai}, then νT (S) = 0. Thus for S = {Ai}, we have

νT (S) = νT (Ai) =

{
1 if T = {Ai}
0 if T 6= {Ai}
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Hence we must have

ν(Ai) =
∑

T∈P(A)\{∅}

cTνT (Ai) = c{Ai}

and thus
c{Ai} = ν(Ai)

for i = 1, 2, · · · , n. Suppose cS is determined for each ∅ 6= S ⊂ A with
0 < |S| < k. Now fix S ⊂ A with |S| = k. Recall that for any coalition
T ⊂ A, we have νT (S) = 1 if T ⊂ S and νT (S) = 0 if T is not a subset of S.
Thus we have

ν(S) =
∑

T∈P(A)\{∅}

cTνT (S) =
∑
∅6=T⊂S

cT = cS +
∑
∅6=T(S

cT

and hence
cS = ν(S)−

∑
∅6=T(S

cT

is determined because all cT had been determined for any ∅ 6= T ( S. Hence
we proved that any characteristic function ν can be written uniquely as

ν =
∑

S∈P(A)\{∅}

cSνS

and the proof of the theorem is complete.

In Section 5.2, we introduced the core of a cooperative game. One may
ask whether the Shapley vector always lies in the core whenever the core is
not empty. The answer is negative. We need an extra condition for it to be
true.

Definition 5.3.9 (Convex game). We say that a characteristic function ν
is convex if for any S, T ⊂ A, we have

ν(S ∪ T ) ≥ ν(S) + ν(T )− ν(S ∩ T )

Suppose S and T are two coalitions with T ⊂ S. The contribution of
S \ T to the coalition S is ν(S)− ν(T ). In a convex game, this contribution
of S \ T cannot be larger if the coalition T gets smaller. More precisely, we
have
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Theorem 5.3.10. Suppose ν is a convex game. For any coalitions R, S, T
with R ⊂ T ⊂ S, we have

ν(S)− ν(T ) ≥ ν(S \R)− ν(T \R)

Proof. Consider S = (S \R) ∪ T . By convexity of ν, we have

ν(S) = ν((S \R) ∪ T )

≥ ν(S \R) + ν(T )− ν((S \R) ∩ T )

= ν(S \R) + ν(T )− ν(T \R)

Now we can prove

Theorem 5.3.11. The Shapley vector of a convex game always lies in the
core. In particular, the core of a convex game is not empty.

Proof. Let ν be a convex game with player set A = {1, 2, · · · , n} and φ
be the Shapley vector of ν. For any permutation σ ∈ Sn, define φσ =
(φσ1 , φ

σ
2 , · · · , φσn) ∈ Rn with

φσk = ν(Sσk )− ν(Sσk \ {k})

where Sσk = {σ(1), σ(2), · · · , σ(i)} and i is the integer determined by σ(i) =
k. We have seen (Theorem 5.3.2) that

φ =
1

n!

∑
σ∈Sn

φσ

Since the core C(ν) is convex, it suffices to prove that φσ ∈ C(ν) for any
σ ∈ Sn. Without loss of generality, we may assume that σ is the identity,
that is, σ(k) = k for any k =, 1, 2, · · · , n. In this case, for any coalition
S = {s1 < s2 < · · · < sm} ⊂ A and si ∈ S, i = 1, 2, · · · ,m, we have
Sσsi = {1, 2, · · · , si} and

φσsi = ν(Sσsi)− ν(Sσsi \ {si})
= ν({1, 2, · · · , si})− ν({1, 2, · · · , si − 1})
≥ ν({s1, s2, · · · , si})− ν({s1, s2, · · · , si−1})
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where in the last line, we removed those elements not in S in both sets and
the inequality follows from Theorem 5.3.10. Thus∑

si∈S

φσsi =
∑
si∈S

(ν(Sσk )− ν(Sσk \ {k}))

≥
∑
si∈S

(ν({s1, s2, · · · , si})− ν({s1, s2, · · · , si−1}))

= ν({s1, s2, · · · , sm})− ν(∅)
= ν(S)

Hence we have φσ ∈ C(ν) by Theorem 5.2.4. Therefore φ = 1
n!

∑
σ∈Sn

φσ ∈
C(ν) since C(ν) is a convex set.

As a matter of fact, Shapley proved that if ν is convex, then C(ν) is
a convex polyhedron of dimension n − 1 with 2n − 2 faces and n! vertices
located exactly at φσ’s, σ ∈ Sn. Therefore the Shapley vector φ is precisely
the center of mass of the vertices of the core when ν is convex.

Exercise 5

1. Let A = {A1, A2, A3} be the player set and Xi = {0, 1}, for i = 1, 2, 3,
be the strategy set for Ai. Suppose the payoffs to the players are given
by the following table.

Strategy Payoff vector
(0, 0, 0) (−2, 3, 5)
(0, 0, 1) (1,−2, 7)
(0, 1, 0) (1, 5, 0)
(0, 1, 1) (10,−3,−1)
(1, 0, 0) (−1, 0, 7)
(1, 0, 1) (−4, 4, 6)
(1, 1, 0) (12,−4,−2)
(1, 1, 1) (−1, 5, 2)

(a) Find the characteristic function of the game.

(b) Show that the core of the game is empty.
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2. Consider a three-person game with characteristic function

ν({1}) = 27

ν({2}) = 8

ν({3}) = 18

ν({1, 2}) = 36

ν({1, 3}) = 50

ν({2, 3}) = 27

ν({1, 2, 3}) = 60

Find the core of the game and draw the region representing the core
on the x1 − x2 plane.

3. Let ν be the characteristic function defined by ν({1}) = 3, ν({2}) =
4, ν({3}) = 6, ν({1, 2}) = 9, ν({1, 3}) = 12, ν({2, 3}) = 15, ν({1, 2, 3}) =
20.

(a) Let µ be the (0, 1) reduced form of ν. Find µ({1, 2}), µ({1, 3}), µ({2, 3}).
(b) Find the core of ν and draw the region representing the core on

the x1 − x2 plane.

(c) Find the Shapley values of the players.

4. Three towns A,B,C are considering whether to built a joint water dis-
tribution system. The costs of the construction works are listed in the
following table

Coalition Cost(in million dollars)
{A} 11
{B} 7
{C} 8
{A,B} 15
{A,C} 14
{B,C} 13
{A,B,C} 20

For any coalition S ⊂ {A,B,C}, define ν(S) to be the amount saved
if they build the system together. Find the Shapley values of A,B,C
and the amount that each of them should pay if they cooperate.
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5. Players 1, 2, 3 and 4 have 45, 25, 15, and 15 votes respectively. In order
to pass a certain resolution, 51 votes are required. For any coalition S,
define ν(S) = 1 if S can pass a certain resolution. Otherwise ν(S) = 0.
Find the Shapley values of the players.

6. Players 1, 2, 3 and 4 have 40, 30, 20, and 10 shares if stocks respectively.
In order to pass a certain decision, 50 shares are required. For any
coalition S, define ν(S) = 1 if S can pass a certain decision. Otherwise
ν(S) = 0. Find the Shapley values of the players.

7. Consider the following market game. Each of the 5 players starts with
one glove. Two of them have a right-handed glove and three of them
have a left-handed glove. At the end of the game, an assembled pair is
worth $1 to whoever holds it. Find the Shapley value of the players.

8. Let A = {1, 2, 3} be the set of players and ν be a game in characteristic
form with

ν({1}) = −a
ν({2}) = −b
ν({3}) = −c

ν({2, 3}) = a

ν({1, 3}) = b

ν({1, 2}) = c

ν({1, 2, 3}) = 1

where 0 ≤ a, b, c ≤ 1.

(a) Let µ be the (0, 1) reduced form of ν. Find µ({1, 2}), µ({1, 3}), µ({2, 3})
in terms of a, b, c.

(b) Suppose a + b + c = 2. Find an imputation x of ν which lies in
the core C(ν) in terms of a, b, c and prove that C(ν) = {x}.

9. Aaron (A), Benny (B) and Carol (C) each has to buy a book on Game
Theory. The list price of the book is $200. Alan has a discount card
which allow him to buy two books for $360, and three books for $480.
Benny has a coupon which allows him to have 20% off for the whole
bill. The discount card and coupon can be used at the same time. Let
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ν(S) be the amount that a coalition S ⊂ {A,B,C} may save by buying
the books together comparing with buying them separately.

(a) Find ν({A,B}), ν({B,C}), ν({A,C}) and ν({A,B,C})
(b) Find µ({A,B}) where µ is the (0, 1) reduced form of ν.

(c) Find the core of ν and draw the region representing the core on
the x1 − x2 plane.

10. Let a > 0 be a positive real number. Let f : [0, a] → R be a differen-
tiable function such that f(u) ≥ 0 for any u ∈ [0, a] and f(a) = 0. It
is given that the set R = {(u, v) ∈ R2 : 0 ≤ u ≤ a, 0 ≤ v ≤ f(u)} is
convex. Suppose (µ, ν) ∈ R and (α, β) = A(R, (µ, ν)), where A is the
arbitration function.

(a) Show that f ′(α) = −β − ν
α− µ

.

(b) Let R = {(u, v) ∈ R2 : 0 ≤ v ≤ 14 + 5u − u2}. Find (α, β) =
A(R, (0, 6)).

11. Let A = {1, 2, · · · , N}. Prove that for any i ∈ A∑
{i}⊂S⊂A

(N − |S|)!(|S| − 1)! = N !

12. Consider an airport game which is a cost allocation problem. Let N =
{1, 2, · · · , n} be the set of players. For each i = 1, 2, · · · , n, player
i requires an airfield that costs ci to build. To accommodate all the
players, the field will be built at a cost of max1≤i≤n ci. Suppose all
the costs are distinct and c1 < c2 < · · · < cn. Take the characteristic
function of the game to be

ν(S) = −max
i∈S

ci

For each k = 1, 2, · · · , n, let Rk = {k, k + 1, · · · , n} and define

νk(S) =

{
−(ck − ck−1) if S ∩Rk 6= ∅
0 if S ∩Rk = ∅

(a) Show that ν =
n∑
k=1

νk
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(b) Show that for each k = 1, 2, · · · , n, if i 6∈ Rk, then player i is a
null player of νk.

(c) Show that for each k = 1, 2, · · · , n, if i, j ∈ Rk, then player i and
player j are symmetric players of νk.

(d) Find the Shapley value φk(ν) of player k, k = 1, 2, · · · , n, of the
airport game ν.

13. Let A = {1, 2, . . . , n} and ν : P(A)→ R be the characteristic function
defined by

ν(S) = |S|
∑
i∈S

i

where |S| denotes the number of elements in S. Let φk(ν) be the
Shapley value of k ∈ A in the game (A, ν).

(a) Show that ν is superadditive.

(b) For each i = 1, 2, . . . , n, let νi : P(A) → R be the characteristic
function defined by

νi(S) =

{
0, if i 6∈ S
i|S|, if i ∈ S

.

Let φk(νi) be the Shapley value of k ∈ A in the game (A, νi).

(i) Show that φk(νk) =
k(n+ 1)

2
.

(ii) Find φk(νi) for i 6= k.

(c) Using the results in (b), or otherwise, find φk(ν) in terms of k and
n.

14. In a game there are three boxes, Bronze Box, Silver Box and Gold Box.
Ada puts $1,001 into the boxes in any way she likes. The money in
Bronze Box will be doubled, the money in Silver Box will be tripled
and the money in Gold Box will become 4 times the original amount.
Then Bella, without knowing how Ada puts the money, chooses one of
the boxes and gets the money inside. Ada will get the money inside
the other two boxes.

(a) How should Ada split the money so that the payoff of Bella are
the same no matter what strategy Bella uses.
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(b) Find the strategy of Bella in the Nash’s equilibrium.

(c) Find the expected payoffs of Ada and Bella in the Nash’s equilib-
rium.

(d) Suppose Ada and Bella decided to cooperate. Using Nash’s solu-
tion to the bargaining problem and the answer in (c) as the status
quo point, determine how much Ada and Bella should get from
the boxes.

15. In a money sharing game, three players Alex, Beatrice and Christine
put money into a Magic Box. Alex may put from $0 to $8, Beatrice
may put from $0 to $20 and Christine may put from $0 to $50. After
they put the money, the amount in the Magic Box will be doubled.
Then the money in the Magic Box will be evenly distributed to the
three players.

(a) Find the amount that Alex, Beatrice and Christine should put in
the Nash equilibrium.

(b) Find the maximum total profit that Alex and Beatrice may guar-
antee themselves if they choose to cooperate.

(c) The three players decide to cooperate. Use Shapley value to find
a suitable way to split the money in the Magic Box at the end of
the game.
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