Solutions of MATH5360 Assignment 2

													1	
	y_1	y_2	y_3					y_1	x_2		y_3			
x_1	3	2	2	1	5	,	x_1	3*	-1/	/2	$-1_{/}$	/2	3	
x_2	0	4 *	5	2	4	\rightarrow	y_2	0	1/4	4	5/-	4	6	\rightarrow
	3	5	4	-	12			3	-5/	/4	-9/	/4	-42	-
					x_1		x_2		y_3					
			. –	y_1	1/3	3.	-1/6	i –	-1/6	1	L			
			\rightarrow	y_2	0	-	-1/4	Ŀ	5/4	6	3.			
			-		-1		-3/4	L —	-7/4		45			

1. (a)Set up the tableau and apply pivoting operations, we have

Thus an optimal vector for the primal problem is $(y_1, y_2, y_3) = (1, 6, 0)$ and the maximum value f is 45.

The dual problem is

min
$$g = 15x_1 + 24x_2 + 12$$

subject to $3x_1 \ge 3$
 $2x_1 + 4x_2 \ge 5$
 $2x_1 + 5x_2 \ge 4$

Thus an optimal vector for the primal problem is $(x_1, x_2) = (1, 3/4)$ and the minimum value g is 45. (b)Set up the tableau and apply pivoting operations, we have

								ı				ı	
	y_1	y_2	y_3	y_4				y_1	x_3	y_3	y_4		
x_1	3	1	1	4	12	-	x_1	1	-1	-2	5^*	2	-
x_2	1	-3	2	3	7	\rightarrow	x_2	7	3	11	0	37	\rightarrow
x_3	2	1*	3	-1	10		y_2	2	1	3	-1	10	
	2	4	3	1	0	-		-6	-4	-9	5	-40	-

		y_1	x_3	y_3	x_1	
	y_4	1/5	-1/5	-2/5	1/5	2/5
\rightarrow	x_2	7	3	11	0	37.
	y_2	11/5	4/5	13/5	1/5	52/5
		-7	-3	-7	-1	-42

Thus an optimal vector for the primal problem is $(y_1, y_2, y_3, y_4) = (0, 52/5, 0, 2/5)$ and the maximum value f is 42.

The dual problem is

min
$$g = 12x_1 + 7x_2 + 10x_3$$

subject to $3x_1 + x_2 + 2x_3 \ge 2$
 $x_1 - 3x_2 + x_3 \ge 4$
 $x_1 + 2x_2 + 3x_3 \ge 3$
 $4x_1 + 3x_2 - x_3 \ge 1$

Thus an optimal vector for the primal problem is $(x_1, x_2, x_3) = (1, 0, 3)$ and the minimum value g is 42.

2.(a) Add k = 3 to every entry to get

$$\begin{pmatrix} 5 & 0 & 6 \\ 1 & 6 & 4 \\ 4 & 4 & 8 \end{pmatrix}.$$

Set up the tableau and apply pivoting operations, we have

Therefore, d = 1/4 and a maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3) = (0, 0, 1),$$

a minimax strategy for the column player is

$$\mathbf{q} = \frac{1}{d}(y_1, y_2, y_3) = (4/5, 1/5, 0),$$

the value of the game is $v = \frac{1}{d} - k = 1$. (b) Add k = 5 to every entry to get

$$\begin{pmatrix} 8 & 6 & 0 \\ 4 & 3 & 11 \\ 3 & 4 & 7 \end{pmatrix}.$$

Set up the tableau and apply pivoting operations, we have

			y_1	y_2	y_3				x_1	y	2	y_3				
		x_1	8*	6	0	1		y_1	1/8	3,	/4	0	1/8			
		x_2	4	3	11	1	\rightarrow	x_2	-1/2	2 ()	11*	1/2	\rightarrow		
		x_3	3	4	7	1		x_3	-3/8	8 7,	$^{\prime}4$	7	5/8			
			1	1	1	0			-1/8	3 1,	/4	1	-1/8	-		
							1				I					
_		x_1	ĩ	J_2	x_2	2						x_1	y_1	x_2	2	
	y_1	1/8	3/	/4*	0		-	1/8		y_2		1/6	4/3	0		1/6
\rightarrow	y_3	-1/22		0	1/1	1	1	/22	\rightarrow	y_3	_	-1/22	0	1/1	11	1/22 .
	x_3	-5/88	7	/4	-7/	'11	2'	7/88		x_3	_	23/66	5 -7/3	3 -7/	11	35/132
-		-7/88	1	/4	-1/	'11	-1	15/83	8		_	-4/33	-1/3	3 - 1/	11	-7/33

Therefore, d = 7/33 and a maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3) = (4/7, 3/7, 0),$$

a minimax strategy for the column player is

$$\mathbf{q} = \frac{1}{d}(y_1, y_2, y_3) = (0, 11/14, 3/14),$$

the value of the game is $v = \frac{1}{d} - k = -2/7$. (c) Add k = 2 to every entry to get

$$\begin{pmatrix} 5 & 2 & 3 \\ 1 & 4 & 0 \\ 2 & 3 & 1 \end{pmatrix}.$$

Set up the tableau and apply pivoting operations, we have

			y_1	y_2	y_3				x	1	y_2		y_3			
		x_1	5*	2	3	1	-	y_1	1/	/5	2/!	5	3/5	1/5		
		x_2	1	4	0	1	\rightarrow	x_2	-1	/5	18/3	5* -	-3/5	4/5	\rightarrow	
		x_3	2	3	1	1		x_3	-2	2/5	11/	5 -	-1/5	3/5		
			1	1	1	0	-		-1	/5	3/!	5	2/5	-1/5	5	
	1							1								
		x_1		x_{i}	2	í	y_3					x_1		x_2	y_1	
	y_1	2/9	9	-1	/9	2,	/3*	1	/9	_	y_3	1/3	3 -	-1/6	3/2	1/6
\rightarrow	y_2	-1/	18	5/2	18	_	1/6	2	/9	\rightarrow	y_2	0		1/4	1/4	1/4 .
	x_3	-5/	18	-11	/18	1	/6	1	/9		x_3	-1/	'3 –	-7/12	-1/4	1/12
		-1/	6	-1	/6	1	/2	- 1	1/3	-		-1/	′3 –	-1/12	-3/4	-5/12

Therefore, d = 5/12 and a maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3) = (4/5, 1/5, 0),$$

a minimax strategy for the column player is

$$\mathbf{q} = \frac{1}{d}(y_1, y_2, y_3) = (0, 3/5, 2/5),$$

the value of the game is $v = \frac{1}{d} - k = 2/5$. (d) Add k = 3 to every entry to get

$$\begin{pmatrix} 5 & 3 & 1 \\ 2 & 0 & 6 \\ 1 & 5 & 3 \end{pmatrix}.$$

Set up the tableau and apply pivoting operations, we have

			$ y_1 $	y_2	y_3				x	1	y_2		y_3			
		x_1	5*	3	1	1	_	y_1	1/	$^{\prime}5$	3/!	5	1/5	1/5		
		x_2	2	0	6	1	\rightarrow	x_2	-2	2/5	-6/	$^{\prime}5$	28/5	3/5	\rightarrow	
		x_3	1	5	3	1		x_3	-1	/5	22/	5	14/5	4/5		
			1	1	1	0	-		-1	/5	3/	5	2/5	-1/5	_	
	I							I			1					I
		x_1		y_2		x	2						x_1	x_3	x_2	
	y_1	3/1	4	9/1	4	-1_{1}	/28	5/	'28	-	y_1	3	/14	-9/70	1/35	4/35
\rightarrow	y_3	-1/	14	-3/	14	5/	28	3/	28	\rightarrow	y_3	—	1/14	-3/70	11/70	9/70 .
	x_3	0		5*		-1	/2	1	/2		y_2		0	-1/5	-1/10	1/70
-		-1/	$^{\prime}7$	4/'	7	-1	/7		2/7	-		_	-1/7	-4/35	-3/35	-12/35

Therefore, d = 12/35 and a maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3) = (5/12, 1/4, 1/3),$$

a minimax strategy for the column player is

$$\mathbf{q} = \frac{1}{d}(y_1, y_2, y_3) = (1/3, 7/24, 3/8),$$

the value of the game is $v = \frac{1}{d} - k = -1/12$. (e) Add k = 2 to every entry to get

$$\begin{pmatrix} 3 & 1 & 3 \\ 0 & 2 & 1 \\ 3 & 0 & 4 \\ 1 & 3 & 0 \end{pmatrix}.$$

Set up the tableau and apply pivoting operations, we have

			y_1	y_2	y_3			1 3	r_1	y_2	y_3			
		x_1	3*	1	3	1	y_1	1	/3	1/3	1	1/	3	
		x_2	0	2	1	1	x_2		0	2	1	1		
		x_3	3	0	4	1	$\overline{}$ x_3	-	-1	-1	1	0	\rightarrow	
		x_4	1	3	0	1	x_4	_	1/3	$8/3^{*}$	-1	2/	3	
			1	1	1	0		_	1/3	2/3	0	-1	$\overline{/3}$	
							1			1				1
		x_1	3	r_4	y_{z}	3		_		x_1	x	4	y_1	
	y_1	9/24	_	1/8	9/8	8*	1/4		y_3	1/3	-1	/9	8/9	2/9
,	x_2	1/4	—;	3/4	7/	4	1/2	,	x_2	-1/3	-5	/9	-14/9	1/9
~	x_3	-9/8	3	/8	5/	8	1/4	\neg	x_3	-4/3	4/	$^{\prime}9$	-5/9	1/9 .
	y_2	-1/8	3	/8	-3	/8	1/4		y_2	0	1/	$^{\prime}3$	1/3	1/3
		-1/4	_	1/4	1/	4	-1/2	-		-1/3	-2	/9	-2/9	-5/9

Therefore, d = 5/9 and a maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3, x_4) = (3/5, 0, 0, 2/5),$$

a minimax strategy for the column player is

$$\mathbf{q} = \frac{1}{d}(y_1, y_2, y_3) = (0, 3/5, 2/5),$$

the value of the game is $v = \frac{1}{d} - k = -1/5$.

(f) Add k = 3 to every entry to get

$$\begin{pmatrix} 0 & 5 & 3 \\ 4 & 1 & 2 \\ 2 & 3 & 5 \\ 4 & 4 & 0 \end{pmatrix}.$$

Set up the tableau and apply pivoting operations, we have

			y_1	y_2	y_3				x_2		y_2	y_3			
		x_1	0	5	3	1	-	x_1	0		5	3	1	-	
		x_2	4 *	1	2	1	`	y_1	1/4	1	1/4	1/2	1/4		
		x_3	2	3	5	1	\rightarrow	x_3	-1/	2	5/2	4	1/2	\rightarrow	
		x_4	4	4	0	1		x_4	-1	-	3*	-2	0		
			1	1	1	0	-		-1/	4	-3/4	1/2	-1/4	-	
							i.				1				1
		x_2		x_4		y_3			_		x_2		x_4	x_3	
	x_1	5/3	_	-5/3	1	9/3		1		x_1	22/1	- 17	-25/34	-19/17	15/34
、	y_1	1/3	_	1/12	2	2/3		1/4	,	y_1	5/1	7	1/68	-2/17	13/68
\rightarrow	x_3	1/3	_	5/6	17	7/3*	-	1/2	\rightarrow	y_3	1/1	7 -	-5/34	3/17	3/34
	y_2	-1/3]	1/3	_	2/3		0		y_2	-5/	17	4/17	2/17	1/17
		0		-1/4		1	-	-1/4			-1/2	17 -	-7/68	-3/17	-23/68

Therefore, d = 23/68 and a maximin strategy for the row player is

$$\mathbf{p} = \frac{1}{d}(x_1, x_2, x_3, x_4) = (0, 4/23, 12/23, 7/23),$$

a minimax strategy for the column player is

$$\mathbf{q} = \frac{1}{d}(y_1, y_2, y_3) = (13/23, 4/23, 6/23),$$

the value of the game is $v = \frac{1}{d} - k = -1/23$. 3.(a) For any $x_1, x_2 \in C_1 \cap C_2, \lambda \in [0, 1]$, by the convexity of C_1, C_2 , $\lambda x_1 + (1-\lambda)x_2 \in C_1$ and $\lambda x_1 + (1-\lambda)x_2 \in C_2$. Hence $\lambda x_1 + (1-\lambda)x_2 \in C_1 \cap C_2$, that is $C_1 \cap C_2$ is convex.

(b) For any $x = x_1 + x_2 \in C_1 + C_2$, $y = y_1 + y_2 \in C_1 + C_2$ and $\lambda \in [0, 1]$, by the convexity of C_1 , C_2 , $\lambda x_1 + (1 - \lambda)y_1 \in C_1$ and $\lambda x_2 + (1 - \lambda)y_2 \in C_2$. Hence $\lambda x + (1 - \lambda)y \in C_1 + C_2$, that is $C_1 + C_2$ is convex.

4. Let *C* be the set of maximin strategy for the row player of A and ν be the value of the game with game matrix *A*. For any $\mathbf{u} = (u_1, u_2, ..., u_n)$, $\mathbf{v} = (v_1, v_2, ..., v_n) \in C$ and $\lambda \in [0, 1]$, then, by the definition of *C*, we have $\mathbf{u}A\mathbf{y}^T \geq \nu$ and $\mathbf{v}A\mathbf{y}^T \geq \nu$ for any $\mathbf{y} \in P^m$, and $\sum_{i=1}^n u_i = \sum_{i=1}^n v_i = 1$. Let $\mathbf{w} = (w_1, w_2, ..., w_n) = \lambda \mathbf{u} + (1 - \lambda) \mathbf{v}$, then $w_i = \lambda u_i + (1 - \lambda) v_i$ with $\sum_{i=1}^n w_i = \lambda + (1 - \lambda) = 1$, and $\mathbf{w}A\mathbf{y}^T = (\lambda \mathbf{u} + (1 - \lambda)\mathbf{v})A\mathbf{y}^T \geq \lambda\nu + (1 - \lambda)\nu = \nu$ for any $\mathbf{y} \in P^m$. Hence, $\mathbf{w} \in C$, that is, *C* is convex.

5.(a) $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ with $\lambda \in \mathbb{R}$. Since \mathbf{z} is orthogonal to $\mathbf{x} - \mathbf{y}$, we have $\langle \mathbf{x} - \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x} - \mathbf{y}, \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \rangle = 0$. Thus,

$$\lambda = \frac{\|\mathbf{y}\|^2 - \langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|^2 - 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2}$$

(b) $\langle \mathbf{x}, \mathbf{y} \rangle \langle 0$ implies $\lambda \in [0, 1]$. Thus, $\mathbf{z} \in C$ since C is convex.

6. $\nu_c(A) \leq 0$ implies there exists a minimax strategy $\mathbf{q} = (q_1, q_2, ..., q_n)$ for the column player such that $(-\lambda_1, -\lambda_2, ..., -\lambda_m)^T := A\mathbf{q}^T \leq \mathbf{0}^T$, that is, $\lambda_i \geq 0$. Thus, $\mathbf{0}^T = A\mathbf{q}^T + (\lambda_1, \lambda_2, ..., \lambda_m)^T = q_1\mathbf{a_1}^T + q_2\mathbf{a_2}^T + ... + q_n\mathbf{a_n}^T + \lambda_1\mathbf{e_1}^T + ... + \lambda_m\mathbf{e_m}^T$. Therefore, $\mathbf{0}^T = l_1\mathbf{a_1}^T + l_2\mathbf{a_2}^T + ... + l_n\mathbf{a_n}^T + l_{n+1}\mathbf{e_1}^T + ... + l_{n+m}\mathbf{e_m}^T$ with $l_i = \frac{q_i}{\sum q_i + \sum \lambda_j} \in [0, 1], \ i = 1, 2, ..., n$ and $l_{n+j} = \frac{\lambda_j}{\sum q_i + \sum \lambda_j} \in [0, 1], \ j = 1, 2, ..., m$ and $\sum_{k=1}^{n+m} l_k = 1$, that is, $\mathbf{0} \in C$.