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1. Let f(z) = ez−1 be an entire function. Then, the zero set of f is {±2πni : n ∈ N∪{0}}.
The function

T (z) = −iz − 1

z + 1

maps the unit circle and its interior onto {y = 0}∪{∞} and the upper half plane {y > 0}.
Hence, f ◦ T (z) = e−i

z−1
z+1 − 1 is an analytic function on the open unit disk {|z| < 1} and

it has infinitely many zeros there. Notice that the zero set of the function f ◦ T does not
contain a limit point in the open unit disk {|z| < 1}.

2. Suppose f(z) is analytic in a punctured disc {0 < |z − z0| < r}. Suppose also that

|f(z)| ≤ A|z − z0|−1+ε

for some ε > 0, and all z near z0. Show that the singularity of f at z0 is removable.

Solution. You may write

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

as a Laurant series expansion on {0 < |z − z0| < r}, and then argue that bn = 0 for all
n ≥ 1 as in Week 8 Lecture notes, together with the given inequality.

Another way is to apply the theorem. Note the function f(z)(z − z0) is an analytic
function on {0 < |z − z0| < r} and f(z)(z − z0) is bounded for z near z0. Indeed,

|f(z)(z − z0)| ≤ A|z − z0|ε ≤ A

for all z near z0. By the theorem, there is some analytic function g on {|z− z0| < r} such
that f(z)(z − z0) = g(z) in the disc punctured at z0. Using the inequality again, we see
that g(0) = 0 and hence g(z) = (z − z0)mg1(z), where g1 is analytic on {|z − z0| < r}
and m ∈ N.

In conclusion, f(z) = (z−z0)m−1g1(z) on the punctured disc. Note that (z−z0)m−1g1(z)
is analytic at z0. It shows that the singularity of f at z0 is removable. J

3. Let f be a non-constant entire function, i.e. a function analytic on C. Show that the image
of f is dense in C.

Solution. Suppose not, there is some w0 ∈ C and ε0 > 0 such that |f(z)− w0| ≥ ε0 for
all z ∈ C. Hence, 1/(f(z) − w0) is an entire function bounded by 1/ε0. By Liouville’s
theorem, 1/(f(z)− w0) is a constant function. This contradicts to the assumption that f
is a non-constant function. Therefore, the image of f is dense in C. J
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4. Find the residues of the following functions at 1.

(a) 1/(z2 − 1)(z + 2); (b) (z3 − 1)(z + 2)/(z4 − 1)2

Solution.

(a) Notice that

1

(z2 − 1)(z + 2)
=

1

(z − 1)
· 1

(z + 1)(z + 2)
=

φ(z)

z − 1
.

The function φ(z) = 1
(z+1)(z+2)

is analytic at z = 1, and hence

φ(z) =
∞∑
n=0

φ(n)(1)

n!
(z − 1)n for all z near 1.

Since
1

(z2 − 1)(z + 2)
=
φ(0)(1)

0!

1

z − 1
+
∞∑
n=0

φ(n+1)(1)

(n+ 1)!
(z − 1)n,

the residue of the given function at 1 is φ(1) = 1/6.

(b) Simplifying the quotient, we have

f(z) =
(z2 + z + 1)(z + 2)

(z − 1)(z3 + z2 + z + 1)2
.

Note that z = 1 is a simple pole of f . The residue of f at 1 is

lim
z→1

f(z)(z − 1) =
(12 + 1 + 1)(1 + 2)

(13 + 12 + 1 + 1)2
=

9

16
.

J

5. Find the value of the integral ∫
C

dz

z3(z + 4)
,

taken counterclockwise around the circle (a) |z| = 2; (b) |z + 2| = 3.

Solution. Notice that the given function f has a pole of order 3 at z = 0, and a simple
pole at z = −4. To calculate Res

z=0
f(z), we note that

1

z + 4
=

1

4
(1− z

4
+
z2

16
− z3

64
+ · · · ),

Hence, Res
z=0

f(z) = 1/64. On the other hand, Res
z=−4

f(z) = 1/(−4)3 = −1/64.

(a) For the contour |z| = 2, its interior contains the pole z = 0 only. By Cauchy’s
residue theorem, the integral equals 2πiRes

z=0
f(z) = πi/32.

(b) For the contour |z + 2| = 3, its interior contains the pole z = 0 and z = −4. By
Cauchy’s residue theorem, the integral equals 2πi(Res

z=0
f(z) + Res

z=−4
f(z)) = 0.

J


