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1. The Euler numbers are the numbers En (n = 0, 1, 2, . . .) in the Taylor series representa-
tion

1

cosh z
=
∞∑
n=0

En
n!
zn (|z| < π/2)

Point out why this representation is valid in the indicated disk and why

E2n+1 = 0 (n = 0, 1, 2, . . .).

Then show that

E0 = 1, E2 = −1, E4 = 5, and E6 = −61.

Solution. Notice that

cosh z = 0 ⇐⇒ ez + e−z = 0

⇐⇒ ez = −e−z

⇐⇒ e2z = −1
⇐⇒ 2z = πi+ 2nπi for some n ∈ Z

Therefore, the zeros set of cosh z is {±πi
2
,±3πi

2
,±5πi

2
, . . .}. The function f(z) := 1

cosh z

is analytic in the disk {|z| < π/2}. Therefore, it admits the Taylor series representation
in the disk.

Since f(−z) = f(z), we have
∑∞

n=0
En

n!
(−1)nzn =

∑∞
n=0

En

n!
zn. Uniqueness of Taylor

series gives us − E2n+1

(2n+1)!
= E2n+1

(2n+1)!
, hence E2n+1 = 0 for any n = 0, 1, 2, . . .. Notice that

cosh z =
ez + e−z

2
=
∞∑
n=0

z2n

(2n)!

= 1− (−z
2

2!
− z4

4!
− z6

6!
− · · · )

Together with the Taylor series expansion

1

1− w
= 1 + w + w2 + w3 + · · · for |w| < 1,

we have

f(z) = 1 + (−z
2

2!
− z4

4!
− z6

6!
− · · · ) + (−z

2

2!
− z4

4!
− · · · )2 + (−z

2

2!
− · · · )3

= 1 + (−z
2

2!
− z4

4!
− z6

6!
− · · · ) + (

z4

(2!)2
+ 2

z6

2!4!
+ · · · ) + (− z6

(2!)3
− · · · )

= 1− z2

2
+

5z4

4!
− 61z6

6!
+ · · ·

J



2

2. Obtain the Taylor series representation of arctan z and arcsin z by consideration of the
derived series:

1

1 + z2
= 1− z2 + z4 − z6 + · · ·

1√
1− z2

= 1 +
1

2
z2 +

1 · 3
2 · 4

z4 +
1 · 3 · 5
2 · 4 · 6

z6 + · · · ,

where the branch of the square root function is the principal branch {−π < arg z ≤ π}.

Solution. Integrating the function 1
1+z2

from 0 to w (where |w| < 1), we obtain

arctanw = w − w3

3
+
w5

5
− w7

7
+ · · ·

Notice that the power series defines an analytic function f(w) on the disk {|w| < 1}.
Moreover, the function satisfies f ′(w) = 1

1+w2 for w ∈ (−1, 1) and f(0) = 0 . Then,
we may conclude that f(w) is the usual arctan function when restricting on (−1, 1). In
particular, it satisfies

tan(f(w)) = w for − 1 < w < 1.

In Week 8, we can see that this implies

tan(f(w)) = w for any |w| < 1.

Similarly, by integrating 1√
1−z2 over the line segment between 0 and w (where |w| < 1),

we obtain

arcsinw = 1 +
1

2

w3

3
+

1 · 3
2 · 4

w5

5
+

1 · 3 · 5
2 · 4 · 6

w7

7
+ · · ·

J

3. Develop tan z in powers of z up to the terms z7.

Solution. We can use one of those identities tan z = sin z
cos z

or tan(arctanw) = w to
develop the Taylor series of tan z.

For the first method, by Q1, we know that

1

cos z
=

1

cosh(iz)
= 1− (iz)2

2
+

5(iz)4

4!
− 61(iz)6

6!
+ · · ·

= 1 +
z2

2
+

5z4

4!
+

61z6

6!
+ · · ·

Therefore,

tan z = sin z

(
1

cos z

)
= (z − z3

3!
+
z5

5!
− z7

7!
+ · · · )(1 + z2

2
+

5z4

4!
+

61z6

6!
+ · · · )

= z + z3(
1

2
− 1

3!
) + z5(

5

4!
− 1

3!2
+

1

5!
) + z7(

61

6!
− 5

3!4!
+

1

5!2
− 1

7!
) + · · ·

= z +
1

3
z3 +

2

15
z5 +

17

315
z7 + · · ·
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We can also employ the Taylor series of arctanw to find the Taylor series representation
of tan z. Since tan is an odd function, we may suppose

tan z = a1z + a3z
3 + a5z

5 + a7z
7 + · · ·

Note that by Q2,

tan(arctanw) = a1(w −
w3

3
+
w5

5
− w7

7
+ . . . ) + a3(w −

w3

3
+
w5

5
+ · · · )3

+ a5(w −
w3

3
+ . . . )5 + a7(w + . . . )7

Up to the terms w7, we have

(w − w3

3
+
w5

5
+ · · · )3 = w3 + 3w2(−w

3

3
)1 + 3w2(

w5

5
)1 + 3w(−w

3

3
)2 + · · ·

= w3 − w5 +
14

15
w7 + · · ·

and

(w − w3

3
+
w5

5
+ · · · )5 = w5 + 5w4(−w

3

3
) + · · ·

= w5 − 5

3
w7 + · · ·

In order to have tan(arctanw) = w, we have

a1 = 1

−a1
3

+ a3 = 0

a1
5
− a3 + a5 = 0

−a1
7

+
14a3
15
− 5a5

3
+ a7 = 0

That is, a1 = 1, a3 = 1/3, a5 = 2/15, a7 = 17/315. J

4. Suppose f is an entire function and such that for each z0 ∈ C, at least one coefficient in
the expansion

f(z) =
∞∑
n=0

cn(z − z0)n

is equal to 0. Prove that f is a polynomial.

[Hint: Use the fact that cnn! = f (n)(z0) and use a countability argument.]

Solution. By the assumption and the hint, for every z0 ∈ C, we can find some n ∈
N ∪ {0} such that f (n)(z0) = 0. Therefore, we have

∞⋃
n=0

{z ∈ C : f (n)(z) = 0} = C.
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Since C is uncountable, at least one set in LHS must be uncountable, say the set {z ∈ C :
f (n0)(z) = 0} is uncountable.

By the same argument and consider
⋃∞
n=1{z : |z| ≤ n, f (n0)(z) = 0}, for some N ∈ N,

the set {z : |z| ≤ N, f (n0)(z) = 0} is uncountable.

The analytic function f (n0) having infinitely many zeros in the closed ball {z : |z| ≤ N},
must be a zero function. This shows that f is a polynomial with degree less than n0.

J


