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1. Evaluate the following integrals by the method of residues:

> dx T cos? 30
_ R, |a] > 1 b —— df
(a)/ a—i—sinzx’ae lal o )/0 5 —4cos 20
> logx > dx
log(1 + 2° 2.
()/ 1+$2 (d)/0 og( —|—x)$1+a,0<a<

You may try integration by parts for (d).

Solution. (a) Using the double angle formula, we have

/g dx /g dz
o a+sin’z  Jy a+1i(1—cos2z)

i dé
/0 2a + (1 — cos0) ( ?)
_1 / ' a0 (even function)
2 J_.2a+(1—cosb)

Let z = ¢ and consider the positively oriented contour {|z| = 1}, we see that

/7r df _/ 1 dz
e2a+ (L—cost) S 20+ (1— K&

_/ 2 dz
B =1 (da+2)z—22 =11

2,/ dz

=2i

|z|=1 2’2 — (4& + 2)2 —+ 1

The polynomial 22 — (4a + 2)z 4 1 has two real roots
a=2a+1+2Va’+a, B=2a+1-2Va*>+a

Note that o 1s out51de the unit circle if @ > 1, while (5 is outside if a < —1. Also,

the integral f is nonzero in any cases. This implies that the other roots will
a-l—Sln x

lie inside the circle |z| = 1. Using the residue, we have

/3 de :{22(’;—2&} ifa> 1,
0o a-+sin“x =) ifa < —1.
a s

- HQ\/az—i—a




(b) Let z = ¢¥ and consider the positively oriented contour {|z| = 1}, then

1 1 1 1
cos36’:§(z3+;), 00820:§(z2+;).
That is,
/27r C082 30 5 — / (23 + Z_3>2 dz
o D—4dcos20 Jio 405 —2(22+272)) iz
B / (2% +1)? dz
S 425(522 = 2(z4 + 1))
i (26 +1)2 "

T4 /z|1 25(224 — 52?2 4 2)

The polynomial 22* — 52% + 2 can be factorized as
(222~ 1)(2 = 2) = 22 = VD) (= + VD) (= — V2) (2 + V)

So, if we put f(z) = %, then all the singular points of f(z) inside the

unit circle are z = 0, —1/+/2, 1/4/2. We would apply Cauchy’s residue theorem to

compute the integral le\zl f(2) dz. Note that

hes () = VIR 7
e R TE 1 TE RV =S T
Similarly, one also has Res f(z) = —27/16.
2:1/\/5
For RSg, f(z), we observe that
2T+ 2z 1 1 1
— — h —_—
1) =i Y Faa st "W T2 (1 (G2 - z4)) !

where h(z) is analytic at 0. Therefore, the Laurent series of f(z) around z = 0 is

1 ) )
(1+—22—z4+(§z2—z4)2+--~)—l—---

fz) =535 5
1 5 25
= 2—/25)(1+§z2—z4+zz4+---)+--- (upto z 1)
21
Hence, we have R_eos flz) = 3
By residue theorem,
21 271 21 3

|z|=1

2T cos?
and [ 457355 df = 3 /8.




(c) Consider an indented contour I'. z composed of two upper semicircles and two line
segments, one line segment from —R to —e, and the other from € to R. The two
semicircles are centered at 0 with radii € and R respectively. We assume that R is
large and ¢ is small. Also, we consider the function

1 3
08 % with chosen branch —— < g < —W

1E) =175 2 2

The function f(z) is analytic on and inside I'. p except at the point z = i. By
Cauchy’s residue theorem,

: 1 Ll
f(2) dz =2mwiRes f(z) = 2mi(=logi) = —.
I g z=i 21 2

On the other hand,

tdee [ foyaes [ p@des [ f@des [ f) e
Ter -R —ct € ch

where CF, C}; are upper semicircles of radii € and R oriented in counterclockwise
direction. Now, note that

e R B log(—2) B Jog 2
/_Rf(z)dz%—/E f(z)dz—/e L1 cl,zjt/E T2 dz

R R -

log z i
=2 d d
/6 1+ 22 Z+/€ 1+22%

Applying residue theorem to the function 1/(1 + 2?) on a contour composed of an
upper semicircle and the diameter with large radius, we can conclude that

< 1 T[>~ 1 1 1
/ dz-—/ dz = = (2mi) (= )*z
o 1+22 2 ) o1+ 22 2 2i 2

o0

- R * logz im>
li =2 —_.
lim (/_R f(z)clzjt/6 f(z)dz) /o 2 dz + i

R—o0

Hence,

Also, using L’Hopital’s rule, we have

1 +37T
’/ f(z ‘ |oge|2 —0 ase—0
c+ 1_6
log R+ 22
f(z) dz RS 2 50 asR— oo
R?—1
ch -

In conclusion, we have fooo i‘fxﬁ dx = 0. Rather than using residues, one may

substitute y = 1/z to obtain

* logx ' —logy dy ! logy
; do = T = 7.2
1 14z o 1+-5 Y o 1+y

Y

and draw the same conclusion.



(d) Doing integration by parts, we have

oo d >~ 1
/ log(1 + 22) —1+ :/ — log(1 +a?) dz™®
0 plte 0

—Q

_I*a 1 [e%¢]
= log(1 + 2%)|2%, + — o
g1+t 1 [«

2 o) -«
:—/ SR—
a o 1+ 22

log(1 + 22)

2z dx
1+ 22

log(1 2
0 and lig 280+ 27)
T—00 re

x®
’Hoptial’s rule. Now, we apply the contour described in part (c), and let

It can be checked that we have hm = 0 by

Sl 6(1704) log z

where the branch of the log function is chosen to be —5 < argz < 37” Therefore,
the function f(z) is analytic on and inside the contour I'. ; except at the point z = 1.
By residue theorem, we see that

e(l—a) log @

/ f(2) dz =2miRes f(z) = 2772'(T) = 5T = e 3
R =t

On the other hand,

/FE’Rf(Z) dz:/:f(z) dz+/0€+ f(2) dz+/€Rf(z) dz+LEf(z) "

where C", C}; are upper semicircles of radii e and R oriented in counterclockwise
direction. We will calculate the integrals over the line segments (— R, —e¢) and (¢, R)
respectively, and then claim that the integrals over the semicircles will tend to 0 as

€ — 0and R — oo.
R R xlfa

/ R 1(2) dz

1 a)log z

1422 dz

1.
R (1—a) log(—=)
dx
/ 1422
/R e (1—a)(log z+im)

52 dz

T -«
= —e ' dx
/6 1+ 22

‘/_ij(z)dz < me

f(2)dz

Ch

Moreover,




The convergence is due to the observation 0 < 2 — « < 2. In conclusion, as € — 0
and R — oo, we obtain

—iTo . & Il_a
mie 2 = (1— e”m‘)/ 2 dx
0

> gla i m
d
xr = - - g
2 I —iTQ : ™
0 1 +x e 2 —e 2 2 S1n 5

Therefore,

o dx ™
2 _
/o log(1 + z*) e =

1y TQ
O S1n 2

. Prove that

oo o 2
/ sin(2?) dx = / cos(2?) dr = g
0 0

These are the Fresnel integrals. [Hint: Integrate the function e** over the path: from
0 to R, and then from R to Re's along the minor arc of circle |z| = R, and back to 0
through the straight line. Recall that [~ e~ dz = \/7.]

Solution. Let /; be the line segment from 0 to R, Ci be the minor arc described in the
hint, and I, be the line segment from Re’7 to 0. Let I' be the positively oriented contour

composed of 1y, and Cg. Note that the function f(z) = ¢**” is entire. In particular, by
Cauchy-Goursat theorem, we have

f(2) dz=0.

I'r

On the other hand, on the line segment /;, we have

R R R
f(z)dz= / e dr = / cos(z?) dx +i/ sin(z?) dz.
I 0 0 0

and on [y, we have

0 ir 2 aim
f(z)dz = / elre P e T dr

R
. R i
im i(re 4 )2
= —e 4 / el(re ) d/]n
0

R .
in ir2e’s
:—64/6"6 dr
0

) R )
s _
:—64/erdr
0



Moreover, on the arc C'r, we claim that the integral goes to 0 as R — oo. Recall that
sinz > 2% on [0, 5]. (see Week 9 Lecture) Now,

T

/4 B Roi® 40

0
§/4
0
I -

:R/ efR sin 26 do

0
gR/4e—4f29d9

0

:%<1—6_R2>—>0 as R — oo.

f(z)dz
Cr

9 ..
ezR (cos 20+isin 20) ‘ R db

To conclude, as R — oo, we obtain

oo o0 1
/ cos(z?) dr = / sin(2?) dr = L -
0 0 2 2

“[%
1=

<

. Let U be a simply connected domain and z; € U. Suppose A is an analytic function on U
and h(z) # 0 forall z € U. Put f(z) = (z — 29)™h(z) for some m € Z. If v is a closed
contour such that z, ¢ -, prove that

1[G
2mi )., f(2)

where n (7, zg) is the winding number of ~ around z.

dz = n(y, z0)m.

Solution. Notice that
f'(z) =m(z — 20)™ 'h(2) + (2 — 20)™H(2)
f'z) - m  W(z)
f(z)  z— 2 + h(z)

By Extended Cauchy-Goursat theorem (Week 4 Lecture) and the definition of winding
number, we have

1 [rGE)
2mi )., f(2)

dz = n(y,z0)m + 0 = n(y, zo)m.

. Determine the number of zeros of the polynomial
AT 4362 + 712422 — 241

inside the circle



(a) of radius 1,
(b) of radius 2, centered at the origin.

(c) Determine the number of zeros of the polynomial
22° =624+ 241=0
in the annulus 1 < |z| < 2.

Solution. (a) Let f(z) = 712" and g(z) = 2% + 362°" + 2% — 2 + 1. Then, both f and
g are entire functions. Also,

19(2)] < |2+ 36|z + |22+ 2] + 1 =40 < T1 = | f(2)| on|z| = 1.

By Rouché’s theorem, the polynomial f + g and f have the same number of zeros
inside |z| = 1, which is equal to 4.

(b) Let f(2) = 287 and g(2) = 362°" 4+ 712* + 23 — 2 + 1. Then, both f and g are entire
functions. Also, on the circle |z| = 2, we have

19(2)] < 36|2>" + 71|z|* + |22 + |2| + 1
<20.257 497 .28 41 23 1242
< 96 . 957 , 5
< 2% < 9 = |f(2)|

By Rouché’s theorem, the polynomial f + ¢g and f have the same number of zeros
inside |z| = 2, which is equal to 87.

(c) Let f1(2) = 2z° and g;(2) = —62% + z + 1. Then, both f and g are entire functions.
Also, on the circle |z| = 2, we have

|91(2)] < 6]2” + [2] +1 =27 < 64 = | f1(2)]

By Rouché’s theorem, the polynomial f; 4+ g; and f; have the same number of zeros
inside |z| = 2, which is equal to 5. Recall that the inequality |fi(z) + ¢1(2)| >
|f1(2)| = |g1(2)| > 0 automatically tells us that both f; + ¢g; and f; have no zero on
the circle {|z| = 2}.

On the other hand, we put f»(z) = —62z2 and go(z) = 22° + z + 1. Using Rouché’s
theorem again, we can show that the number of zeros of f, + g- inside the circle
|z| = 11is 2. Therefore, the number of zeros of the polynomial in the annulus
{1<]z]<2}is5—2=3.

<

5. Let f be analytic on the closed unit disc D.
(a) Assume that |f(z)| = 1if |z| = 1, and f is not constant. Prove that the image of f
contains the closed unit disc.

(b) Assume that there exists some point zo € D such that | f(zo)| < 1, and that | f(z)| >
1 if |z| = 1. Prove that f(D) contains the open unit disc



Solution. (a) Recall that by Maximum Modulus Principle, we can deduce that f must

(b)

attain 0 inside the circle {|z| = 1}. (see Week 5 Examples) Now, let |wy| < 1,
notice that
| —wo| < 1=|f(2)] forlz|=1.

By Rouché’s theorem, f(z) and f(z) — wy have the same number of zeros inside
the unit iircle. This shows that f(zy) = wy for some_| 20| < 1_ Since wy is arbitrary,
D C f(D). The continuity of f further tells us that D C f(D).

Naively, if we put v = {|z| = 1}, then the assumption tells us that f(z) — f(2o)
attains zeros inside the unit circle. Since the function f(z) is analytic, it has no poles
inside the contour . By argument principle, the contour f() — f(zo) circulate the
point z = 0 at least once and hence, f () would enclose the point f(z,). However,
|f(7)| > 1. A picture will show that every point inside the unit circle is enclosed by
f (7). Using the argument principle again, we see that f(D) contains the unit disc.

To argue this formally, note
[f() = 1> =f(z0)] for|z[ =1.

Rouché’s theorem implies that f(z) and f(z)— f(zo) have the same number of zeros
inside the unit circle. In particular, f(z) = 0 for some |z| < 1. Now let any |wy| < 1
and notice that

|lf(z)] >1>|—w| forlz]=1.

By Rouché’s theorem again, we can conclude that f(z) = w for some |z| < 1. This
shows that f(D) contains the open unit disc.

<



