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Compulsory Part

1. Use residues to evaluate the following improper integrals:

(a)
∫ ∞

0

x2

(x2 + 1)(x2 + 4)
dx;

(b)
∫ ∞

0

x sin 2x

x2 + 3
dx.

Solution. (a) Since the integrand is an even function, we have∫ ∞
0

x2

(x2 + 1)(x2 + 4)
dx =

1

2

∫ ∞
−∞

x2

(x2 + 1)(x2 + 4)
dx

We put f(z) = z2

(z2+1)(z2+4)
and consider the contour ΓR composed of the upper

semicircle C+
R centered at 0 with radius R > 0 and the diameter from −R to R. By

Cauchy’s residue theorem, if R > 2, then∫
ΓR

f(z) dz = 2πi
(

Res
z=i

f(z) + Res
z=2i

f(z)
)

= 2πi

(
i

6
− i

3

)
=
π

3
.

Note that ∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR
R2

(R2 − 1)(R2 − 4)
→ 0 as R→∞.

Hence, we have∫ ∞
0

x2

(x2 + 1)(x2 + 4)
dx =

1

2

∫ ∞
−∞

x2

(x2 + 1)(x2 + 4)
dx =

π

6
.

(b) The integrand is an even function, hence∫ ∞
0

x sin 2x

x2 + 3
dx =

1

2

∫ ∞
−∞

x sin 2x

x2 + 3
dx

We consider f(z) = zei2z

z2+3
and the contour as in Q1(a). Using Cauchy’s residue

theorem, we have ∫
ΓR

f(z) dz = 2πi Res
z=
√

3i
f(z) = iπe−2

√
3.
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On the other hand, by Jordan’s lemma (because a = 2 > 0, see week 9 Lecture), we
can conclude that ∫

C+
R

f(z) dz → 0 as R→∞.

Notice that ∫ ∞
−∞

x sin 2x

x2 + 3
dx = Im

(
lim
R→∞

∫ R

−R
f(z) dz

)
Therefore, ∫ ∞

0

x sin 2x

x2 + 3
dx =

πe−2
√

3

2
.

J

2. Use residues to show that

(a) P.V.
∫ ∞
−∞

sinx

x2 + 4x+ 5
dx = −π

e
sin 2;

(b)
∫ π

0

dθ

(a+ cos θ)2
=

aπ

(
√
a2 − 1)3

, where a > 1.

Solution. (a) Notice that the only roots in x2 + 4x+ 5 = (x+ 2)2 + 1 are −2 + i and
−2 − i. Let f(z) = eiz

z2+4z+5
. We consider the contour ΓR composed of the upper

semicircle centered at 0 with radius R > 0 and the diameter from −R to R. By
Cauchy residue’s theorem, for large R > 0, we have∫

ΓR

f(z) dz = 2πi Res
z=−2+i

f(z) = 2πi
e−2i−1

2i
=
π

e
(cos 2− i sin 2) .

Moreover, by Jordan’s lemma (week 9 Lecture), we have∫
C+
R

f(z) dz → 0 as R→∞.

Taking the imaginary part of the integral, we find that

P.V.
∫ ∞
−∞

sinx

x2 + 4x+ 5
dx = −π

e
sin 2

(b) Since 1/(a+ cos θ)2 is an even function, we have∫ π

0

dθ

(a+ cos θ)2
=

1

2

∫ π

−π

dθ

(a+ cos θ)2

If we put z = eiθ, then cos θ = 1
2
(z + 1/z) and dz = izdθ. Hence, we have∫ π

−π

dθ

(a+ cos θ)2
=

∫
|z|=1

1(
a+ 1

2
(z + 1

z
)
)2

dz

iz

=

∫
|z|=1

4z2

(2az + (z2 + 1))2

dz

iz

=

∫
|z|=1

−4iz dz

(z2 + 2az + 1)2
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Notice that the roots of z2 + 2az + 1 = (z + a)2 + 1 − a2 are −a +
√
a2 − 1 and

−a−
√
a2 − 1. Moreover, we see that the integral is nonzero and −a−

√
a2 − 1 <

−1. Hence, we can conclude that −a +
√
a2 − 1 is the only root lying inside the

circle {|z| = 1}.
Let f(z) = −4iz

(z2+2az+1)2
= −4iz

(z+a−
√
a2−1)2(z+a+

√
a2−1)2

. If we put h(z) = −4iz
(z+a+

√
a2−1)2

,
then

Res
z=−a+

√
a2−1

f(z) = h′(−a+
√
a2 − 1) =

−ia
(
√
a2 − 1)3

.

Using residue theorem,∫
|z|=1

f(z) dz = 2πi Res
z=−a+

√
a2−1

f(z) =
2πa

(
√
a2 − 1)3

.

Therefore, ∫ π

0

dθ

(a+ cos θ)2
=

1

2

∫
|z|=1

f(z) dz =
aπ

(
√
a2 − 1)3

J

3. Suppose that f is analytic on and inside a positively oriented simple closed contour γ,
and has no zeros on γ. If f has n zeros z1, z2, . . . , zn inside γ, where zk is of multiplicity
mk for each k, show that ∫

γ

zf ′(z)

f(z)
dz = 2πi

n∑
k=1

mkzk.

Solution. Let ϕ(z) = z. Applying the theorem on p. 7 of week 10 Lecture, we have∫
γ

zf ′(z)

f(z)
dz = 2πi

n∑
k=1

mkϕ(zk) = 2πi
n∑
k=1

mkzk.

J

4. Determine the number of zeros, counted with multiplicities, of:

(a) z6 − 6z4 + 2z3 − z inside |z| = 1;

(b) z5 − 3z3 − z + 1 inside |z| = 2.

Solution. (a) Let f(z) = −6z4 and g(z) = z6 + 2z3 − z. Notice that

|g(z)| ≤ 1 + 2 + 1 = 4 < 6 = |f(z)| on |z| = 1.

By Rouché’s theorem, the functions f(z) + g(z) = z6 − 6z4 + 2z3 − z and f(z)
have the same number of zeros inside {|z| = 1}, which is 4.

(b) Let f(z) = z5 and g(z) = −3z3 − z + 1. Notice that

|g(z)| ≤ 3(2)3 + 2 + 1 = 27 < 32 = |f(z)| on |z| = 2.

Rouché’s theorem shows that the functions f(z)+g(z) = z5−3z3−z+1 and f(z)
have the same number of zeros inside {|z| = 2}, which is 5.

J
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5. Prove that z = 1− e−z has exactly one solution in the right half-plane.

Solution. Fix ε > 0. For every R > 0, we consider the contour composed of a line
segment from ε + iR to ε − iR and the positively oriented circular arc centered at ε
moving from ε− iR to ε+ iR. Notice that on the circular arc, we have

|1− e−z| ≤ 1 + |e−z| = 1 + e−Re(z) ≤ 1 + e−ε ≤ 2 < |z| if R > 2.

We want to show that |z| > |1 − e−z| if Re(z) = ε. Let x = Re(z) = ε and y = Im(z).
Then, |z|2 = ε2 + y2 and |1− e−z|2 = (1− e−ε cos y)2 + (e−ε sin y)2. If we put

fε(y) = |z|2 − |1− e−z| = ε2 + y2 − 1 + 2e−ε cos y − e−2ε,

then we want to show that fε(y) > 0 for every y ∈ R. Note

f ′ε(y) = 2y − 2e−ε sin y = 2y

(
1− sin y

y
e−ε
)

Therefore, f ′ε(y) > 0 if y > 0 and f ′ε(y) < 0 if y < 0. We have

fε(y) ≥ f(0) = ε2 − 1 + 2e−ε − e−2ε = ε2 − (1− e−ε)2.

If we consider h(x) = x − (1 − e−x) and its derivative for x ≥ 0, we will see that
fε(y) ≥ ε2 − (1− e−ε)2 > 0 for every y ∈ R.

In conclusion, |z| > |1 − e−z| on the whole contour. Rouché’s theorem shows that
z − 1 + e−z and z have the same number of zeros inside the contour, which is 0. Letting
R → ∞ and ε → 0, we find that z − 1 + e−z has no solution for Re(z) > 0. When
Re(z) = 0, iy = 1 − e−iy = 1 − cos y + i sin y. The only solution for y = sin y is
y = 0. J

Optional Part

1. Use residues to evaluate the following improper integrals

(a)
∫ ∞

0

cos ax

x2 + 4
dx;

(b)
∫ π

0

dθ

5 + 4 sin θ
;

(c)
∫ ∞

0

√
x

x2 + 1
dx;

(d) P.V.
∫ ∞
−∞

dx

2x2 + 2x+ 1
;

(e) P.V.
∫ ∞
−∞

x sin 2x

2x2 + 2x+ 1
dx;

(f) P.V.
∫ ∞
−∞

x sin 2x

x2 − 1
dx.
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Solution. (a) Since cosine function is even, we may assume a ≥ 0. Let f(z) = eiaz

z2+4
.

Consider the contour ΓR composed of the upper semicircle C+
R of radius R > 0

centered at 0 and the diameter from −R to R. For a > 0, Jordan’s lemma shows
that ∫

C+
R

f(z) dz → 0 as R→∞.

For a = 0, we have∫
C+
R

f(z) dz ≤ πR
1

R2 − 4
→ 0 as R→∞.

Using residue theorem, we have∫
ΓR

f(z) dz = 2πiRes
z=2i

f(z) =
πe−2a

2

Taking the real part of the integral, we have∫ ∞
0

cos ax

x2 + 4
dx =

πe−2|a|

4
.

(b)

(c) Let f(z) = e
1
2 log z

z2+1
, where the branch of the log function is chosen to be −3π

2
<

arg z ≤ π
2
. Consider the contour Γε,R composed of two line segments and two

circular arcs. The line segments are (−R,−ε) and (ε, R) and the circular arcs are
upper semicircles with radii ε and R respectively. Using residue theorem, we have∫

Γε,R

f(z) dz = 2πiRes
z=i

f(z) = 2πi

(
e
πi
4

2i

)
=

π√
2

(1 + i)

On the upper semicircles C+
R and C+

ε , we have∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR
√
R

R2 − 1∣∣∣∣∫
C+
ε

f(z) dz

∣∣∣∣ ≤ πε
√
ε

1− ε2

Both of them converge to 0 as ε → 0 and R → ∞. On the line segment (−R,−ε),
we have ∫ −ε

−R
f(z) dz =

∫ −ε
−R

e
1
2

(log |z|+iπ)

z2 + 1
dz

=

∫ −ε
−R

i
√
|z|

z2 + 1
dz

= i

∫ R

ε

√
x

x2 + 1
dx

Letting ε→ 0 and R→∞, we will obtain∫ ∞
0

√
x

x2 + 1
dx =

π√
2
.
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(d) Let f(z) = 1
2z2+2z+1

. Consider the contour ΓR composed of the upper semicircle
with radius R and the diameter (−R,R). Note that the roots of 2z2 + 2z + 1 =
2(z + 1/2)2 + 1/2 are α = −1/2 + i/2 and β = −1/2 − i/2. Using residue
theorem, for R > 1/2, we have∫

ΓR

f(z) dz = 2πiRes
z=α

f(z) =
2πi

2(α− β)
= π.

Moreover, on the upper semicircle C+
R , we have∣∣∣∣∣

∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR

2R2 − 2R− 1
→ 0 as R→∞.

Therefore, we have

P.V.
∫ ∞
−∞

dx

2x2 + 2x+ 1
= π.

(e) Let f(z) = zei2z

2z2+2z+1
and consider the same contour as in part (d). By Jordan’s

lemma, on the upper semicircle C+
R , we have∫

C+
R

f(z) dz → 0 as R→∞.

Using residue theorem, we may conclude that∫
ΓR

f(z)dz = 2πiRes
z=α

f(z) =
2πiαei2α

2(α− β)
= π

(
−1

2
+
i

2

)
e−i−1 =

π√
2e
ei(

3π
4
−1)

where α, β are those defined in part (d). Taking the imaginary part, we have

P.V.
∫ ∞
−∞

x sin 2x

2x2 + 2x+ 1
dx =

π√
2e

sin

(
3π

4
− 1

)
.

(f)

J

2. Using the fact that sin3 x = Im
(

3

4
eix − 1

4
ei3x − 1

2

)
, evaluate P.V.

∫ ∞
−∞

sin3 x

x3
dx.

Solution. Let f(z) = 1
z3

(
3
4
eiz − 1

4
ei3z − 1

2

)
. Consider the contour ΓR composed of two

line segments and two upper semicircles. The line segments are respectively (−R,−ε)
and (ε, R) The upper semicircles are centered at 0 with radii ε and R. Using Cauchy’s
residue theorem, we have ∫

ΓR

f(z) dz = 0

Using Jordan’s lemma and routine approximation, we can conclude that on the upper
semicircle C+

R , ∫
C+
R

f(z) dz → 0 as R→∞.
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On the upper semicircle C+
ε , we have(

3

4
eiz − 1

4
ei3z − 1

2

)
=

3

4
(1 + iz +

(iz)2

2
+ · · · )− 1

4
(1 + i3z +

(i3z)2

2
+ · · · )− 1

2

=
3z2

4
+ h(z),

where h(z) has zero of order not less than 3 at the point z = 0. Hence,
∫
C+
ε
f(z) dz =∫

C+
ε

3
4z
dz +

∫
C+
ε

h(z)
z3

dz → 3πi
4

as ε→ 0. After taking the imaginary part of the integral,
we have

P.V.
∫ ∞
−∞

sin3 x

x3
dx =

3π

4
.

J

3. Use residues to show that

(a)
∫ ∞

0

x2dx

(x2 + 9)(x2 + 4)2
=

π

200
;

(b)
∫ ∞

0

xa

(x2 + 1)2
dx =

(1− a)π

4 cos(aπ/2)
, where −1 < a < 3.

Solution. (a) Let f(z) = z2

(z2+9)(z2+4)2
and consider the contour composed of the upper

semicircle of radius R and the diameter (−R,R). It is routine to show that the
integral over the upper semicircle goes to 0 as R→∞. Now, it suffices to calculate
Res
z=3i

f(z) and Res
z=2i

f(z). Note that

Res
z=3i

f(z) =
(3i)2

6i((3i)2 + 4)2
=
−3

50i
.

On the other hand, to find Res
z=2i

f(z), we observe that it is the coefficient of (z − 2i)

in the Taylor series expansion of z2

(z2+9)(z+2i)
at z = 2i. Moreover,

z2

(z2 + 9)(z + 2i)
=

(
1− 9

z2 + 9

)
1

(z + 2i)2
= f1(z)f2(z).

The required residue is f1(2i)f ′2(2i) + f ′1(2i)f2(2i) = 13
200i

.
Using residue theorem, we can conclude that∫ ∞

0

f(x) dx =
1

2

∫ ∞
−∞

f(x) dx = πi(Res
z=3i

f(z) + Res
z=2i

f(z)) =
π

200
.

(b) Let f(z) = ea log z

(z2+1)2
, where the branch is taken to be −π

2
< arg z ≤ 3π

2
. Consider

the contour composed of two line segments and two upper semicircles. The line
segments are (−R,−ε) and (ε, R). The upper semicircles are centered at 0 with
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radii ε and R respectively. It is routine to check that the integrals of f(z) over these
two semicircles would go to 0, as ε→ 0 and R→∞. On the other hand,∫ −ε

−R
f(z) dz =

∫ −ε
−R

ea(log |z|+iπ)

(z2 + 1)2
dz

=

∫ R

ε

xaeiaπ

(x2 + 1)2
dx

Finally, we would calculate Resz=i f(z). Note that the required residue is the coef-
ficient of (z− i) in the Talyor series expansion of ea log z/(z + i)2 at the point z = i.
If we put f1(z) = ea log z and f2(z) = 1

(z+i)2
, then the coefficent is given by

f1(i)f ′2(i) + f ′1(i)f2(i) = e
iπa
2

(
−2

(2i)3

)
+
a

i
e
iπa
2

(
1

(2i)2

)
=

1− a
4i

e
iπa
2 .

Therefore, letting ε→ 0 and R→∞, together with residue theorem, we have

(1 + eiaπ)

∫ ∞
0

f(z) dz = 2πiRes
z=i

f(z) =
(1− a)π

2
e
iπa
2 .

After dividing (1 + eiaπ) on both sides, we will obtain the desired result.

J

4. Use Rouché’s theorem to show that all the zeros of z5 + 3z2 + 7 are contained inside the
open disk |z| < 2.

Solution. Let f(z) = z5 and g(z) = 3z2 + 7. Notice that on the circle {|z| = 2}, we
have

|g(z)| ≤ 3(2)2 + 7 = 19 < 32 = |f(z)|.

Rouché’s theorem tells us that the function f(z) + g(z) = z5 + 3z2 + 7 have the same
number of zeros as f(z) inside the circle, which is 5. Since it is just a degree 5 polynomial,
all zeros are contained inside the open disk |z| < 2. J


