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Compulsory Part

1. Use residues to evaluate the following improper integrals:

0 [EQ
dz;
(a)/ (22 +1)(22 + 4) v
xsm2x
(b)/ 213

Solution. (a) Since the integrand is an even function, we have

o x? 1 [ 2
/ dr = —/ dx
o (Z2+1)(22+4) 2 ) o (24 1)(x2+4)

We put f(z) = Mﬁ and consider the contour I'; composed of the upper

semicircle C; centered at 0 with radius R > 0 and the diameter from —R to R. By
Cauchy’s residue theorem, if R > 2, then

. f(z) dz = 2mi (E»g;f(Z) + Bzggf(Z)) = 2mi (é — %) = g
Note that

R2
<7R —0 as R — oo.

Jz) dz) < TR e — 1)

Ch

Hence, we have

S

& x? 1 [ x?
/ dr = —/ dx
o (2+1)(x2+4) 2 ) oo (22 4+ 1) (22 +4)

(b) The integrand is an even function, hence

* xsin 2z 1 [°° xsin2x
> dr = = ——dx
o r?2+3 2 ) o x?2+3

and the contour as in Q1(a). Using Cauchy’s residue

We consider f(z) =
theorem, we have

2+3

/FR f(2) dz = 2mi Zf_{\efslf( 2) = ime 2V,



On the other hand, by Jordan’s lemma (because a = 2 > 0, see week 9 Lecture), we
can conclude that

f(z)dz =0 as R — .

ct
Notice that A
o0 : 2
/ ms;n Y dr =Tm ( lim / f(2) dz)
oo T +3 R—oo J_p
Therefore,
/°° sin 2% Te2V3
5 dz = )
0 x*4+3 2

2. Use residues to show that
& sin « T
PV. — dr = ——sin2;
@ /_MQMHE)Q; " in
am

T do
(b) / = —, where a > 1.
o (a+cosf)? (Va2 —1)3

Solution. (a) Notice that the only roots in z° + 4z + 5 = (x + 2)? 4+ 1 are —2 + i and
—2 —i. Let f(2) = m We consider the contour I'; composed of the upper
semicircle centered at 0 with radius R > 0 and the diameter from —R to R. By
Cauchy residue’s theorem, for large R > 0, we have

672171

FRf(z)dz:27rz'Z:l’te,;ﬂ,f(z):27m' 5 =g<COSQ—iSin2).

Moreover, by Jordan’s lemma (week 9 Lecture), we have
(2)dz —0 as R — 0.
Ch

Taking the imaginary part of the integral, we find that

o
P.V./ _ T e = T ino
o P2+ 42 +5 e

(b) Since 1/(a + cos#)? is an even function, we have

/7r do _1/” df
o (a+cos)? 2 ) _ (a+cosf)?

If we put z = ¢, then cos § = £(z + 1/z) and dz = izdf. Hence, we have

/’T o / 1 dz
(a4 cosf)? =1 (a+ 3(z + %))2 iz

By -
l2j=1 (2az + (22 + 1))2 1z

B / —4iz dz
2=t (22 + 2az + 1)°




Notice that the roots of 22 + 2az + 1 = (2 + a)* + 1 — a® are —a + va? — 1 and
—a — +/a? — 1. Moreover, we see that the integral is nonzero and —a — va? — 1 <
—1. Hence, we can conclude that —a + v/a? — 1 is the only root lying inside the
circle {|z| = 1}.

_ —4iz _ —4iz _ —4iz
Let f(Z) T (2242a241)? T (z4+a—Va2-1)2(z4+a+va2-1)2" If we put h(Z) T (e+at+Vai—1)2’
then

Res  f(2) = W(—a+Va—1) = ——2

e=—atva¥—1 (Va2 —1)3
Using residue theorem,

2
(2)dz=2mi Res f(z)= S —
|z|=1 z=—a++va%-1 ( a? — 1)3
Therefore,
i e 1
[ vt =30
o (a+cost)> 2 /. (Va2 —1)

<

3. Suppose that f is analytic on and inside a positively oriented simple closed contour 7,
and has no zeros on . If f has n zeros 21, 29, . . ., 2, inside 7, where zj is of multiplicity
my, for each k, show that

2f'(2)
~ f(2)

n
dz = 2mi E M2
k=1

Solution. Let ¢(z) = z. Applying the theorem on p. 7 of week 10 Lecture, we have

2f'(2)
v f(Z)

dz = 2mi Z myp(zx) = 2mi Z e
k=1 k=1

4. Determine the number of zeros, counted with multiplicities, of:
(@) 2% — 62" +22% — zinside |2| = 1;
(b) 2° — 323 — z + 1 inside |z| = 2.
Solution. (a) Let f(z) = —62% and g(z) = 2° + 223 — 2. Notice that
9(2)| <1+2+1=4<6=|f(z)] onlz|=1.

By Rouché’s theorem, the functions f(z) + g(z) = 2% — 62* + 223 — z and f(2)
have the same number of zeros inside {|z| = 1}, which is 4.

(b) Let f(z) = 2z° and g(z) = —323 — z + 1. Notice that
19(2)| <3(2)° +2+1=27<32=|f(2)] onlz| =2

Rouché’s theorem shows that the functions f(z)+g(z) = 2° =323 — 2+ 1 and f(2)
have the same number of zeros inside {|z| = 2}, which is 5.

<



5. Prove that z = 1 — e * has exactly one solution in the right half-plane.

Solution. Fix ¢ > (0. For every R > 0, we consider the contour composed of a line
segment from € + R to ¢ — ¢R and the positively oriented circular arc centered at ¢
moving from € — iR to € 4+ ¢ R. Notice that on the circular arc, we have

l—e?|<1+]e?=1+e BB <1re<2<]z] ifR>2

We want to show that |z| > |1 — e ?| if Re(z) = €. Let = Re(z) = eand y = Im(z).
Then, [z]> =€ +y*and |1 — e *|> = (1 — e “cosy)? + (e “siny)?. If we put

fe(y) = |Z|2 —1—e7 = ¢ +y2 — 1+ 2e “cosy — e,

then we want to show that f.(y) > 0 for every y € R. Note

fiy) =2y —2e “siny = 2y (1 _ Y e€>
Y
Therefore, f/(y) > 0if y > 0 and f/(y) < 0if y < 0. We have
fy) > f0)=€ —14+2e—e =€ —(1—e )2

If we consider h(x) = x — (1 — e ®) and its derivative for z > 0, we will see that
fly) > € — (1 —e )% > 0foreveryy € R.

In conclusion, |z| > |1 — e ?| on the whole contour. Rouché’s theorem shows that
z — 14 e % and z have the same number of zeros inside the contour, which is 0. Letting
R — oo and € — 0, we find that = — 1 4+ e~ * has no solution for Re(z) > 0. When
Re(2) = 0,7y = 1 —e ™ = 1 — cosy + isiny. The only solution for y = siny is
y=0. |

Optional Part

1. Use residues to evaluate the following improper integrals
COS CL:L'
@ / x2 + 4
b —;
®) / 54 4sinf

()/ 2+1:r,

dx
d) P.V. _—
@ /Oo 202+ 2x + 1

> xsin2r
P.V. ———du;
© /0023:2—1—2x—|—1x

) P.V./ xsm2xdx

2
o T4 —1




Solution. (a) Since cosine function is even, we may assume a > 0. Let f(z) = %

Consider the contour ' composed of the upper semicircle C; of radius R > 0
centered at 0 and the diameter from — R to R. For a > 0, Jordan’s lemma shows
that

(2)dz —0 as R — oo.
Ch

For a = 0, we have

C?%—f(z>dZS7TRR2—4 —0 as R — oo.
Using residue theorem, we have

7.[.672&

2

f(z) dz =2miRes f(z) =
Tr z=21

Taking the real part of the integral, we have
/°° oS ax me~2al
5 dr = .
g T°+4 4
(b)
1 log z

(c) Let f(2) ejT, where the branch of the log function is chosen to be _T?”r <
argz < 7. Consider the contour I'c p composed of two line segments and two
circular arcs. The line segments are (—R, —¢) and (e, R) and the circular arcs are
upper semicircles with radii € and R respectively. Using residue theorem, we have

/Fe,R f(2) dz = 2mi PZ{:eZsf(z) = 27 (%) = %(1 +1)

On the upper semicircles C}; and C.", we have

N

<7TR\/E
- R2-1

Te/€

1 — €2

f(z)dz

Cr

f(2) dz‘ <
ct

Both of them converge to 0 as ¢ — 0 and R — oco. On the line segment (—R, —¢),

we have
—e J —e e%(log\z|+i7r) J
/R fz) 2_/1% 22 +1 :

Letting ¢ — 0 and R — oo, we will obtain

——dx = .
0 372—’—1 \/§



(d) Let f(2) = m Consider the contour I'p composed of the upper semicircle
with radius R and the diameter (— R, R). Note that the roots of 22% + 22 + 1 =
2z +1/2)* +1/2 are « = —1/2 4+ i/2 and B = —1/2 — i/2. Using residue
theorem, for R > 1/2, we have

. f(z)dz = 27m'£ize§f(z) = a—5) = .

Moreover, on the upper semicircle C, we have

TR

Sm—)o as R — oo.

f(z) dz

Cl

Therefore, we have
o dx
P.V. _— =
/_ 0 222 + 22 +1

(e) Let f(2) = % and consider the same contour as in part (d). By Jordan’s
lemma, on the upper semicircle C';, we have

f(z2)dz— 0 as R — oo.
Ch

Using residue theorem, we may conclude that

2micet?e 1 g : T s
f(2)dz = 2mi Resf =7 (__ + _) eiml = T piF 1)
T'r ) ) = ( - B) 2 2 2e

where «, 3 are those defined in part (d). Taking the imaginary part, we have

o : 2
P.V./ _ USmAT dx——sm 3_7r_1
oo 222+ 2x 41 V2e

)
<
3w 1y 1 > sin®
2. Using the fact that sin®z = Im | Ze®® — —e®* — — |, evaluate P.V. / st xd:r:.
4 4 2 e B
Solution. Let f(z) = & (3¢'* — 1¢* — 1). Consider the contour I'g composed of two

line segments and two upper semicircles. The line segments are respectively (—R, —¢)
and (e, R) The upper semicircles are centered at 0 with radii € and R. Using Cauchy’s
residue theorem, we have
f(z) dz =
I'r
Using Jordan’s lemma and routine approximation, we can conclude that on the upper
semicircle C,

f(z)dz— 0 as R — oo.
Ch



On the upper semicircle C", we have

3. 1. 1 3 o (i2)? 1 _ (i32)? 1
S e _ 2 ) = 2(1 Ly Z(1 o) Ly 2
(46 1° 2) 4( izt o+ ) 4( i3z ) 5
2
-

where h(z) has zero of order not less than 3 at the point z = 0. Hence, [+ f(z) dz =

Jor 2 de+ [0 M2 dz — 2 as e — 0. After taking the imaginary part of the integral,
we have
> sin®z 3w
P.V. . $3 dr = Z
D |
. Use residues to show that
o r2dx 0
(@) 2 2 2= 500°
o (@249)(2%2+44) 200
R (1 —a)r
b ———dr = ——+——,where —1 < a < 3.
®) /0 (24 1)2 v 4 cos(am/2) whete “
Solution. (a) Let f(z) = m and consider the contour composed of the upper

semicircle of radius R and the diameter (—R, R). It is routine to show that the
integral over the upper semicircle goes to 0 as 2 — oco. Now, it suffices to calculate
R_%S- f(2) and R_eQS f(2). Note that

B (3i)? -3
Res /) = GGip w42 ~ 500

On the other hand, to find Res f(z), we observe that it is the coefficient of (z — 21)

2=21

. . . 22 o
in the Taylor series expansion of ooy Atz = 2i. Moreover,

22 9 1
(224 9)(z + 21) - (1 - 22—1—9) (= + 20 = f1(2) f2(2).

The required residue is f1(2) f5(2i) + f1(2i) f2(2i) = 500
Using residue theorem, we can conclude that

(o9} 1 o0
/0 f(x) dx = 5/_00 f(z) de = m(E{:%SZ.f(z) —|—£{:e25lf(z)) = ;m

e log z

(b) Let f(2) = s where the branch is taken to be —5 < argz < 37” Consider
the contour composed of two line segments and two upper semicircles. The line
segments are (—R, —¢) and (¢, R). The upper semicircles are centered at 0 with



radii € and R respectively. It is routine to check that the integrals of f(z) over these
two semicircles would go to 0, as ¢ — 0 and R — oo. On the other hand,

—€ J —€ ea(log\z|+iﬂ') y
-R flz) dz = /—R (22 +1)° ’

R a iam
e
= —d
/6 (2 4+ 1)2 ’
Finally, we would calculate Res.—; f(z). Note that the required residue is the coef-

ficient of (z — ) in the Talyor series expansion of ¢!°6% /(> 4 4)? at the point 2z = 4.

If we put fi(z) = e*!°¢% and f,(2) = (zﬁ)g, then the coefficent is given by

K@) + fi@)f00) = e F ((2_?) +ge® ((2;2)

1—a ina
= e 2 .

43

Therefore, letting ¢ — 0 and R — o0, together with residue theorem, we have

(14 e'm) /000 f(z) dz = 2mi Ijzezsf(z) = @eiga.

After dividing (1 + €%™) on both sides, we will obtain the desired result.
<

4. Use Rouché’s theorem to show that all the zeros of z° + 322 + 7 are contained inside the
open disk |z| < 2.

Solution. Let f(z) = 2° and g(z) = 32% + 7. Notice that on the circle {|z| = 2}, we
have
l9(2)| < 3(2)° +7=19 <32 = |f(2)].

Rouché’s theorem tells us that the function f(z2) + g(z) = 2° + 32% + 7 have the same
number of zeros as f(z) inside the circle, which is 5. Since it is just a degree 5 polynomial,
all zeros are contained inside the open disk |z| < 2. <



