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Compulsory Part

1. Expand e* into a Taylor series about the point z = 1.

Solution. Note that
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3. Find the Laurent series of ————— in
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© 1<|z—3] <2

Solution. By partial fraction, we have
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(a) In the domain |z| < 1,
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Hence, we have
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(b) In the domain 1 < |z| < 2,
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Hence, we have
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4. Show that the function f(z) = 1 — cos z has a zero of order 2 at z;, = 0.

Solution. f’(z) =sinz and f”(z) = cos z. Since f(0) = f’(0) = 0 and f”(0) =1 # 0,
f(z) has a zero of order 2 at z, = 0. <

. Suppose that f(z) and g(z) are functions analytic at zo. If z; is a zero of both f(z) and
g(z) of order m > 1, show that
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Solution. Since f(z),g(z) has a zero of order m > 1 at z, for z near z;, we have the
Taylor series expansion
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where £ (z), g™ (20) # 0. Therefore,
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Optional Part

1. With the aid of series, prove that the function f defined by

e —1
if 0,
f(z) = 2 ifz 7
1 if z=0.

is an entire function.
Solution. Note that by the Taylor series expansion,
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for z # 0.

The power series above defines an entire function attaining 1 at z = 0. This shows that the
function f(z) defined in the question is an entire function, which is precisely the power
series. <



2. Let f be a function analytic in a domain D C C which has distinct zeros z1, 2, . . ., 2, of
orders mq, ms. ..., m, respectively. Show that there exists an analytic function g(z) on
D such that

f(2) = (z—2)™ (2 — 2)™ (2 — 2a) "9 (2).

Solution. Both functions f(z) and (z—z21)"™ (z—25)™2 - - - (z—2,)™" have zeros 2, s, . . .
f(z)

of orders mq, ms. ..., m, respectively. Hence the function T Y oy Ly poveny T has
removable singularities at 21, zs, . . ., 2, (see Week 8 Lecture). Therefore, there are ana-
lytic functions g1, g2, - - - , g, around 21, 2, . . . , 2, such that
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then g(2) is the desired function.
We can also do it by induction. The arguments are essentially the same.

Since f(z) has a zero of order m; at z;, by Week 7 Lecture, we can find a small disk
around 21, and an analytic function G (z) such that f(z) = (z — 21)™ G1(z) on the small
disk, moreover, G1(z;) # 0. The formula shows that the function g, (z) defined by
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is analytic on D. Indeed, g;(z) = G1(z) around z, hence is analytic at z;. For z # 2z,
g1 is analytic because f is analytic. Therefore, there exists an analytic function g;(z) on
D such that f(z) = (2 — 2z1)™ g1(2). Applying the same argument to g;(z), there is an
analytic function g5(z) on D such that g;(z) = (2 — 22)™2g2(2). Inductively, there exists
an analytic function g(z) on D such that

f(2)=(z—21)" (2 — 2)" - (2 — 2,)""g(2).

<

o0

3. Let R be the radius of convergence of f(z) = Z an(z — z9)" at zp. Show, by term-by-
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term differentization and mathematical induction, that
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Solution. For n = 1, by termwise differentiation,
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Assume it is true for m = £, i.e.
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By induction, the statement is true for every m € N. |
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. Let f be an entire function such that f(x) = Z apx” for all x € R. Show that
k=0

z) = Z apz®
k=0
for all z € C.

Solution. Recall that if " | c,2™ is a power series converging for some z = z, then it
is absolutely convergent for every |z| < |z

Since ), a,z" converges for every z € R, it converges absolutely for every z € C.

Moreover, if we put g(z) = > >°  a,z", then g(z) is an entire function coinciding with
f(2) on the real axis. Hence, f—g¢ is an entire function with non-isolated zeros. Therefore,
we can conclude that f — g = 0 on C. <



