THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MMAT5220 Complex Analysis and Its Applications 2019-20

Homework 4

Due Date: 9th April 2020

Compulsory Part

1. Expand e^z into a Taylor series about the point z = 1.

Solution. Note that

$$e^z = e e^{z-1} = \sum_{n=0}^{\infty} \frac{e(z-1)^n}{n!}.$$

2. Show that the Laurent series of $\frac{e^z}{z(z^2+1)}$ is given by

$$\frac{e^z}{z(z^2+1)} = \frac{1}{z} + 1 - \frac{1}{2}z - \frac{5}{6}z^2 + \cdots$$

for 0 < |z| < 1.

Solution. Notice that

$$\frac{e^z}{z} = \frac{1}{z} + 1 + \frac{1}{2}z + \frac{1}{3!}z^2 + \cdots$$

$$\frac{1}{1+z^2} = \frac{1}{1-(-z^2)} = 1 - z^2 + (-z^2)^2 + (-z^2)^3 + \cdots$$

$$= 1 - z^2 + z^4 + \cdots$$

Therefore, we have

$$\frac{e^z}{z(z^2+1)} = \frac{1}{z}(1-z^2+z^4+\cdots) + (1-z^2+\cdots) + \frac{1}{2}z(1-z^2+\cdots) + \frac{1}{3!}z^2(1-z^2+\cdots) + \cdots$$

$$= \frac{1}{3!}z^2(1-z^2+\cdots) + \cdots$$

$$= \frac{1}{z}+1+z(-1+\frac{1}{2})+z^2(-1+\frac{1}{3!})+\cdots$$

$$= \frac{1}{z}+1-\frac{1}{2}z-\frac{5}{6}z^2+\cdots$$

- 3. Find the Laurent series of $\frac{1}{(z-1)(z-2)}$ in
 - (a) |z| < 1;
 - (b) 1 < |z| < 2;

(c)
$$1 < |z - 3| < 2$$
.

Solution. By partial fraction, we have

$$\frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1}.$$

(a) In the domain |z| < 1,

$$\frac{1}{z-1} = -1 - z - z^2 - z^3 + \dots = -\sum_{k=0}^{\infty} z^k$$

$$\frac{1}{z-2} = -\frac{1}{2} \frac{1}{1 - \left(\frac{z}{2}\right)}$$

$$= -\frac{1}{2} \sum_{k=0}^{\infty} \frac{z^k}{2^k}$$

Hence, we have

$$\frac{1}{(z-1)(z-2)} = \sum_{k=0}^{\infty} \left(1 - \frac{1}{2^{k+1}}\right) z^k.$$

(b) In the domain 1 < |z| < 2,

$$\frac{1}{z-1} = \frac{1}{z} \frac{1}{1 - \left(\frac{1}{z}\right)} = \frac{1}{z} \sum_{k=0}^{\infty} \frac{1}{z^k}$$
$$\frac{1}{z-2} = -\frac{1}{2} \frac{1}{1 - \left(\frac{z}{2}\right)} = -\frac{1}{2} \sum_{k=0}^{\infty} \frac{z^k}{2^k}$$

Hence, we have

$$\frac{1}{(z-1)(z-2)} = \sum_{k=0}^{\infty} \frac{-z^k}{2^{k+1}} - \sum_{k=1}^{\infty} \frac{1}{z^k}$$

(c) In the domain 1 < |z - 3| < 2,

$$\frac{1}{z-1} = \frac{1}{(z-3)+2} = \frac{1}{2} \frac{1}{1 - \left(\frac{3-z}{2}\right)}$$

$$= \frac{1}{2} \sum_{k=0}^{\infty} \frac{(3-z)^k}{2^k}$$

$$\frac{1}{z-2} = \frac{1}{(z-3)+1} = \frac{1}{z-3} \frac{1}{1 - \left(\frac{1}{3-z}\right)}$$

$$= \frac{1}{z-3} \sum_{k=0}^{\infty} \frac{1}{(3-z)^k}$$

Hence, we have

$$\frac{1}{(z-1)(z-2)} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(z-3)^k} - \sum_{k=0}^{\infty} \frac{(-1)^k (z-3)^k}{2^{k+1}}$$

4. Show that the function $f(z) = 1 - \cos z$ has a zero of order 2 at $z_0 = 0$.

Solution. $f'(z) = \sin z$ and $f''(z) = \cos z$. Since f(0) = f'(0) = 0 and $f''(0) = 1 \neq 0$, f(z) has a zero of order 2 at $z_0 = 0$.

5. Suppose that f(z) and g(z) are functions analytic at z_0 . If z_0 is a zero of both f(z) and g(z) of order $m \ge 1$, show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f^{(m)}(z_0)}{g^{(m)}(z_0)}.$$

Solution. Since f(z), g(z) has a zero of order $m \ge 1$ at z_0 , for z near z_0 , we have the Taylor series expansion

$$f(z) = \frac{f^{(m)}(z_0)}{m!} (z - z_0)^m + \frac{f^{(m+1)}(z_0)}{(m+1)!} (z - z_0)^{m+1} + \cdots$$
$$g(z) = \frac{g^{(m)}(z_0)}{m!} (z - z_0)^m + \frac{g^{(m+1)}(z_0)}{(m+1)!} (z - z_0)^{m+1} + \cdots$$

where $f^{(m)}(z_0), g^{(m)}(z_0) \neq 0$. Therefore,

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f^{(m)}(z_0) + \frac{f^{(m+1)}(z_0)}{m+1}(z-z_0) + \cdots}{g^{(m)}(z_0) + \frac{g^{(m+1)}(z_0)}{m+1}(z-z_0) + \cdots} = \frac{f^{(m)}(z_0)}{g^{(m)}(z_0)}$$

Optional Part

1. With the aid of series, prove that the function f defined by

$$f(z) = \begin{cases} \frac{e^z - 1}{z} & \text{if } z \neq 0, \\ 1 & \text{if } z = 0. \end{cases}$$

is an entire function.

Solution. Note that by the Taylor series expansion,

$$\frac{e^z - 1}{z} = \frac{1}{z} \left(\sum_{k=0}^{\infty} \frac{z^k}{k!} - 1 \right) = \sum_{k=1}^{\infty} \frac{z^{k-1}}{k!} \quad \text{for } z \neq 0.$$

The power series above defines an entire function attaining 1 at z=0. This shows that the function f(z) defined in the question is an entire function, which is precisely the power series.

2. Let f be a function analytic in a domain $D \subset \mathbb{C}$ which has distinct zeros z_1, z_2, \ldots, z_n of orders m_1, m_2, \ldots, m_n respectively. Show that there exists an analytic function g(z) on D such that

$$f(z) = (z - z_1)^{m_1} (z - z_2)^{m_2} \cdots (z - z_n)^{m_n} g(z).$$

Solution. Both functions f(z) and $(z-z_1)^{m_1}(z-z_2)^{m_2}\cdots(z-z_n)^{m_n}$ have zeros z_1,z_2,\ldots,z_n of orders m_1,m_2,\ldots,m_n respectively. Hence the function $\frac{f(z)}{(z-z_1)^{m_1}(z-z_2)^{m_2}\cdots(z-z_n)^{m_n}}$ has removable singularities at z_1,z_2,\ldots,z_n (see Week 8 Lecture). Therefore, there are analytic functions g_1,g_2,\cdots,g_n around z_1,z_2,\ldots,z_n such that

$$g_i(z) = \frac{f(z)}{(z - z_1)^{m_1} (z - z_2)^{m_2} \cdots (z - z_n)^{m_n}}$$
 for $0 < |z - z_i| < \epsilon$

If we put

$$g(z) = \begin{cases} \frac{f(z)}{(z - z_1)^{m_1} (z - z_2)^{m_2} \cdots (z - z_n)^{m_n}} & \text{if } z \neq z_1, z_2, \dots, z_n, \\ g_i(z_i) & \text{if } z = z_i \text{ for } i = 1, 2, \dots n. \end{cases}$$

then q(z) is the desired function.

We can also do it by induction. The arguments are essentially the same.

Since f(z) has a zero of order m_1 at z_1 , by Week 7 Lecture, we can find a small disk around z_1 , and an analytic function $G_1(z)$ such that $f(z) = (z - z_1)^{m_1} G_1(z)$ on the small disk, moreover, $G_1(z_1) \neq 0$. The formula shows that the function $g_1(z)$ defined by

$$g_1(z) = \begin{cases} \frac{f(z)}{(z - z_1)^{m_1}} & \text{if } z \neq z_1, \\ G_1(z_1) & \text{if } z = z_1. \end{cases}$$

is analytic on D. Indeed, $g_1(z)=G_1(z)$ around z_1 , hence is analytic at z_1 . For $z\neq z_1$, g_1 is analytic because f is analytic. Therefore, there exists an analytic function $g_1(z)$ on D such that $f(z)=(z-z_1)^{m_1}g_1(z)$. Applying the same argument to $g_1(z)$, there is an analytic function $g_2(z)$ on D such that $g_1(z)=(z-z_2)^{m_2}g_2(z)$. Inductively, there exists an analytic function g(z) on D such that

$$f(z) = (z - z_1)^{m_1} (z - z_2)^{m_2} \cdots (z - z_n)^{m_n} g(z).$$

3. Let R be the radius of convergence of $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ at z_0 . Show, by term-by-term differentization and mathematical induction, that

$$f^{(m)}(z) = \sum_{n=0}^{\infty} \frac{(m+n)!}{n!} a_{m+n} (z-z_0)^n$$

for
$$|z - z_0| < R$$
.

Solution. For n = 1, by termwise differentiation,

$$f'(z) = \sum_{n=1}^{\infty} a_n n(z - z_0)^{n-1} = \sum_{n=0}^{\infty} a_{n+1}(n+1)(z - z_0)^n = \sum_{n=0}^{\infty} \frac{(1+n)!}{n!} a_{1+n}(z - z_0)^n$$

Assume it is true for m = k, i.e.

$$f^{(k)}(z) = \sum_{n=0}^{\infty} \frac{(k+n)!}{n!} a_{k+n} (z-z_0)^n.$$

Then, we have

$$f^{(k+1)}(z) = \sum_{n=1}^{\infty} \frac{(k+n)!}{n!} a_{k+n} n(z-z_0)^{n-1} = \sum_{n=0}^{\infty} \frac{(k+1+n)!}{n!} a_{k+1+n} (z-z_0)^n.$$

By induction, the statement is true for every $m \in \mathbb{N}$.

4. Let f be an entire function such that $f(x) = \sum_{k=0}^{\infty} a_k x^k$ for all $x \in \mathbb{R}$. Show that

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

for all $z \in \mathbb{C}$.

Solution. Recall that if $\sum_{n=0}^{\infty} c_n z^n$ is a power series converging for some $z=z_0$, then it is absolutely convergent for every $|z|<|z_0|$.

Since $\sum_{n=0}^{\infty} a_n z^n$ converges for every $z \in \mathbb{R}$, it converges absolutely for every $z \in \mathbb{C}$.

Moreover, if we put $g(z) = \sum_{n=0}^{\infty} a_n z^n$, then g(z) is an entire function coinciding with f(z) on the real axis. Hence, f-g is an entire function with non-isolated zeros. Therefore, we can conclude that $f-g\equiv 0$ on \mathbb{C} .