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Compulsory Part

1. Letn > 1.
(2) Show that 1 +z + 22 4+ + 2" = 155 if 2 £ 1.
(b) Use part (a) to deduce Lagrange’s trigonometric identity:
1 sin(n+ 3)0

1+COSQ+00529+...+COSHQ:§+ :

2s1n§

when 6 is not a multiple of 27.

Solution.
(a) Note that
Q-2 A +z+22 42 =142+22+ 2" — (e + 22+ 22+ 42"

=1-— "

When z # 1, we divide both sides by 1 — z to obtain the identity.
(b) Let z = €, by part (a), when ¢’ # 1, i.e. when 6 is not a multiple of 27, we have
1— ( 61‘9)n+1
1 — et

L4 e? + (e 4+ () = (1)

Now, notice that cos(kf)) = Re(e™*?) = Re[(¢)*]. Therefore, the real part of
Equation (1) is 1 + cos 8 + cos 20 + - - - + cos nf. Moreover, the RHS is
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0 . 1 0 0
6—7 _ ez(n+§)9 6—? _ G?
21 21
1 92 _ ilntd)
= — - i -
sin 3 21
= 1 (e — ¢in D)o
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sin(n+ %)

Its real part is % + °. This shows the required identity. <

2sin g
. Show that |27 — 23| > ||z1| — |22|| for any zy, 2, € C.
Solution. Note that

|Zl - Zz|2 = (Z1 - 22)(21 - 22)
= |z1]* + |2 — 2172 — T2
= 21> + |22|* — 2Re(Z122)
> [21]? + [22f” = 2|21 |22
= [|z1] = |z

The result follows by taking square root on both sides. Notice that in calculation, we
applied Re(Z122) < |Z1] |22] = |21] |22]. <

. Consider the function
_az+ b

e+ d

T(z)
where ad — bc # 0. Show that
(@) lim, o, T'(2) = 0 if c = 0;
(b) lim, o T'(2) = ¢ and lim,_,_4/. T(2) = oo if ¢ # 0.
Solution.

(a) If ¢ = 0, then by assumption ad — bc # 0, we have a,d # 0. To see that

lim, ,,, T(z) = oo, we only need to check that lim,, g ﬁ = 0. Note that
#{) = 2, and b(0) + a = a # 0. Therefore, lim,,_, @ =0.

bw+a
dw+c

(b) lm, o0 T(2) = lim, o T(1) = lim, g = ¢, because ¢ # 0.
I i Z o= g)+d Cc—a
lim.s ey = limesaye S22 = S5 = 0, because a(—%) + b = =52t £,

Therefore, we conclude that lim._, _4/. T'(2) = oo.

<

. For the following functions defined on the whole complex plane, show that they are com-
plex differentiable at every point by computing the partial derivatives of their real and
imaginary parts and verifying the Cauchy-Riemann equations:

(@) f(2) =2
(b) f(z) = e

(Remark: Functions which are complex differentiable on the whole complex plane are
called entire functions.)



Solution. (a) Let z = x + iy with z,y € R. Then,
fz) = 2% = (z +1iy)* = 2° — y* +i(2zy).

The real part of f is u(x,y) = x? — y? and the imaginary part of f is v(x,y) = 2xy.
Notice that the partial derivatives of u, v are

Uy = 2T Uy = _2y
Uy = 2y vy = 2T
Therefore, u, = 2x = v, and u, = —2y = —v,. Thatis, f satisfies the Cauchy-

Riemann equations. Moreover, since all partial derivatives are continuous, f is com-
plex differentiable.

(b) f(z) = "™ = e%cosy + ie®siny. That is, u(x,y) = e*cosy and v(x,y) =
e” siny. Note that

U, = €* cosy u, = —e’siny
v, = e*siny vy = €’ cosy
Therefore, f satisfies the Cauchy-Riemann equations v, = v, and u,, = —v,. Since

all partial derivatives are continuous, f is complex differentiable.

<

5. Consider the function f : C — C defined by f(z) = z. By considering the Cauchy-
Riemann equations, show that f’(z) does not exist at any point.

Solution. Note that the real part of function f is u(x,y) = z and the imaginary part is

v(z,y) = —y. To check the Cauchy-Riemann equations, we need to calculate the partial
derivatives:

Uy =1 Uy =0

vV, =0 v, = —1

Therefore, one of the Cauchy-Riemann equations u, = v, fails for any point (z, o) in
the complex plane, hence f’(z) does not exist at any point.

<
Optional Part

1. Show, by definition, that

(a) e*1T%2 = ¢ . ¢* for any 21, 23 € C;
(b) log(z129) = log z1 + log 2, for any 21, 2 € C\ {0}.

(c) sin®z + cos? z = 1 forany z € C.



Solution. (a) Let z; = x1 + 1y; and 2o = x5 + 1y With 1, T2, y1, y2 € R. Then,

A1t — olTitza)+i(yityz)

= ™72 (cos(y; + yo) + isin(yr + yo))
COS Y1 COS Yo — Sin Yy Sin Yo + @ Sin y; €OS Yo + 7 COS Y sin yz)
cosy; + isinyy)(cosys + i sinys)
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(

= et1ta2
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(b) Once you chose a branch for the log function, you can find some z;, 2, € C\ {0}
such that

log(z122) # log z1 + log z».

For example, consider the principal branch —7m < Argz < 7. For 2y = 2o = —1,
we have log z; = log 2o = im, but log(z122) = 0 # log 21 + log 2».

On the other hand, if we first fix 21,20 € C\ {0}, then we can always choose a
branch of log such that

log(z122) = log z1 + log 2». (2)

For our discussion, we may clarify some terminologies. Let z = re with § €
(0, 27]. We say that z belongs to

quadrant I ifo<f < quadrant Il if £ <0 <;

oE
quadrant IIl if 7 < § < 3% quadrant IV if 3F < 6 < 27,

If we chose the principal branch —7 < arg z < 7 for the log function, then Equation
(2) holds when 27 is in quadrants I and II, together with z, in quadrants III and IV.
To verity it, note that

logz; =log|z1| +iargz; with 0 < argz <,
log zo = log |z +iargzy with —7 < argz <0.

Hence,

targzo __ i(arg z1+arg z2)

2179 = |21|€*B 7 zoe |21 20]e

with —7 < arg z; +arg zo < 7, which is in our chosen branch. Therefore, Equation
(2) holds. Similarly, the table below shows for different branches of log function,
when z1, 25 will satisfy Equation (2).

2l o 20 m| v
21 21

I |/ [ X|/ |/ I |/ |/ |/ | X
0 | X|X|/ |/ 0 |/ |/ ]| X| X
m |/ |/ | X | X m |/ | X| X | X
vV | /| /[ X |/ IV | X|X|X]| X
(a) Branch: —m < argz <7 (b) Branch: 0 < argz < 27



2y |lnm|v 201 |nm|v
21 21
1 9V X |/ 1 X[ X| X | X
II I X | X |V II X | X| X | X
III X|IX| X |V III X | X| v | X
v IV | /| X v X | X | X | X
(c) Branch: —§ < argz < 37” (d) Branch: w < arg z < 37w

Therefore, for any nonzero fixed z, 22, we can choose a proper branch of log func-
tion such that Equation (2) holds.

(c) Note that

s (eiz _ efiz>2 _ o2z 4 g2z _ 9 _ _62iz + o2z . 1
21 —4 4 2

ol s — <€iz 4 e—z‘z>2 _ 27 4 =2z 4 9 _ o2z | o2z +1
2 4 4 2

Therefore, sin® z + cos? z = 1 for any z € C

<

2. Suppose lim, ., f(z) = 0 and there exists a positive real number M such that |g(z)| <
M for all z in some neighborhood of zy. Show that lim,_,,, f(2)g(z) = 0.

Solution. By assumption, there is some ¢ > 0 such that
lg(2)] < M whenever |z — zo| < 0.

Let € > 0. Since lim,_,,, f(z) = 0, there is some d; > 0 such that
1f(2)] < % whenever 0 < |z — zo| < ;.
Therefore, if 0 < |z — 29| < min{d, 4; }, then
7o) < o7 M =
This shows lim, ., f(2)g(z) = 0. <

3. Show that the following are entire functions by computing the partial derivatives of their
real and imaginary parts and verifying the Cauchy-Riemann equations:

(@) f(z) =sinz.
(b) f(z) = cosz.
(¢) f(z) =sinhz:= £
(d) f(z) =coshz:= <=



Solution. Let z = = + iy, where z,y € R

(a)
) eiz _ e—iz
f(z) =sinz = 5
B ei:refy _ efixey
B 2
1
= E(e_y(cosx +isinx) — e¥(cosz —isinx))
i
1
= 5(—2’6_?’ cosx + e Ysinx + e’ cosx + €? sinx)
Therefore, u(z,y) = 3(¢¥ + ¢ ¥)sinz and v(z, y) = 1(e¥ — e™¥) cos z. Note that
1 _ 1 oy
Ux:§(€y+6 Y) cos x uyZE(ey—e Y)sinz
1 1
Vg = —é(ey —e Y)sinz vy, = §(ey +e Y)cosx

Clearly, the Cauchy-Riemann equations hold. Since the partial derivatives are con-
tinuous, the function f is complex differentiable.

(b) Similar to above, note that f(z) = % The real part u(x, y) and the imaginary
part v(z,y) are

1
u(z,y) = §(ey +eY)cosx

1
v(x,y) = —§(ey —e ¥)sinx
and the partial derivatives are
_ Y4 oY) g Loy
uxf—§(e +e ¥)sinx u, = —(e¥ —e¥)cosz
1
Uy = —é(ey —e Y)cosx vy = —5(63’ +eY)sinx

(c) For f(z) =sinh z = e _26_2 , similar to the calculation in part (a), we have

1

u(z,y) = 5(* — e ") cosy
1

o(wy) = (" +e ) siny

and the partial derivatives are

1 x —x 1 x —T\ o
um:§(e +e *)cosy uy:—g(e —e ) siny

1 €T —X : 1 x —T
0125( —e ") siny vyzé(e +e %) cosy



(d) For f(z) = cosh(z) = €=, similar to the calculation in part (a), we have

1

u(z,y) = (e + ) cosy
1

v(z,y) = 5(e® —e™*)siny

and the partial derivatives are

1
uy = =(e* — e ") cosy Uy = —5(636 +e ") siny

1
Uy = §(e$ +e %) siny vy, = é(e’f —e ") cosy

<

4. Let f be a function on a domain D C C such that both f and f are analytic. Show that f
must be a constant function.

Solution. Assume f(z) = u(z,y) + iv(z,y), then f = u(z,y) — iv(z, y).

By the Cauchy-Riemann equations for the function f, we have
Uy = vy, and u, = —v,.

For the function f, we have
Uy = —vy, and u, = v,.

These yield u, = v, = 0 and u, = v, = 0. Therefore, both u, v, and hence the function
f are constant functions. <



