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Compulsory Part

1. Find the residue at 2 = 0 of the following functions:
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2. For each of the following functions, find all its isolated singular points, write down their
principal parts, classify their types, and compute the residues:
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3. Use residues to evaluate the integral / © dz.
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4. Suppose that g is analytic and has a zero of order 1 at z;. Show that f = 1/¢* has a pole
of order 2 at z; with residue given by

Res._., f(2) = — ¢"(20)
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5. Forany N > 0, let vy be the positively oriented boundary of the square bounded by the
lines = (N + L)rand y = £(N + ).

(a) Show that
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(b) Using (a), show that
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Optional Part

1. Find the residue at z = 0 of the following functions:

cot z
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2. For each of the following functions, find all its isolated singular points, write down their
principal parts, classify their types, and compute the residues:
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(b) , where the principal branch if taken for /.
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3. Use residues to evaluate the integral /
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4. Let a1, aq,...,a, be distinct complex numbers. Let v be a circle around a; such that ~y

and its interior do not contain a; for j > 1. Let f(2) = (z — a1)(z — a2) ... (2 — ay).
Find dz
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