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Compulsory Part

1. Suppose that f(z) is differentiable at z0, where z0 = r0e
iθ0 6= 0. Show that the derivative

f ′(z0) can be written as
f ′(z0) = e−iθ0(ur + ivr)

or
f ′(z0) =

−i
z0

(uθ + ivθ),

where all the partial derivatives are evaluated at (r0, θ0).

Solution. Recall the parametrizaton ϕ(r, θ) = (r cos θ, r sin θ) = (x, y) for 0 < r < ∞
and 0 < θ ≤ 2π. If we put g(r, θ) = f◦ϕ(r, θ), then by chain rule, we haveDg = DfDϕ,
i.e. (

ur uθ
vr vθ

)
=

(
ux uy
vx vy

)(
cos θ −r sin θ
sin θ r cos θ

)
Also apply the Cauchy-Riemann equations, we have

ur + ivr = ux cos θ + uy sin θ + i(vx cos θ + vy sin θ)

= ux cos θ − vx sin θ + i(vx cos θ + ux sin θ)

= ux(cos θ + i sin θ) + vx(− sin θ + i cos θ)

= uxe
iθ + ivxe

iθ

= f ′(z)eiθ

This verifies the equation f ′(z0) = e−iθ0(ur + ivr). The other equation can be verified
similarly.

uθ + ivθ = ux(−r sin θ) + uy(r cos θ) + i(vx(−r sin θ) + vy(r cos θ))

= ux(−r sin θ)− vx(r cos θ) + i(vx(−r sin θ) + ux(r cos θ))

= ux(−r sin θ + ir cos θ) + vx(−r cos θ − ir sin θ)

= iuxz − vxz
= iz(ux + ivx) = izf ′(z)

J

2. Consider the following function

f(z) =

{
(1 + i) Im(z2)

|z|2 if z 6= 0

0 if z = 0.
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(a) Show that the Cauchy-Riemann equations are satisfied at z = 0.

(b) Is f(z) differentiable at z = 0?

Solution.

(a) From the definition of f , we have

u(x, y) = v(x, y) =

{ 2xy
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Notice that

∂xu(0, 0) = lim
x→0

u(x, 0)− u(0, 0)

x− 0
= lim

x→0

0

x
= 0.

Similarly, we have ∂yu(0, 0) = ∂xv(0, 0) = ∂yv(0, 0) = 0. Therefore, the Cauchy-
Riemann equations are satisfied at z = 0.

(b) The function f(z) is not differentiable at z = 0, because it is not continuous at
z = 0. To see this, if (x, y) = (t, t) for some real number t 6= 0, then f(x, y) =
2t2

2t2
= 1. For any δ > 0, there is some z ∈ C with |z| < δ, but |f(z) − f(0)| ≥ 1,

say z = (1 + i) δ
2
√
2
. From above, we see that f(z) = 1. On the other hand,

|z| =
√

2 δ
2
√
2

= δ
2
< δ. This completes the proof.

J

3. Let γ be the unit circle {z ∈ C : |z| = 1} in the counterclockwise direction. Evaluate the

integral
∫
γ

zmz̄ndz for any m,n ∈ Z.

Solution. Parametrize γ by γ(t) = eit for 0 ≤ t ≤ 2π. Then, z = eit, z̄ = e−it and
dz = ieitdt. The integral can be written as∫

γ

zmz̄ndz =

∫ 2π

0

eimte−intieitdt

= i

∫ 2π

0

ei(m−n+1)tdt

=

{
2πi if m− n+ 1 = 0;

1
m−n+1

ei(m−n+1)t|2πt=0 otherwise.

=

{
2πi if m− n = −1;
0 otherwise.

J

4. Evaluate the integral
∫
γ

z2dz, if

(a) γ is a straight line segment from z = 2 to z = 2i;

(b) γ is the major arc of the circle {z ∈ C : |z| = 2} from z = 2 to z = 2i.
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Solution. Notice that z2 is an entire function with an antiderivative F (z) = z3

3
. There-

fore, the integral depends only on the end points of the contour. For both (a) and (b), the
integral equals F (2i)− F (2) = −8

3
(i+ 1). (see Week 3 Lecture notes) J

5. Let γ be the arc of the circle {z ∈ C : |z| = 2} from z = 2 to z = 2i that lies in the first
quadrant. Show that ∣∣∣∣∫

γ

dz

z2 − 1

∣∣∣∣ ≤ π

3
.

Solution. For any z ∈ γ, we have |z| = 2. In particular, |z2 − 1| ≥ |z|2 − 1 = 3.
Moreover, γ is a quarter of the circle {z ∈ C : |z| = 2}, so the length of the contour γ is
2π(2)

4
= π. Therefore, we have ∣∣∣∣∫

γ

dz

z2 − 1

∣∣∣∣ ≤ ∫
γ

dz

3
=
π

3
.

J

6. Let γR be the arc of the circle {z ∈ C : |z| = R} from z = R to z = −R that lies in the
upper half plane, where R > 1. Show that∣∣∣∣∫

γR

z2

z6 + 1
dz

∣∣∣∣ ≤ πR3

R6 − 1
,

and hence show that

lim
R→+∞

∫
γR

z2

z6 + 1
dz = 0.

Solution. For any z ∈ γR, we have |z6 + 1| ≥ |z|6 − 1 = R6 − 1 > 0. Moreover, the
length of the contour γR is 2πR

2
= πR. Therefore, we have∣∣∣∣∫

γR

z2

z6 + 1
dz

∣∣∣∣ ≤ ∫
γR

|z|2

|z6 + 1|
dz

≤
∫
γR

R2

R6 − 1
dz

=
πR3

R6 − 1

As R→∞, it is easy to see that πR3

R6−1 → 0, hence

lim
R→+∞

∫
γR

z2

z6 + 1
dz = 0.

J



4

Optional Part

1. Find the domain over which the function

f(z) = f(x+ iy) =
∣∣x2 − y2∣∣+ 2i |xy|

is analytic.

Solution. Let u(x, y) = |x2 − y2| and v(x, y) = 2 |xy|. If (x0, y0) ∈ R2 satisfying
u(x0, y0) 6= 0 and v(x0, y0) 6= 0, we can compute their parital derivatives:

ux(x0, y0) = 2x0
x20 − y20
|x20 − y20|

uy(x0, y0) = −2y0
x20 − y20
|x20 − y20|

vx(x0, y0) = 2y0
x0y0
|x0y0|

vy = 2x0
x0y0
|x0y0|

We observe that the Cauchy-Riemann equations hold if and only if x20−y20
|x20−y20 |

= x0y0
|x0y0| . That

is, x0y0 and x20 − y20 have the same sign. The complex plane C is partitioned into 8
regions by 4 straight lines, namely {x = 0}, {y = 0}, {x = y} and {x = −y}. In
the polar coordinate, the 8 regions are respectively {0 < θ < π/4}, {π/4 < θ < π/2},
{π/2 < θ < 3π/4}, {3π/4 < θ < π}, {π < θ < 5π/4}, {5π/4 < θ < 3π/2},
{3π/2 < θ < 7π/4} and {7π/4 < θ < 2π}. In order for xy and x2− y2 to have the same
sign, (x, y) must lie in the regions {0 < θ < π/4}, {π/2 < θ < 3π/4}, {π < θ < 5π/4}
and {3π/2 < θ < 7π/4}. Moreover, for any point outside these regions, its neighborhood
must intersect one of the other 4 regions, i.e. {π/4 < θ < π/2}, {3π/4 < θ < π},
{5π/4 < θ < 3π/2} and {7π/4 < θ < 2π}, where f is not differentiable.

Therefore, the domains over which f is analytic, are {0 < θ < π/4}, {π/2 < θ < 3π/4},
{π < θ < 5π/4} or {3π/2 < θ < 7π/4}. J

2. Suppose that f(z) is analytic on a domain D, where D is symmetric with respect to the
real axis. Show that g(z) := f(z̄) is a well-defined analytic function on D.

Solution. Let u, v be the real-valued functions on D such that f(x + iy) = u(x, y) +
iv(x, y). Since D is symmetric with respect to the real axis, u(x, y) is well-defined if and
only if u(x,−y) is well-defined. This is also true for the function v(x, y). Note that

g(x+ iy) = f(x− iy) = u(x,−y)− iv(x,−y).

If we put p(x, y), q(x, y) be the real part and imaginary part of g, then their partial deriva-
tives at (x0, y0) are given by:

px(x0, y0) = ux(x0,−y0) py(x0, y0) = −uy(x0,−y0)
qx(x0, y0) = −vx(x0,−y0) qy(x0, y0) = vy(x0,−y0)

Since ux = vy and uy = −vx, it follows that px = qy and py = −qx. Moreover, the
function (x, y) 7→ (p(x, y), q(x, y)) is just the composite function

(x, y) 7→ (x,−y) 7→ (u(x,−y), v(x,−y)) 7→ (u(x,−y),−v(x,−y)),
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hence it is differentiable. Therefore, g is complex differentiable at every point of D. (see
Week 2 Lecture notes). J

3. Let γR be the circle {z ∈ C : |z| = R} in the counterclockwise direction. Show that, for
R > 2, ∣∣∣∣∫

γR

3z − 1

z4 + 4z2 + 3
dz

∣∣∣∣ ≤ 2πR(3R + 1)

(R2 − 1)(R2 − 3)
.

Solution. On the circle {z ∈ C : |z| = R}, |3z − 1| ≤ 3|z| + 1 = 3R + 1, and
|z4 + 4z2 + 3| = |(z2 + 1)(z2 + 3)| ≥ (|z|2−1)(|z|2−3) = (R2−1)(R2−3). Therefore,
we have ∣∣∣∣ 3z − 1

z4 + 4z2 + 3

∣∣∣∣ ≤ 3R + 1

(R2 − 1)(R2 − 3)
for every |z| = R.

Since the length of the contour is 2πR, the result follows. J

4. Let γR be the vertical line segment from R to R + 4πi, where R > 0. Show that∣∣∣∣∫
γR

2ez

1 + e3z
dz

∣∣∣∣ ≤ 8πeR

e3R − 1
.

Solution. For every z ∈ γR, z = R+iy for some 0 ≤ y ≤ 4π, hence we have |2ez| = 2eR

and |1 + e3z| ≥ |e3z| − 1 = e3R − 1. Since the length of the contour is 4π, the result
follows. J

5. Does the function f(z) =
1

z2
defined on C \ {0} have an antiderivative?

Solution. Yes,−1
z

is an antiderivative for the function f(z). However, the function 1
z

has
no antiderivative on the domain C \ {0}. This can be checked from the calculation that∫

|z|=1

dz

z
=

∫ 2π

0

1

eit
ieitdt = 2πi 6= 0.

You can also argue in this way: since the function f(z) is analytic in D := C \ {0}, to
claim that f(z) has an antiderivative, it suffices to check that∫

|z|=1

f(z)dz = 0.

In general, you need to check that
∫
γ
f(z)dz = 0 for every closed contour γ in D, but

by the analyticity of f and the Cauchy-Goursat theorem, you only need to evaulate that
particular contour. J


