Homework 6 solutions

April 27, 2020

Problem 1. Since $\Delta = d\delta + \delta d$, using $d^2 = 0$, we have

$$
\Delta d = (d\delta + \delta d)d = d\delta d + \delta d^2 = d\delta d = d^2\delta + d\delta d = d(d\delta + \delta d) = d\Delta.
$$

Similar, using $\delta^2 = 0$, we have $\Delta \delta = \delta \Delta$. Finally, using $\delta = (-1)^{mp+m+1} * d *$ and $*^2 = (-1)^{p(m-p)}$ on $\Omega^p(M)$ where $m = \dim(M)$, we have on $\Omega^p(M)$,

$$
\Delta * = (d\delta + \delta d) * = (-1)^{p+1}d * d + (-1)^{m(p+1)+1} * d * d * = * (d\delta + \delta d) = * \Delta.
$$

Problem 2. Let $\alpha := V^{\flat} \in \Omega^1(\Sigma)$ be the dual 1-form of V. By Hodge decomposition, there exist a harmonic 1-form $\alpha_H \in \Omega^1(\Sigma)$, $f \in C^\infty(\Sigma)$ and $\omega \in \Omega^2(\Sigma)$ such that

$$
\alpha = \alpha_H + df + \delta \omega.
$$

Taking its dual again, we have

$$
V = V_H + \nabla f + (\delta \omega)^{\sharp}.
$$

Since α_H is harmonic, $d\alpha = 0$ and $\delta \alpha = 0$. By Poincare lemme, any closed 1-form is exact, so locally $\alpha = dh$ for some function h, which is harmonic as $0 = \delta \alpha = \delta dh = \Delta h$. It remains to show that $(\delta\omega)^{\sharp} = J(\nabla g)$ for some function g. Since Σ is two-dimensional, we can write $\omega = -gdV$ where dV is the volume form for the oriented surface (Σ, g) . Then, $\delta \omega = * (dg)$. Let $\{e_1, e_2\}$ be a positive local orthonormal basis of T^*M , we have $*e_1 = e_2$ and $*e_2 = -e_1$, i.e. $*$ is the same as J under the identification between TM and T^*M . Therefore, $(\delta \omega)^{\sharp} = J(\nabla g)$.

Problem 3. By Hodge decomposition, for any $\alpha \in [\alpha_0]$, we have a unique decomposition $\alpha = \alpha_H + d\eta + \delta\beta$ for some $\eta \in \Omega^{p-1}$, $\beta \in \Omega^{p+1}$. Since α is closed,

$$
0 = d\alpha = d\alpha_H + d^2\eta + d\delta\beta = d\delta\beta.
$$

Moreover, $\delta(\delta\beta) = 0$. So $\delta\beta$ is a harmonic form, hence must vanish by the L²-orthogonality in the decomposition. Using $\alpha = \alpha_H + d\eta$, we compute

$$
E(\alpha) = \|\alpha_H\|_{L^2}^2 + \|d\eta\|_{L^2}^2 + 2\langle \alpha_H, d\eta \rangle_{L^2} = \|\alpha_H\|_{L^2}^2 + \|d\eta\|_{L^2}^2 \ge \|\alpha_H\|_{L^2}^2.
$$

Note that we have used $\langle \alpha_H, d\eta \rangle_{L^2} = \langle \delta \alpha_H, \eta \rangle_{L^2} = 0$. The inequality above implies the assertion.

Problem 4. Since $S\alpha(x, y) = (D_x\alpha)(y) + (D_y\alpha)(x)$, we have $\langle S\alpha, h \rangle = 2\langle D\alpha, h \rangle = 2\langle \alpha, \delta h \rangle$ for any $h \in \Gamma(S^2M)$. Taking divergence and using Ricci identity, we have

$$
\delta(S\alpha)(Y) = -\sum_{i=1}^{m} (D_{e_i} D_{e_i} \alpha(Y) + D_{e_i} D_Y \alpha(e_i))
$$

=
$$
D^* D\alpha(Y) - \sum_{i=1}^{m} (D_Y D_{e_i} \alpha(e_i) + R(e_i, Y)e_i)
$$

which implies the desired identity in (b). Finally, if α^{\sharp} is a Killing vector field, then $\delta \alpha = 0$, therefore

$$
0 = \langle \delta S \alpha, \alpha \rangle = \langle D^* D \alpha, \alpha \rangle - \text{Ric}(\alpha^{\sharp}, \alpha^{\sharp}).
$$

Integrating over M and using Ric < 0 , we conclude that $\alpha = 0$.

Problem 5. Let $f \in C^{\infty}(M)$ be the solution of the Dirichlet problem

$$
\begin{cases} \Delta_M f = 1 \text{ in } M, \\ \qquad f|_{\partial M} = 0. \end{cases}
$$

From Divergence Theorem, we have

$$
\text{Vol}(M) = \int_M \Delta_M f = \int_{\partial M} \frac{\partial f}{\partial \nu}.
$$

By Schwarz inequality, $(\Delta_M f)^2 \leq m|\text{Hess}_M f|^2$. Plug this into Reilly's formula and using Ric ≥ 0 , we have

$$
\frac{m-1}{m}\text{Vol}(M) \ge \int_{\partial M} H\left(\frac{\partial f}{\partial \nu}\right)^2.
$$

Combining the two inequalities above and apply Schwarz inequality,

$$
\text{Vol}(M)^2 = \left(\int_{\partial M} \frac{\partial f}{\partial \nu}\right)^2 \le \left(\int_{\partial M} H \left(\frac{\partial f}{\partial \nu}\right)^2\right) \left(\int_{\partial M} \frac{1}{H}\right) \le \frac{m-1}{m} \text{Vol}(M) \int_{\partial M} \frac{1}{H}
$$

which proves the desired inequality. If equality holds, then $Hess_M f = \frac{1}{m}g$, which is parallel. Using the Ricci identity, $R(X, Y) \nabla f = 0$ and we can deduce that

$$
\nabla f = \frac{1}{m}r\frac{\partial}{\partial r}
$$

where $r = d_M(p, \cdot)$ is the Riemannian distance function of (M, g) from a point $p \in M$. This, in turn, implies that (M, g) is isometric to a Euclidean ball.