
mmat5390: mathematical image processing

assignment 1 solutions

1. (a) Note that H is a 4 × 4 matrix; hence it represents a linear transformation on 2 × 2
images.

H is not block-circulant. For example, consider the y = 2, β = 2-submatrix of H, i.e.(
a c
b d

)
, which is not a circulant matrix, as the shift-operator t maps

(
a
b

)
to

(
b
a

)
instead of

(
c
d

)
, which is different from

(
b
a

)
since b 6= c.

Hence h is not shift-invariant with hs being 2-periodic in both arguments.
Furthermore, H is not block-toeplitz, thus h is neither shift-invariant.

H is not a kronecker product of two 2×2 matrices. for example, consider the y = 1, β =

1- and y = 2, β = 2-submatrices of h, i.e.

(
a b
b d

)
and

(
a c
b d

)
. neither is a scalar

multiple of the other. hence h is not separable.

(b) Note that H is a 9 × 9 matrix; hence it represents a linear transformation on 3 × 3
images.

H is not block-circulant. For example, consider the y = 1, β = 2-submatrix of h, i.e.1 2 3
4 5 0
6 0 0

, which is not a circulant matrix, as the shift-operator t maps

1
4
6

 to6
1
4

 instead of

2
5
0

. Hence h is not shift-invariant with hs being 3-periodic in both

arguments. (Neither is H block-toeplitz, hence neither is h shift-invariant.)

H is the kronecker product of two 3× 3 matrices; explicitly,

H =

0 2 0
1 0 3
0 4 0

⊗
1 2 3

4 5 0
6 0 0

 .

Hence h is separable.

(c) Note that H is a 4 × 4 matrix; hence it represents a linear transformation on 2 × 2
images.

H is block-circulant. The y = 1, β = 1- and the y = 2, β = 2-submatrices of H are both(
π 2π
2π π

)
, which is circulant; the y = 2, β = 1- and the y = 1, β = 2-submatrices of

h are both

(
3π 4π
4π 3π

)
, which is also circulant. hence h is shift-invariant with hs being

2-periodic in both arguments.

H is not a kronecker product of two 2 × 2 matrices. for example, consider the y =

1, β = 1- and y = 2, β = 1-submatrices of H, i.e.

(
π 2π
2π π

)
and

(
3π 4π
4π 3π

)
. neither is

a scalar multiple of the other. Hence h is not separable.

(d) Note that H is a 9 × 9 matrix; hence it represents a linear transformation on 3 × 3
images.

Obviously, H is block-circulant. Denote H = (Aij), then

A11 = A22 = A33 =

 9 9 18
18 9 9
9 18 9

, A12 = A23 = A31 =

18 18 36
36 18 18
18 36 18
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and A13 = A21 = A32 =

 9 9 18
18 9 9
9 18 9

. All these three matrices are circulant.

H is the kronecker product of two 3× 3 matrices; explicitly,

H =

1 1 2
2 1 1
1 2 1

⊗
 9 9 18

18 9 9
9 18 9

 .

Hence h is separable.

2. let h be the separable psf of a linear image transformation, with h(x, α, y, β) = hc(x, α)hr(y, β).
let h be the corresponding transformation matrix.

then the y = k, β = l-submatrix of h (denoted by h̃kl) is given by x→

α ↓
(
y = k
β = l

)  = [h (α+ (l − 1)n, x+ (k − 1)n)]1≤x≤n
1≤α≤n

= [h(x, α, k, l)]1≤x≤n
1≤α≤n

= [hc(x, α)hr(k, l)]1≤x≤n
1≤α≤n

= hr(k, l)[hc(x, α)]1≤x≤n
1≤α≤n

= hr(k, l)h
T
c .

recall that

h =



 x→

α ↓
(
y = 1
β = 1

)   x→

α ↓
(
y = 2
β = 1

)  · · ·

 x→

α ↓
(
y = n
β = 1

)  x→

α ↓
(
y = 1
β = 2

)   x→

α ↓
(
y = 2
β = 2

)  · · ·

 x→

α ↓
(
y = n
β = 2

) 
...

...
. . .

... x→

α ↓
(

y = 1
β = n

)   x→

α ↓
(

y = 2
β = n

)  · · ·

 x→

α ↓
(
y = n
β = n

) 



=


h̃11 h̃21 · · · h̃n1
h̃12 h̃22 · · · h̃n2

...
...

. . .
...

h̃1n h̃2n · · · h̃nn

 =


hr(1, 1)hTc hr(2, 1)hTc · · · hr(n, 1)hTc
hr(1, 2)hTc hr(2, 2)hTc · · · hr(n, 2)hTc

...
...

. . .
...

hr(1, n)hTc hr(2, n)hTc · · · hr(n, n)hTc



=


hTr (1, 1)hTc hTr (1, 2)hTc · · · hTr (1, n)hTc
hTr (2, 1)hTc hTr (2, 2)hTc · · · hTr (2, n)hTc

...
...

. . .
...

hTr (n, 1)hTc hTr (n, 2)hTc · · · hTr (n, n)hTc

 = hTr ⊗ hTc .

3. let f, g ∈Mm×n(R), and assume that they are periodically extended.
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let α ∈ N ∩ [1,m] and β ∈ N ∩ [1, n]. by definition,

f ∗ g(α, β) =

m∑
x=1

n∑
y=1

f(x, y)g(α− x, β − y)

=

α−1∑
i=α−m

β−1∑
j=β−n

f(α− i, β − j)g(i, j) (letting i = α− x, j = β − y)

=

0∑
i=α−m

0∑
j=β−n

f(α− i, β − j)g(i, j) +

0∑
i=α−m

β−1∑
j=1

f(α− i, β − j)g(i, j)

+

α−1∑
i=1

0∑
j=β−n

f(α− i, β − j)g(i, j) +

α−1∑
i=1

β−1∑
j=1

f(α− i, β − j)g(i, j)

=

m∑
i=α

n∑
j=β

f(α− i, β − j)g(i, j) +

m∑
i=α

β−1∑
j=1

f(α− i, β − j)g(i, j)

+

α−1∑
i=1

n∑
j=β

f(α− i, β − j)g(i, j) +

α−1∑
i=1

β−1∑
j=1

f(α− i, β − j)g(i, j) (by periodicity)

=

m∑
i=1

n∑
j=1

g(i, j)f(α− i, β − j)

= g ∗ f(α, β);

hence f ∗ g = g ∗ f .

4. Since O is a shift-invariant linear image transformation on Mn×n(R) with hs(·, ·) being n-
periodic in both arguments, by Theorem 3.3 in Chapter 1, we have

H =

A11 · · · A1n

...
. . .

...
An1 · · · Ann


where

Aij =


hs(0, i− j) hs(−1, i− j) · · · hs(1− n, i− j)
hs(1, i− j) hs(0, i− j) · · · hs(2− n, i− j)

...
...

. . .
...

hs(n− 1, i− j) hs(n− 2, i− j) · · · hs(0, i− j)



=


hs(0, i− j) hs(n− 1, i− j) · · · hs(1, i− j)
hs(1, i− j) hs(0, i− j) · · · hs(2, i− j)

...
...

. . .
...

hs(n− 1, i− j) hs(n− 2, i− j) · · · hs(0, i− j)


Suppose Aij is n-periodic extended, i.e. A(i+n)(j+n) = Aij . Since hs(·, ·) is n-periodic in the
second argument, we know that for any k ∈ N,

A(i+k)(j+k) =


hs(0, (i+ k)− (j + k)) hs(n− 1, (i+ k)− (j + k)) · · · hs(1, (i+ k)− (j + k))
hs(1, (i+ k)− (j + k)) hs(0, (i+ k)− (j + k)) · · · hs(2, (i+ k)− (j + k))

...
...

. . .
...

hs(n− 1, (i+ k)− (j + k)) hs(n− 2, (i+ k)− (j + k)) · · · hs(0, (i+ k)− (j + k))



=


hs(0, i− j) hs(n− 1, i− j) · · · hs(1, i− j)
hs(1, i− j) hs(0, i− j) · · · hs(2, i− j)

...
...

. . .
...

hs(n− 1, i− j) hs(n− 2, i− j) · · · hs(0, i− j)

 = Aij
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Therefore, H =


A11 An1 · · · A21

A21 A11 · · · A31

...
...

. . .
...

An1 A(n−1)1 · · · A11

 with Aij being circulant matrix. H is block-

circilant.

5. (a)

|A− αB|2F =

∣∣∣∣∣∣
3− α 3− α 6− α
−α 1− α 2− α
−α 1− α 8− α

∣∣∣∣∣∣
2

F

= 2α2 + 2(1− α)2 + (2− α)2 + 2(3− α)2 + (6− α)2 + (8− α)2

= 9α2 − 48α+ 124 = 9(α− 24

9
)2 + 60.

hence |A− αB|F is minimized at α =
24

9
.

(b)

|C − αD|2F =

∣∣∣∣(2− α 3− α 5− α 7− α
8− α 6− α 4− α 2− α

)∣∣∣∣2
F

= 2(2− α)2 + (3− α)2 + (4− α)2 + (5− α)2 + (6− α)2 + (7− α)2 + (8− α)2

= 8α2 − 74α+ 207 = 8(α− 37

8
)2 +

287

8
.

hence |C − αD|F is minimized at α =
37

8
.

(c) The values of α that minimize the frobenius norm differences are the means of the pixel
values. The values of α that minimize the entrywise 1-norm differences are the medians
of the pixel values.

6. (a) we first compute the characteristic polynomial of ATA to obtain the singular values of
A.

ATA =

10 8 6
8 8 8
6 8 10

 .

Hence the characteristic polynomial of ATA is given by

det(ATA− λI3) =

∣∣∣∣∣∣
10− λ 8 6

8 8− λ 8
6 8 10− λ

∣∣∣∣∣∣
= −λ3 + 28λ2 − 96λ

= −λ(λ− 4)(λ− 24).

The singular values of A are given to be integers. Then one solves for the eigenvector
corresponding to each eigenvalue of ATA.

For λ1 = 24,

[ATA− λ1I3|0] =

 −14 8 6 0
8 −16 8 0
6 8 −14 0

 ∼
 1 0 −1 0

0 1 −1 0
0 0 0 0

 ,

So

1
1
1

 is an eigenvector, which gives the unit eigenvector ~v1 =
1√
3

1
1
1

.
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For λ2 = 4,

[ATA− λ2I3|0] =

 6 8 6 0
8 4 8 0
6 8 6 0

 ∼
 1 0 1 0

0 1 0 0
0 0 0 0

 ,

So

 1
0
−1

 is an eigenvector, which gives the unit eigenvector ~v2 =
1√
2

 1
0
−1

.

For λ3 = 0,

[ATA− λ3I3|0] =

 10 8 6 0
8 8 8 0
6 8 10 0

 ∼
 1 0 −1 0

0 1 2 0
0 0 0 0

 ,

So

 1
−2
1

 is an eigenvector, which gives the unit eigenvector ~v3 =
1√
6

 1
−2
1

.

Then ~u1 =
1√
λ1
A~v1 =

1√
24

(
1 2 3
3 2 1

)
1√
3

1
1
1

 =
1√
2

(
1
1

)
,

~u2 =
1√
λ2
A~v2 =

1√
4

(
1 2 3
3 2 1

)
1√
2

 1
0
−1

 =
1√
2

(
−1
1

)
,

Hence an svd ofA is given byA = UΣV T , where U =
1√
2

(
1 −1
1 1

)
, Σ =

(√
24 0 0

0
√

4 0

)

and V =
1√
6

√2
√

3 1√
2 0 −2√
2 −

√
3 1

.

(b) The elementary images according to the above svd are given by:

~u1~v
T
1 =

1√
6

(
1
1

)(
1 1 1

)
=

(
1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

)
;

~u2~v
T
2 =

1√
4

(
−1
1

)(
1 0 −1

)
=

(
− 1√

4
0 1√

4
1√
4

0 − 1√
4

)
;

Hence,

A =
√

24~u1~v
T
1 +
√

8~u2~v
T
2

=
√

24

(
1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

)
+
√

8

(
− 1√

4
0 1√

4
1√
4

0 − 1√
4

)

7. (a) As A = UΣV T ,

ATA = (UΣV T )T (UΣV T ) = V ΣTUTUΣV T = V ΣTΣV T

and
AAT = (UΣV T )(UΣV T )T = UΣV TV ΣTUT = UΣΣTUT .
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Note that

ΣTΣ =





σ2
11 0 · · · 0

0 σ2
22 · · · 0

...
...

. . .
...

0 0 · · · σ2
KK

0M×(N−M)

0(N−M)×M 0(N−M)×(N−M)

 if M < N


σ2
11 0 · · · 0

0 σ2
22 · · · 0

...
...

. . .
...

0 0 · · · σ2
KK

 if M ≥ N

and

ΣΣT =




σ2
11 0 · · · 0

0 σ2
22 · · · 0

...
...

. . .
...

0 0 · · · σ2
KK

 if M ≤ N



σ2
11 0 · · · 0

0 σ2
22 · · · 0

...
...

. . .
...

0 0 · · · σ2
KK

0N×(M−N)

0(M−N)×N 0(M−N)×(M−N)

 if M > N

Hence (σ11, σ22, . . . , σKK) are the square roots of the largest K eigenvalues of ATA (or
AAT ) in descending order, and thus the K-tuple is uniquely determined.

(b) Suppose {σii : i = 1, 2, · · · ,K} are distinct and nonzero. Then each eigenspace of ATA
and AAT corresponding to eigenvalue σ2

ii has dimension 1, which means that there are
exactly two unit eigenvectors to be chosen from each eigenspace, each being the negative
of the other. Such eigenvectors are precisely the first K columns of U and V . Combined
with the fact that σii are in descending order, the first K columns of U and V are
uniquely determined up to a change of sign.

(c) A counterexample with nondistinct {σii : i = 1, 2, · · · ,K} is given by:

I2 =

(
1 0
0 1

)
= I2I2I2 = UI2U

T ,

where I2 and U =
1√
2

(
1 1
1 −1

)
are unitary.

A counterexample with σKK = 0 is given by:

(0 0) = (1)(0 0)

(
1 0
0 1

)
= (1)(0 0)

(
0 1
1 0

)
.
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