Chapter S: Centrality in Social Network

S.1 Centralities

One basic but essential measure in social network analysis is centrality. There are 4 common centrality measures which are degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. They have been employed to understand the roles of certain nodes in networks.

Degree centrality	Average degree of a vertex
Betweenness centrality	Extent to which a particular vertex lies on the shorest path between other
	vertices
Closeness centrality	The average of the shortest distances to all other vertices
Eigenvector centrality	A measure of the extent of which a vertex is connected to influential other
	vertices. Related concept is Google's Page Rank

Let G = (V, E) be a simple connected (p, q)-graph. The degree centrality of a vertex is defined to be its degree. But for comparison, some article defines the *degree centrality* of a vertex x by

$$C_D(x) = \frac{\deg(x)}{p-1}.$$

This makes the scale between 0 and 1.

Degree centrality https://www.youtube.com/watch?v=iiVeQkIELyc

Suppose $x, u, v \in V$ are distinct vertices in G. Let $g_{u,v}$ denote the number of shortest path between u and v; and $g_{u,v}(x)$ denote the number of shortest path between u and v that pass through x.

The betweenness centrality of x is defined by

$$C_B(x) = \frac{1}{\binom{n-1}{2}} \sum_{\substack{u \neq v \\ x \notin \{u,v\}}} \frac{g_{u,v}(x)}{g_{u,v}}.$$

Betweenness centrality https://www.youtube.com/watch?v=0CCrq62TF7U&t=239s

Betweenness centrality https://www.youtube.com/watch?v=ptqt2zr9ZRE&t=1s

Let d(u, v) denote the distance from u to v, where $u, v \in V$. For $x \in V$, the closeness centrality of x is defined by

$$C_C(x) = \frac{p-1}{\sum_{v \in V \setminus \{x\}} d(x,v)}.$$

Closeness centrality https://www.youtube.com/watch?v=OunzqsPaPk8

Eigenvector centrality: Score of a page is proportional to the sum of the scores of pages linked to it.

Let A be the adjacent matrix of a connected graph G. Since A is symmetric, A is diagonalizable over \mathbb{R} . From Perron-Frobenius Theorem, we know that A is nonnegative definite. Let $\rho(A) = \rho$ be the largest eigenvalue which is called *Perron-Frobenius eigenvalue*. Then ρ is a simple eigenvalue, i.e., the eigenspace corresponding to ρ is of dimension one. Let \boldsymbol{v} be the eigenvector corresponding to ρ . Then all entries of \boldsymbol{v} are positive. So we may assume that \boldsymbol{v} is unit length. Note that, \boldsymbol{v} is the only unit eigenvector having this property.

The entry of v corresponding to the vertex is called the *eigenvector centrality* of that vertex.

Beginner https://www.youtube.com/watch?v=9vs1zSqd070

Eigenvector centrality https://www.youtube.com/watch?v=q8oBWwS2wAQ

S.2 Page Rank

A concept related to eigenvector centrality is Google's Page Rank. Following is the Page Rank Algorithm: Given a (p,q)-digraph $\overrightarrow{G} = (V, E)$, let

$$h_{u,v} = \begin{cases} \frac{1}{\deg^+(u)} & \text{if } (u,v) \in E; \\ 0 & \text{otherwise,} \end{cases}$$

for $u, v \in V$.

Let $H = (h_{u,v})^T$ and $v = \frac{1}{p}\mathbf{1}$, where **1** is the *p*-vector whose entries are 1. Let $v_n = H^n v$. Then rank of the vertices follow the natural order of their corresponding entries of v_n for some iteration $n \ge 1$, the largest entry corresponding to the highest rank.

Explanation https://www.youtube.com/watch?v=MGOfIXfrT9A Page Rank Algorithm https://www.youtube.com/watch?v=P8Kt6Abq_rM Original Formula https://www.youtube.com/watch?v=pA1Q1myuScs Matrix Representation https://www.youtube.com/watch?v=kSmQbVxqOJc