
Chapter 7: Path Algorithms

7.1 Solving Chinese Postman Problem

The Chinese Postman Problem leads us to find an optimal tour on a given connected weighted graph

G. This means that we are going to find, by duplicating edges if necessary, a weighted Eulerian supergraph

G∗ of G such that the weight of G∗ is as small as possible. Suppose {v1, . . . , vn} is the set of all odd

vertices in G, where n must be even. The method is described as follows:

1. Find the distance of each pair of odd vertices of G.

2. Form a weighted complete graph Kn with vertex set {v1, . . . , vn}, and assign the weight of the edge

vivj to be the distance ∂(vi, vj) (which is introduced in the next section).

3. Find an optimal perfect matching of Kn, i.e., a set M of edges of Kn such that every vertex is incident

with one edge of M and the sum of the weights in M is minimum.

4. An edge vivj in M corresponds to a shortest (vi, vj)-path added into G.

Since the method involves finding matching from a weighted graph that we will not present in this

book. We use brute force method to find an optimal perfect matching in Kn for small n.

Example 7.1.1: Let the vertex set of K4 be {A,B,C,D} and the weight of each edge is shown in the

following table:
A B C D

A 0 3 2 2

B 3 0 4 1

C 2 4 0 4

D 2 1 4 0

There are only three perfect matchings of K4, namely M1 = {AB,CD}, M2 = {AC,BD} and M3 =

{AD,BC}. Their weights are W (M1) = W (AB) + W (CD) = 7, W (M2) = 3 and W (M3) = 6. So the

optimal matching is M2.

7.2 Shortest Path Algorithm

Let u and v be vertices of G (which is a graph or a digraph). The length of a (u, v)-path P is the

sum of weights of edges in P . The distance from u to v, denoted by ∂(u, v), is the minimum length of all

(u, v)-paths in G. If there is no (u, v)-path, then we define ∂(u, v) = ∞. Note that ∂(u, v) and ∂(v, u)

may not be the same in a digraph. In particular, if all the weights are 1, then ∂(u, v) = d(u, v). In this

chapter, we assume that all graphs (or digraphs) are connected.

Given a weighted graph or digraph with a nonnegative weight function W . We want to find a shortest

path from a vertex s to another vertex t. Note that the shortest path may not unique, but of course the

distance is unique.

Idea: Each vertex v is assigned an ordered pair (λ(v), p(v)), where λ(v) represents the tentative shortest

distance from s to v by all paths considered until now, and p(v) denotes the predecessor of v in the

tentative shortest (s, v)-path. The vertex at any iteration that yields the smallest λ(v) is termed its

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-1

permanent distance, and denoted by a square around the ordered pair in which λ(v) represents the

permanent distance from s to that vertex. Suppose u has been assigned the permanent distance, then

λ(u) is the actual distance ∂(s, u) from s to u. Once t has been assigned the permanent distance, then the

distance from s to t is determined. We use uv to denote the edge {u, v} or the arc (u, v) in the following.

Vertex-labeling Algorithm

Step 1. Assign the ordered pair (0, ∗) to vertex s; label each vertex v that is adjacent to s with the distance

which is equal to the weight of sv and the predecessor is s; choose the smallest value among these

labels and mark the permanent distance of the corresponding vertex. Draw a rectangle around

the corresponding ordered pair.

Step 2. Consider the vertex u that just marked the permanent distance; look at each vertex v that is

adjacent to u and assign the label (∂(s, u) + W (uv), u) to v unless v persist a label of smaller

value; when all such vertices v are labeled, choose the smallest label in the graph that does not

have permanent distance and mark it as the permanent distance where it occurs; draw a rectangle

around the corresponding ordered pair.

Step 3. If t has been assigned the permanent distance, then this is ∂(s, t); go to Step 4, otherwise go to

Step 2.

Step 4. Backtracking the predecessor vertices one by one from t.

Example 7.2.1: Consider the following weighted graph. We want to find the corresponding shortest

path from S to all other vertices.

(5,)

S(2,)

S(8,)

���
���
���

���
���
���

S

S

5
11

(10,)
E

(0, *)

D

S

A

B

C

2 10

8

4

2 2

4
3

5

5

(5,)

��
��
��
��

��
��
��
��

S

(2,) E

E

(7,)
E

D

S

S

A

(7,)

B

C

2 10

8

4

2 2

4
3

5

5

5
11

(0, *)

(2,)

E(7,)

E(7,)

D(7,)

��
��
��
��

��
��
��
��

S

(5,) DS

E

(9,)
D

S

A

B

C

2 10

8

4

2 2

4
3

5

5

5
11

(0, *)

(2,)

E(7,)

E(7,)

��
��
��
��

��
��
��
��

S

(5,) D

E

S
D

(9,)

S

A

B

C

2 10

8

4

2 2

4
3

5

5

5
11

(0, *)

(2,)

E(7,)

E(7,)

��
��
��

��
��
��

S

(5,) D

E

S
D

(9,)

S

A

B

C

2 10

8

4

2 2

4
3

5

5

5
11

(0, *)

Therefore, a shortest path from S to B is SDB with distance 9 and a shortest path from S to C is SEC

with distance 7.

Example 7.2.2: Consider the following network (weighted digraph). We want to find a shortest path

from s to t.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-2

7

3
3

9

4

a

1

s (0, *)

1

4

7 d

b c

6 t

(7,)s

s(9,)

(7,)b

��
��
��

��
��
��

s(7,)

(4,)s

t

7 d

b7

3
3

9

4

a

1

s (0, *)

1

4

c

6

(7,)s

s(9,)
(5,)b

(7,)b

s

���
���
���

���
���
���

(7,)

(4,)s

7 d

7

3
3

9

4

a

1

s (0, *)

1

4
b c

6 t
(5,)b

(11,)a(7,)b

���
���
���
���

���
���
���
���

s(7,)

(4,)s

d

7

3
3

9

4

a

1

s (0, *)

1

4
b c

6 t

7

(5,)b

(7,)b

���
���
���
���

���
���
���
���

s

(10,)

(7,)

(4,)s
c

d

b7

3
3

9

4

a

1

s (0, *)

1

4

c

6 t

7

(5,)b

(7,)b

���
���
���
���

���
���
���
���

s

c

(7,)

(4,)s
(10,)

A shortest path from s to t is sbct with distance 10.

The next algorithm is called the Dijkstra’s algorithm.

Given a weighted graph (or digraph) G and a fixed vertex u. Suppose Z ⊂ V (G) such that u ∈ Z,

and let Z ′ = V (G) \ Z. Define the distance ∂(u,Z ′) from u to Z ′ by ∂(u,Z ′) = min{∂(u, z) | z ∈ Z ′}.
Let ∂(u,Z ′) = ∂(u, v) for some v ∈ Z ′. Suppose P = uu1 · · ·unv is a shortest (u, v)-path, where n ≥ 0.

When n = 0, which means u1, . . . , un do not appear. Since the weight function is positive, it is clear that

un ∈ Z and uu1 · · ·un is a shortest (u, un)-path. So

∂(u,Z ′) = min{∂(u, x) +W (xz) | x ∈ Z, z ∈ Z ′, xz ∈ E(G)}.

Finally, if this minimum is attained when x = uj and z = v, then

∂(u, v) = ∂(u, uj) +W (ujv). (1)

Again, given a weighted graph or digraph of order p with a weight function W . We want to find a

shortest path from a vertex u0 to other vertices.

Dijkstra’s Algorithm

Step 1. Assign λ(u0) = 0, λ(v) = ∞ for v ̸= u0, i = 0 and Z0 = {u0}. Here i denotes the index of

iteration.

Step 2. For each v ∈ Z ′
i, replace λ(v) by min{λ(v), λ(ui) +W (uiv)}. Compute min

v∈Z′
i

{λ(v)} and let ui+1

be a vertex for which this minimum is attained. Backtracking to find the first appearance of

this minimum. If it appears at the j-th iteration, then define the predecessor as uj . Assign

Zi+1 = Zi ∪ {ui+1}.

Step 3. Replace i by i+ 1. If i = p− 1, then stop. If i < p− 1, then go to Step 2.

Theorem 7.2.3: Suppose G is a weighted graph (or digraph) of order p. For a fixed vertex s, Dijkstra’s

Algorithm computes ∂(s, v) for every v ∈ V (G).

Example 7.2.4: Consider the following weighted graph.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-3

9

t

d

ba

15

18

6

c

14
s

7

36

10

28

The following is the tabular format of Dijkstra’s algorithm.

λ(·) Remark

i Zi s a b c d t Predecessor

0 ∞ ∞ ∞ ∞ ∞ initial

0 s (18) (∞) (15) (∞) (∞) λ(s) +W (s ·)
18 ∞ 15 ∞ ∞ s

1 s, c (21) (29) (22) (∞) λ(c) +W (c ·)
18 29 22 ∞ s

2 s, c, a (27) (∞) (∞) λ(a) +W (a ·)
27 22 ∞ c

3 s, c, a, d (32) (58) λ(d) +W (d ·)
27 58 a

4 s, c, a, d, b (55) λ(b) +W (b ·)
55 b

Hence a shortest path from s to t is sabt with distance 55.

Example 7.2.5: Consider Example 7.2.2 again.

λ(·) Remark

i Zi s a b c d t Predecessor

0 ∞ ∞ ∞ ∞ ∞ initial

0 s (7) (4) (9) (7) (∞) λ(s) +W (s ·)
7 4 9 7 ∞ s

1 s, b (5) (7) (∞) (∞) λ(b) +W (b ·)
5 7 7 ∞ b

2 s, b, a (∞) (∞) (11) λ(a) +W (a ·)
7 7 11 b

3 s, b, a, c (∞) (10) λ(c) +W (c ·)
7 10 s

4 s, b, a, c, d (11) λ(d) +W (d ·)
10 c

Hence a shortest from s to t is sbct of distance 10; that from s to d is sd of distance 7, etc.

7.3 Traveling Salesman Problem

The traveling salesman problem also form a minimum-cost Hamiltonian cycle (optimal cycle) in a

weighted complete graph Kp. Suppose V (Kp) = {1, 2, . . . , p}. Let ci,j (or cij) is the weight of the edge

(or arc) ij. By convention we assign cii = 0 or ∞. Let C be the p× p matrix whose (i, j)-th entry is cij ,

which is called a cost matrix of the weighted graph. Minimum-cost means minimizing the sum of the cost

of the edges used.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-4

Remark 7.3.1: The concept of cost matrix can be extended to weighted non-complete graph or weighted

digraph. In this situation, assign cij = ∞ if ij is not an edge or an arc, respectively.

There is no efficient algorithm to find an optimal solution for the traveling salesman problem. By

brute force method, we have to check (p − 1)!/2 Hamiltonian cycles for undirected complete graph Kp,

which is a huge number for moderate p. In this section, we introduce a method to find an optimal solution

or a near optimal solution.

7.3.1 Branch and Bound Method

The first method is a tree enumeration approach that uses a branch and bound method to limit our

search. In this method, at most 2p bounds should be checked, which is much less than (p− 1)!.

To illustrate this method we consider a small traveling salesman problem with 4 vertices w, x, y, z

only. Let the cost matrix C for the problem be:

w x y z

w ∞ 3 9 7

x 3 ∞ 6 5

y 5 6 ∞ 6

z 9 7 4 ∞

Note again, we do not require cij = cji; the ∞’s indicate that we cannot use these entries.

A Hamiltonian cycle contains four entries in C, one in each row and in each column, and no proper

subset of the entries (edges) forms a cycle. The last constraint means that if we choose entry cij , then

we cannot choose cji since these two entries from a cycle of length 2. Similarly, if entries cij and cjk are

chosen, then cki cannot be chosen.

Lower bound: We first demonstrate how to obtain a lower bound on the cost of this problem. Let H

be a minimum-cost Hamiltonian cycle. Since H contain an entry in the first row (we will call it Row w),

it will not change if we subtract a constant value from Row w of C. Note that, others rows and columns

are named by their corresponding vertices. We then subtract the value of the smallest entry in Row w,

namely 3, that will not create any negative entry. Repeat this procedure for other rows and we obtain a

new cost matrix:

C1 =

w x y z

w ∞ 0 6 4 → 3

x 0 ∞ 3 2 → 3

y 0 1 ∞ 1 → 5

z 5 3 0 ∞ → 4

L.B. = 15

Totally we subtract 3 + 3 + 5 + 4 = 15 from different rows. So a minimum-cost Hamiltonian cycle for C1

will cost 15 less than for C. But the minimum-cost Hamiltonian cycle is still H. Similarly, we repeat the

same procedure for columns and obtain

C2 =

w x y z

w ∞ 0 6 3

x 0 ∞ 3 1

y 0 1 ∞ 0

z 5 3 0 ∞

L.B. = 16

The cost of H has been reduced by a total of 15 + 1 = 16 from the cost in C. Since a minimum-cost

Hamiltonian cycle for C2 must cost at least 0, we thus obtain a lower bound on the cost of H.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-5

Branch:

We are now ready for the part of branching. Consider an entry in C2 that is zero, say cwx. There are

only two cases: the edge corresponding to cwx belongs to H or not. We branch on this choice.

Suppose we do not use cwx, that is, the arc (w, x) is not in H. We represent the no-(w, x) choice by

setting cwx = ∞. The smallest value in Row w of the altered C2 is now cwz = 3, so we can subtract this

amount from Row w. Similarly we can subtract 1 from Column x and obtain the cost matrix

C3 =

w x y z

w ∞ ∞ 3 0

x 0 ∞ 3 1

y 0 0 ∞ 0

z 5 2 0 ∞

L.B. = 20

Hence the lower bound on the cost of H is 20 if H does not contain (w, x).

Suppose the arc (w, x) is in H. There is no immediate increase in lower bound on the cost of H. We

now consider partial tours using cwx and continue to extend these partial tours until we obtain a lower

bound larger than 20. If the lower bound exceeds 20, then we consider partial tours not using cwx.

Our searching tree for this problem is a binary tree whose vertices represent using cij or not. As

long as the lower bound for possible tours using cij is less than the lower bound for the tours not

using cij , we do not need to look at the subtree of possible tour not using cij .

If we use cwx of C2 to construct a tour, then the other entries of Row w and Column x cannot be

used. So we delete Row w and Column x. The entry cxw must be set to ∞ to avoid a cycle of length 2.

The new smallest value of the reduced matrix in Row x is 1, and so we subtract 1 from Row x to obtain

the cost matrix

C21 =

w y z

x ∞ 2 0

y 0 ∞ 0

z 5 0 ∞

L.B. = 16 + 1 = 17

The lower bound of C21 is now 17. Since 17 is less than 20 (the lower bound of the tour does not contain

(w, x)), we continue the tour building with (w, x) by choosing another entry. The new entry no need to

connect with cwx at this moment, that is, may not be the form cjw or cxj , but for simplicity we shall

choose an entry in Row x. As before, we want to choose a 0 entry, say cxz.

Again we have to choose whether cxz is used or not. Not using cxz will increase the lower bound by

2 + 0 = 2 while using it will not increase the lower bound. Hence we construct the partial tour using

cxz (i.e., the arc (x, z)) along with (w, x). Same as before, we delete Row x as well as Column z and set

czw = ∞ (to avoid the directed cycle wxzw). We obtain the new remaining cost matrix

C211 =

w y

y 0 ∞
z ∞ 0

Now it is clear that we choose czy and cyw to construct the tour wxzyw. This tour has a cost of 17,

which attains the lower bound. Actually, we have no choice since not using either czy or cyw forces us to

use an ∞ entry. Finally, we obtain an optimal solution for the problem.

The following is our searching tree:

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-6

Solutions
All

c12 c12

c24 c24

c31

c43 c43

Solutions

Solutions

Solutions

Solutions

with

with

with

with

Solutions

Solutions
without

L.B.=19

L.B.=20

without

Solutions
without

No solutionL.B.=17

L.B.=17

L.B.=16

L.B.=17

Weight=17

A general point should be made about how to optimize the branch and bound technique. At each

stage of branching, we should choose the 0 entry whose removal will maximizes the increase in the lower

bound. In C2, not using czy will increase the lower bound by 3 + 3 = 6. Hence czy would theoretically

be a better entry than cwx to use for the first branching, since the greater lower bound for the subtree of

tours not using the edge zy makes it less likely that we need to check those possible tours in that subtree.

7.3.2 Near Optimal Solutions

Interchanging edges method: Firstly, choose an arbitrary Hamiltonian cycle C = v1 · · · vpv1. Then,
search for another Hamiltonian cycle of smaller weight by suitably modifying C. For each i and j with

1 < i+ 1 < j < p, there is a new Hamiltonian cycle

Cij = v1 · · · vivjvj−1 · · · vi+1vj+1 · · · vpv1

which obtained by deleting the edges vivi+1 and vjvj+1 and adding the edges vivj and vi+1vj+1, as shown

in the following figure.
vi

+1jv jv

+1iv

If, for some i and j,

W (vivj) +W (vi+1vj+1) < W (vivi+1) +W (vjvj+1)

the cycle Cij will be an improvement of C.

Continue on this process until no more improvement is available, the resulting cycle is a near optimal

solution. Also, this method can be repeated with different initial cycle.

An indication of how good our solution is can be obtained by using spanning minimum tree. Suppose

C is an optimal cycle in a weighted graph G. Then, for any vertex v, C−v is a Hamiltonian path in G−v,

and hence a spanning tree of G − v. Suppose T is a minimum spanning tree of G − v. If e1 and e2 are

two edges incident with v such that W (e1) +W (e2) is as small as possible, then W (T) +W (e1) +W (e2)

will be a lower bound on W (C).

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-7

Example 7.3.2: Consider the weighted graph G with the cost matrix

∞ 3 3 2 7 3

3 ∞ 3 4 5 4

3 3 ∞ 1 4 4

2 4 1 ∞ 5 5

7 5 4 5 ∞ 4

3 4 4 5 4 ∞


with respect to vertices a, b, c, d, e, f . Before applying the interchanging edges method to this graph, we

find a lower bound on the optimal cycle in prior. By Prim’s algorithm or Kruskal’s algorithm, we find

that the weight of the minimum spanning tree of G − f is 10. Since af and ef are the edges incident

with f such that W (af) +W (ef) = 7 attains the minimum value, hence the lower bound of the optimal

cycle is 17.

Suppose we choose an initial Hamiltonian cycle C = abecdfa of weight 21. Since 4 + 2 = W (bf) +

W (ad) < W (ab) +W (df) = 3 + 5, a new cycle C ′ = adcebfa of weight 19 is obtained by interchanging

edges. Moreover, 3 + 4 = W (ab) + W (ef) < W (af) + W (be) = 3 + 5 lead to the construction of

C ′′ = adcefba, which is of weight 18. We can see that it is very near to the lower bound. But we do not

know whether it is an optimal cycle.

f

4

3

a

d

c

e

b

2

1

5

4
4

3
f

ed

b

c

5

1 4

5

33

4

2

a

4

3

a

d

c

e

2

14

b

f
4

The second algorithm for finding a near optimal cycle of a weighted undirected complete graph Kp is

called quick construction.

Quick Construction

Step 1: Pick any vertex u1 as a starting cycle C1 with one vertex and no edges. Choose the closest

neighbor of u1, say v1. Let C2 = u1v1u1.

Step 2: Suppose a k-cycle Ck with k ≥ 2 has been found. Find vk ̸∈ V (Ck) that is closest to a vertex,

say uk, on Ck.

Step 3: Let Ck+1 be the (k + 1)-cycle obtained by inserting vk immediately in front of uk in Ck.

Step 4: Go to Step 2 until a Hamiltonian cycle is formed.

Example 7.3.3: Consider the graph in Example 7.3.2 again. We start with vertex a, which is C1. Since

d is closest to a, and so C2 = ada. Also, c is closest to C2 at d; thus C3 = acda.

There are two vertices, namely b and f , both are three units from C3. Suppose we choose b and

insert it before c to obtain C4 = abcda. Now f is still 3 units from a and we insert f before a obtaining

C5 = abcdfa. Finally, e is closest to c or f . Inserting e before f we obtain C6 = abcdefa with weight 19.

(If we insert e before c to obtain C6 = abecdfa, then the weight of C6 is 21). It is an near optimal cycle.

Note that the weight of the tour generally depends on the starting vertex. One may apply the

algorithm to different starting vertex and choose the shortest tour as a near optimal solution.

The following two theorems give bounds on the optimal cycle.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-8

Theorem 7.3.4: Suppose G is an undirected complete weighted graph satisfying triangle inequality.

Then the weight of an optimal cycle in G is at most twice of the weight of the minimum spanning tree of

G.

Theorem 7.3.5: Suppose G is an undirected complete weighted graph satisfying triangle inequality.

Then the weight of the Hamiltonian cycle generated by the quick construction is less than twice the weight

of the optimal Hamiltonian cycle.

Example 7.3.6: Let P = x1x2x3x4x5x6x7x8. Suppose we choose C1 = x6 and C2 = x6x3x6. In

this case, v1 = x3 and S1 = P . The first edge on the path in S1 from C1 to x3 is x5x6. Then S2 =

S1 − {x5x6} = {x1x2x3x4x5, x6x7x8}. W (C1) = 0 and W (C2) = 2W (x3x6) ≤ 2W (x5x6) (because we

choose x3 not x5).

Suppose C3 = x6x8x3x6. Then v2 = x8 and u2 = x3. The first edge on the path in S2 from C2 to

x8 is x6x7. Then S3 = S2 − {x6x7} = {x1x2x3x4x5, x6, x7x8}. Since W (x3x8) ≤ W (x6x7) (because we

choose x3x8 not x6x7), the increase of C3 over C2 is

W (x3x8) + [W (x8x6)−W (x3x6)] ≤ W (x3x8) +W (x8x3) ≤ 2W (x6x7).

x3
x5x4

x8

x6

x7

x2

x1

C2

x3
x5x4

x8

x6

x7

x2

x1

C3

x3
x5x4

x8

x6

x7

x2

x1

S1 and C1 = x6 S2 and C2 = x6x3x6 S3 and C3 = x6x8x3x6

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-7-9

