
Chapter 6: Colorings

6.1 Map Colorings

Given a map with several countries, we may ask how many colors are required to paint the map so

that no two countries with a boundary in common are assigned the same color. Historically, there was a

conjecture called “four-color problem”, that is, four colors are sufficient to paint any map. We start the

story with some formal definitions.

Definition 6.1.1: A map is defined to be a plane connected graph with no bridges. A map G is said

to be k-face colorable if we can color its faces with at most k colors in such a way that no two adjacent

faces, which share a common edge, have the same color.

Four Color Conjecture: Every map is 4-face colorable.

Given a map G, its dual G∗ is also a connected plane graph. In order to paint the faces (countries) of

G, it is equivalent to paint the vertices of G∗ such that no adjacent vertices are assigned the same color.

Thus, the map coloring problem is equivalent to vertex coloring problem of plane graphs.

6.2 Vertex Colorings

Definition 6.2.1: Let G = (V,E, ϕ) be a graph. A (proper) vertex coloring of G is a mapping c : V → N
that satisfies

c(u) = c(v) ⇒ {u, v} /∈ ϕ(E) ∀u, v ∈ V ;

that is, if u and v are adjacent, then they receive different colors. When there is no ambiguity, the word

coloring would mean vertex coloring.

For k ∈ N, a (proper) k-coloring of G is a coloring c : V → {1, . . . , k}. We say that G is k-vertex

colorable or k-colorable if G has a (proper) k-coloring.

Clearly, a simple graph of order p is p-colorable.

Definition 6.2.2: Let G be a simple graph. The least integer k such that G is k-colorable is called the

chromatic number of G and is denoted by χ(G).

Suppose G has a k-coloring and let Vi be the set of vertices colored by i. Thus, there exists a partition

(V1, V2, . . . , Vk) of V , where Vi may be empty, such that each Vi is an independent set (i.e., any two distinct

vertices in Vi are not adjacent). We also call the partition (V1, V2, . . . , Vk) a k-coloring of G. Moreover,

χ(G) = k implies that each subset Vi of a k-coloring (V1, V2, . . . , Vk) is not empty.

It is obvious that if the simple graph G has ω components G1, . . . , Gω, then

χ(G) = max{χ(Gi) | 1 ≤ i ≤ ω}.

Therefore, we assume all the graphs being considered in coloring problem are connected.

Example 6.2.3: By the definition of chromatic number of graph, we have

1. χ(G) = 1 if and only if G ∼= Np for some p ∈ N.
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2. χ(Kp) = p for p ∈ N.

3. χ(Pp) = 2 for p ≥ 2.

4. For p ≥ 3, χ(Cp) =

2 if p is even,

3 if p is odd.

Definition 6.2.4: A graph G is called critical if χ(H) < χ(G) for every proper subgraph H of G. A

critical graph with χ(G) = k is called a k-critical graph.

From the definition above, every critical graph is connected.

Lemma 6.2.5: Every graph with chromatic number k has a k-critical subgraph.

Lemma 6.2.6: If G is k-critical, then δ(G) ≥ k − 1.

Theorem 6.2.7: For any simple graph G with maximum degree ∆, we have χ(G) ≤ ∆+ 1.

Brook’s Theorem (1941): For a connected simple graph G that is neither a complete graph nor an

odd cycle, we have χ(G) ≤ ∆(G).

The following are some important results about coloring problem of plane graphs.

Theorem 6.2.8:

(a) A map G is k-face colorable if and only if its dual G∗ is k-vertex colorable.

(b) Let G be a connected plane graph without loops. Then G has a k-vertex coloring if and only if its dual

G∗ has a k-face coloring.

Theorem 6.2.9: Every plane graph is 6-colorable.

A Jordan curve is a continuous non-self-intersection closed curve. Let J be a Jordan curve in the plane.

It partitions the plane into two disjoint open sets, the interior and exterior of J , which are denoted by

int(J) and ext(J) respectively.

Jordan Curve Theorem: Let J be a Jordan curve. Any curve joining a point in int(J) to a point in

ext(J) must meet J at some point.

Theorem 6.2.10: Every plane graph is 5-colorable.

6.3 Algorithms on Vertex Coloring

Algorithm 6.3.1 (Sequential Coloring):

Step 1. List the vertices of G as u1, . . . , up. List the colors available as 1, . . . , p.

Step 2. Color the first vertex by 1.

Step 3. Color each subsequent vertex by the color of smallest number that is not used by any of its

neighbors. Repeat this until all vertices have been colored.
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Example 6.3.1: Consider the graph below. We use the alphabetical ordering a, b, c, d, e, f, g, h as the

list. Apply the sequential coloring, vertex a is colored by 1 and then vertex b is colored by 1, because b

is not a neighbor of a. Next we color c by 2 and so on. Finally we obtain a 4-coloring of the graph and

it is labelled as the graph on right hand side.

e d ga

f b c h

e d ga

f b c h

4

2 1

1

32

31

As a result, we have χ ≤ 4.

The largest-first sequential coloring is an algorithm that only differ from the sequential coloring in the

first step.

Algorithm 6.3.2 (Largest-First Sequential Coloring, Welsh and Powell):

Step 1. List the vertices of G as u1, . . . , up so that deg(u1) ≥ · · · ≥ deg(up). In practice, we always have

a pre-ordering (priority) for vertices.

Continue with Steps 2 and 3 of the sequential coloring.

Example 6.3.2: Consider the graph in Example 6.3.1. We use the reverse alphabetical ordering

h, g, f, e, d, c, b, a as the pre-ordering of the vertices. From Step 1 we obtain the ordering d, c, e, b, h, g, f, a.

So, we first color d by 1 and then color c by 2, e by 3, etc. Finally we have the following 3-coloring.

e d ga

f b c h
1

12

23

3 2

1

Hence we have χ ≤ 3. Since the graph is not bipartite, we have χ = 3.

Theorem 6.3.3: If a graph G has a degree sequence (d1, . . . , dp), then there is a greedy coloring of G

that uses at most max
1≤i≤p

{
min{i, di + 1}

}
colors, that is, χ(G) ≤ max

1≤i≤p

{
min{i, di + 1}

}
.

Proof: According to Algorithm 6.3.2, the color assigned to vertex ui (with degree di) is the minimum of

i and di + 1. Therefore, the result follows by taking maximum of these numbers. �

The smallest-first sequential coloring is also modified from the sequential coloring. We create a list by

first choosing the vertex of minimum degree in G as up. Then we choose a vertex of minimum degree in

G− {up} as up−1, which is the second last in the list. Continue in this way until all vertices are chosen.

Algorithm 6.3.3: (Smallest-Last Sequential Coloring)

Step 1. (a) Choose a vertex of minimum degree in G as up.

(b) For i = p− 1, p− 2, . . . , 1, choose a vertex of minimum degree in G− {up, . . . , ui+1} as ui.

(c) List the vertices as u1, . . . , up.

(d) List the colors available as 1, . . . , p.
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Continue with Steps 2 and 3 of the sequential coloring.

Example 6.3.4: Consider the graph in Example 6.3.1. We pre-order the vertices by alphabetical

ordering a, b, c, d, e, f, g, h. From Step 1(a) - (d) we obtain

u8 = h, u7 = g, u6 = f, u5 = a, u4 = e, u3 = d, u2 = c, u1 = b.

Therefore, we have the following 3-coloring.

e d ga

f b c h

11

1 2

32

3 3

Given a partial coloring, the color-degree of a vertex v is the number of distinct colors that have been

assigned to the neighbors of v.

Algorithm 6.3.4: (Maximum Color-Degree Coloring)

Step 1. Create a list U that contains vertices in descending order of degree.

Step 2. Color the first vertex v by 1 and then delete v from U .

Step 3. Choose a vertex w ∈ U with maximum color-degree. When there is a tie, choose the vertex that

appears earliest on U . Color w with the smallest color that have not been used by any of its

neighbors. Delete w from U and repeat Step 3 until U = ∅.

Example 6.3.5: Consider the graph in Example 6.3.1. Suppose we pre-ordered the vertices in alpha-

betical order. Then we obtain the list U = (c, d, b, e, a, f, g, h). The following table shows the procedures

of this coloring.

Sequence with respect to color-degree Value of the coloring c Remark

c, d, b, e, a, f, g, h c(c) = 1

d(1), b(1), e(1), h(1), a, f, g c(d) = 2 d, b, e and h are of color-degree 1,

but d is in the highest piority

b(1, 2), e(1, 2), g(2), h(1), a, f c(b) = 3
b and e are of color-degree 2,

but b is in higher piority

e(1, 2), f(3), g(2), h(1), a c(e) = 3

a(3), f(3), g(2), h(1) c(a) = 1 a, f , g and h are tie

f(1, 3), g(2), h(1) c(f) = 2

g(2), h(1) c(g) = 1 g and h are tie

h(1) c(h) = 2

Remark: Numbers inside the parentheses are the colors assigned to the neighbors of that vertex.

Hence we have the following coloring.

e d ga

f b c h

12

2

1

2

3

3 1
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The independent number of a graph G, denoted by α(G), is the maximum size of an independent set.

An independent set of G of size α(G) is called a maximum independent set of G.

Proposition 6.3.6: The set S is an independent set of G if and only if each edge has at least one end

in V (G) \ S.

Lemma 6.3.7: If G is a graph of order p, then χ(G) ≥ p

α(G)
.

Corollary 6.3.8: If G is a graph of order p, then χ(G) ≤ p− α(G) + 1.

6.4 Edge Colorings

Example 6.4.1: Suppose there is a mini-school that have 5 teachers and 7 classes. These five teachers

t1, t2, t3, t4, t5 meet with classes c1, . . . , c7 every week. Suppose teacher ti must meet with class cj a total

number of wij periods (for example, one period is a one-hour lesson) per week. To keep track of possible

teachers for each class, both ti (1 ≤ i ≤ 5) and cj (1 ≤ j ≤ 7) are represented as vertices. Note that all

edges connect a teacher to a class, but not teacher-to-teacher or class-to-class. So the graph is bipartite.

We put the weight wij on the edge ticj . For example, we have the following weighted graph.

t2 t4 t5

1c 2c 3c 4c 5c 6c c7

t31t

23
1 2 2

3
3 2 3 1

4
2 2

2 3

Actually, we may redraw the above graph as a multigraph below, where each edge represents a one-

hour lesson. For example, there is only one edge incident with c1 and t1; there are three edges incident

with c2 and t1, etc.

t2 t4 t5

1c 2c 3c 4c 5c 6c c7

t31t

Our problem is to determine the minimum number of periods per week that must appear in the

timetabling grid.

Note that a teacher cannot meet two classes at the same period. Also, two teachers may not meet

the same class at the same time. If we represent a period by a color, then the problem transformed into

assigning colors to edges so that two edges with a common vertex will receive different colors. Our goal

becomes finding the minimum number of colors satisfying the above requirement.

Recall that, two edges are said to be adjacent if they have a common end vertex.

Definition 6.4.2: Let G = (V,E, ϕ) be a graph. A (proper) edge coloring of G is a mapping c : E → N
satisfying

c(e) = c(f) ⇒ ϕ(e) ∩ ϕ(f) = ∅ ∀e, f ∈ E;
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i.e., no adjacent edges receive the same color.

For k ∈ N, a (proper) k-edge coloring of G is an edge-coloring c : E → {1, . . . , k}. We say that G is

k-edge colorable if G has a (proper) k-edge coloring.

Definition 6.4.3: For a graph G, the least number k ∈ N such that G is k-edge colorable is called the

edge chromatic number of G, or the chromatic index of G, and is denoted by χ′(G).

By the definition of edge-coloring we have the following observation.

Proposition 6.4.4: For any graph G, χ′(G) ≥ ∆(G).

Example 6.4.5: For p ∈ N, χ′(Kp) =

p if p is odd,

p− 1 if p is even.

Theorem 6.4.6: For a bipartite graph G, we have χ′(G) = ∆(G).

Corollary 6.4.7: χ′(Km,n) = max{m,n}.

Theorem 6.4.8 (Vizing): If G is a simple graph, then ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Go back to Example 6.4.1, the maximum degree ∆ = 9 occurs at c5. Theorem 6.4.6 implies that 9

periods is enough. The follow-up question is how to design the timetable with 9 time slots. We introduce

an algorithm that was provided by W.H. Chan and W.C. Shiu∗.

Chan-Shiu Algorithm: Suppose G is a bipartite multigraph with bipartition (T,C). Suppose the

maximum degree of G is ∆ and it occurs at a vertex in C.

Step 1. Assign ∆ numbers (colors) 1, 2, . . . ,∆ to G in which no two edges of same number are incident

to a common vertex in C.

Step 2. If there is no vertex in T that is incident to two or more edges of same number, then stop and

we obtain a required assignment. Otherwise, let ti ∈ T that is incident with two or more edges

of same number. Let this number be n1.

Step 3. Choose a number n2 that has not been assigned to the edges being incident with ti.

Step 4. Find the component that contains ti and formed by the edges assigned by n1 or n2. [By breadth-

first search, starting from ti, along the edges assigned by n1 or n2.]

Step 5. If the component is Eulerian, then go to Step 6. Otherwise, add an artificial vertex and edges

to join the artificial vertex and the vertex of odd degree.

Step 6. Find the Eulerian tour of the component by Fleury’s algorithm.

Step 7. Reassign the two numbers alternately to the edges of the component along the Eulerian tour

from the artificial vertex. If no artificial vertex was added, start from the vertex of maximum

degree.

Step 8. Remove the artificial vertex and go to Step 2.

∗Wai Hong Chan, Solving Time-tabling Problem by Graph Theory, Thesis of Bachelor of Science in Combined Science,

Mathematical Science Major, Hong Kong Baptist College, 1994, supervised by Wai Chee Shiu.
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Example 6.4.9: Apply Step 1 of Chan-Shiu Algorithm to the graph in Example 6.4.1, numbers 1, 2, 3

were assigned to the edges incident to c1 and numbers 4, 5, 6, 7, 8 to the edges incident to c2 and so on.

Precisely, we list all edges and their corresponding number (in parentheses) as follows:

c1t1(1) c1t2(2) c1t2(3) c2t1(4) c2t1(5) c2t1(6) c2t3(7) c2t3(8) c3t2(9)

c3t2(1) c3t2(2) c3t3(3) c3t3(4) c3t4(5) c4t1(6) c4t1(7) c4t5(8) c4t5(9)

c5t2(1) c5t2(2) c5t2(3) c5t4(4) c5t4(5) c5t4(6) c5t4(7) c5t5(8) c5t5(9)

c6t3(1) c6t3(2) c6t3(3) c7t4(4) c7t4(5) c7t5(6) c7t5(7) c7t5(8)

Besides, we present the assignment (coloring) as follows:

t1 t2 t3 t4 t5

c1 1 2, 3

c2 4, 5, 6 7, 8

c3 9, 1, 2 3, 4 5

c4 6, 7 8, 9

c5 1, 2, 3 4, 5, 6, 7 8, 9

c6 1, 2, 3

c7 4, 5 6, 7, 8

From Steps 2 and 3, we choose t2 which is incident to 3 edges that were assigned 2. Also, number 4

has not been assigned to edges incident with t2.

Performing Step 4, we have t2c1(2), t2c3(2), t2c5(2), c3t3(4), c5t4(4), t3c6(2) and t4c7(4). It is not

Eulerian and we add an artificial vertex a and edges ac1, ac6, ac7, at2 to make this component to be

Eulerian with an Eulerian tour ac1t2ac6t3c3t2c5t4c7a.

Performing Step 7, we have ac1(2), c1t2(4), t2a(2) and so on. Then we have

t1 t2 t3 t4 t5

c1 1 4 , 3

c2 4, 5, 6 7, 8

c3 1, 2, 9 3, 4 5

c4 6, 7 8, 9

c5 1, 4 , 3 2 , 5, 6, 7 8, 9

c6 1, 2, 3

c7 4, 5 6, 7, 8

Boxed numbers have been changed.

Go back to Step 2, suppose we choose t1 with assigned number n1 = 6 and choose another number

n2 = 9. Performing Step 4, we have a component induced by t1c2(6), t1c4(6), c4t5(9), t5c5(9), t5c7(6) and

c5t4(6). After adding an artificial vertex a, we have an Eulerian tour at5c5t4ac7t5c4t1c2a.

Performing Step 7, start from a and follow the Eulerian tour above, we have

t1 t2 t3 t4 t5

c1 1 3, 4

c2 4, 5, 6 7, 8

c3 1, 2, 9 3, 4 5

c4 9 , 7 8, 6

c5 1, 3, 4 2, 5, 6, 7 8, 9

c6 1, 2, 3

c7 4, 5 9 , 7, 8
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Choose t2, n1 = 1 and n2 = 5:

t1 t2 t3 t4 t5

c1 1 3, 4

c2 4, 5, 6 7, 8

c3 1, 2, 9 3, 4 5

c4 7, 9 6, 8

c5 5 , 3, 4 2, 1 , 6, 7 8, 9

c6 1, 2, 3

c7 4, 5 7, 8, 9

Choose t2, n1 = 3 and n2 = 8:

t1 t2 t3 t4 t5

c1 1 8 , 4

c2 4, 5, 6 7, 8

c3 1, 2, 9 3, 4 5

c4 7, 9 6, 3

c5 3, 4, 5 1, 2, 6, 7 8, 9

c6 1, 2, 3

c7 4, 5 7, 8, 9

Choose t2, n1 = 4 and n2 = 6:

t1 t2 t3 t4 t5

c1 1 6 , 8

c2 4, 5, 6 7, 8

c3 1, 2, 9 3, 4 5

c4 7, 9 3, 6

c5 3, 4, 5 1, 2, 6, 7 8, 9

c6 1, 2, 3

c7 4, 5 7, 8, 9

Choose t3, n1 = 3 and n2 = 5. Then

t1 t2 t3 t4 t5

c1 1 6, 8

c2 4, 5, 6 7, 8

c3 1, 2, 9 5 , 4 3

c4 7, 9 3, 6

c5 3, 4, 5 1, 2, 6, 7 8, 9

c6 1, 2, 3

c7 4, 5 7, 8, 9

Choose t5, n1 = 8 and n2 = 2. Then

t1 t2 t3 t4 t5

c1 1 6, 8

c2 4, 5, 6 7, 8

c3 1, 2, 9 4, 5 3

c4 7, 9 3, 6

c5 3, 4, 5 1, 8 , 6, 7 2 , 9

c6 1, 2, 3

c7 4, 5 7, 8, 9
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Choose t5, n1 = 9 and n2 = 1. Then

t1 t2 t3 t4 t5

c1 1 6, 8

c2 4, 5, 6 7, 8

c3 1, 2, 9 4, 5 3

c4 7, 9 3, 6

c5 3, 4, 5 9 , 6, 7, 8 2, 1

c6 1, 2, 3

c7 4, 5 7, 8, 9

We have the following timetable with 9 time slots:

1 2 3 4 5 6 7 8 9

c1 t1 t3 t2
c2 t1 t1 t1 t3 t3
c3 t2 t2 t3 t3 t2
c4 t5 t5 t1 t1
c5 t5 t5 t2 t2 t2 t4 t4 t4 t4
c6 t3 t3 t3
c7 t4 t4 t5 t5 t5

6.5 Chromatic Polynomial

Let G be a simple graph, and let PG(x) (or P (x)) be the number of x-colorings of G. The function

PG(x), can be proved to be a polynomial of x, is called the chromatic polynomial of G.

Example 6.5.1: It is easy to see that PKp(x) = x(x − 1) · · · (x − p + 1). PNp(x) = xp. PPp(x) =

x(x− 1)p−1. In general, if T is any tree with p vertices, then PT (k) = x(x− 1)p−1.

For convenience, we let (x)p = PKp(x) = x(x− 1) · · · (x− p+1), which is called the fall factorial in x.

For a graph G, let fG(r) (or simply f(r)) be the number of ways of partitioning V (G) into r nonempty

independent subsets.

Theorem 6.5.2: Keep the notation above, we have PG(x) =
p∑

r=1
fG(r)(x)r, where p is the order of G.

Corollary 6.5.3: PG(x) is a monic polynomial of x.

Example 6.5.4: Consider the following graph.

C

E

D

A

B

The vertex set V = {A,B,C,D,E}. Clearly f(1) = 0, f(2) = 0 and f(5) = 1. There are only two ways to

partition V into 3 nonempty independent subsets, namely {{A,D}, {B,E}, {C}} and {{A,C}, {B,E}, {D}},
so f(3) = 2. Moreover, there are only three ways to partition V into 4 nonempty independent subsets,

namely {{A}, {B,E}, {C}, {D}}, {{A,D}, {B}, {C}, {E}} and
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{{A,C}, {B}, {D}, {E}}. Thus f(4) = 3. Therefore,

PG(x) = 2(x)3 + 3(x)4 + (x)5

= 2x(x− 1)(x− 2) + 3x(x− 1)(x− 2)(x− 3) + x(x− 1)(x− 2)(x− 3)(x− 4)

= x(x− 1)(x− 2)[2 + 3(x− 3) + (x− 3)(x− 4)]

= x(x− 1)(x− 2)(x2 − 4x+ 5).

Theorem 6.5.5: Let G be a simple graph and let e ∈ E(G). Then PG(x) = PG−e(x)− PG/e(x).

Example 6.5.6: Consider the graph in Example 6.5.4 again. We have

e

= − and

x(x− 1)(x− 2)(x− 3)

e = −

x(x− 1)3(x− 2) x(x− 1)2(x− 2)

It follows that

PG(x) = x(x− 1)(x− 2)(x2 − 4x+ 5). Since PG(1) = 0, PG(2) = 0 and PG(3) ̸= 0, we have χ(G) = 3.
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