
Chapter 5: Plane Graphs

5.1 Surface Embeddings

Definition 5.1.1: We say that G is planar if it can be drawn on the plane such that its edges intersect

only at their end vertices. Such a drawing is called a planar embedding or plane drawing. A plane graph

of G is a fixed embedding of G on the plane and a graph that is not planar is nonplanar.

Remark 5.1.2: A planar graph must be isomorphic to a plane graph, and vice versa.

As a graph can be considered to embed into the plane, it can also be considered to embed into other

surfaces, such as sphere, torus, double tours, Möbius band, etc. The definition can be generalized as

follows:

Definition 5.1.3: Let G be a graph and S a surface. We say that G is embeddable on S if G is drawn

in S with no crossing edges. Such a drawing is called an embedding of G on S.

Stereographic projection is a mapping F from the unit sphere S2 that removed the north pole to the

plane. Let S2 be the unit sphere center at (0, 0, 1) and let N = (0, 0, 2) be the north pole. We imagine

that there is a light source at the north pole, and a point −→p on S2 \ {N}, let F (−→p ) be the shadow of −→p .
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Evidently F has the form

F (x, y, z) =

(
Rx

r
,
Ry
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)
,

where r and R are the distances from −→p = (x, y, z) ∈ S2 \ {N} and F (−→p ) to the z-axis, respectively. It

is easy to see that

F (x, y, z) =

(
2x

2− z
,
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2− z

)
,

which is bijective and differentiable.

So we know that a sphere with one point removed and the plane have the same topological property

(actually they are diffeomorphic). Apply the stereographic projection from sphere to the plane, we have

Theorem 5.1.4: A graph is planar if and only if it is embeddable on the sphere.

Note that if a graph is drawn in a sphere, then we may assume that the north point does not lie on

the graph.

Thus the graphs formed by the lines and vertices of the five regular polyhedra are planar. Following

are the plane drawings of these five regular polyhedra, which are called Platonic graphs. We shall prove

that there are only five regular polyhedra.
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Tetrahedron Hexahedron, Cube Octahedron Dodecahedron Icosahedron

It is clear that Kp is planar when 1 ≤ p ≤ 4. We will prove that K5 and K3,3 are nonplanar. They

are called the first and the second Kuratowski graphs, respectively.

Definition 5.1.5: For a plane graph G, there are regions r1, . . . , rφ in R2 such that R2 \G = r1∪· · ·∪rφ

and the following condition holds:

1. The sets r1, . . . , rφ are pairwise disjoint.

2. Each ri is path connected. That is, for every two points x, y ∈ ri, there is a continuous curve from x to

y that does not intersect G.

3. Each continuous curve from x ∈ ri to y ∈ rj , where i ̸= j, intersects G at some point.

Each region ri is called a face of the plane graph G. There is a unique unbounded face which is called

the outer face of the plane graph G. Other faces are called inner faces of G.

Definition 5.1.6: Let f be a face of a plane graph G. We define the degree of f , denoted by deg(f)

or degG(f), to be the number of edges on the boundary of f , where cut edges will be counted twice.

Indeed, it is the smallest number of edges traversed among all closed walks around the boundary of f . If

deg(f) = k, then f is called a k-face. If all faces of G are k-faces, then G is called face regular or k-face

regular.

Definition 5.1.7: Let f be a face of a plane graph G and v ∈ V (G) that lies on the boundary of f . We

say that v and f are incident. Similarly, an edge e and a face f are incident if e is on the boundary of f .

Example 5.1.8: Consider the following graph.
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We have deg(f1) = 6, deg(f2) = 3, deg(f3) = 4, deg(f4) = 1,

deg(f5) = 2, and deg(f0) = 12.

Note that ab belongs to the boundary of f1. If we walks

around the boundary of f1 once, then we will travel ab twice

and the shortest closed walk is abacdua, hence deg(f1) = 6.

Similarly we have deg(f0) = 12.

Given a plane graph G, we use F (G) (or F ) to denote the set of all faces of G. Sometimes we use

G = (V,E, F ) to denote a plane graph and φ(G) (or φ) to denote |F |. We have a lemma similar to the

handshaking lemma.

Lemma 5.1.9: Let G = (V,E, F ) be a (p, q)-plane graph. Then∑
f∈F

deg(f) = 2q.

5.2 Euler’s Formula
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Theorem 5.2.1 (Euler’s Formula): Every connected graph with p vertices, q edges and φ faces satisfies

the equation p− q + φ = 2.

Corollary 5.2.2: Let G be a plane graph with p vertices, q edges, φ faces, and ω components. Then

p− q + φ = ω + 1.

Corollary 5.2.3: If G1 and G2 are two plane drawings of G, then φ(G1) = φ(G2).

Theorem 5.2.4: Let G be a simple planar graph with p vertices and q edges, where p ≥ 3. Then

(a) q ≤ 3p− 6.

(b) q ≤ 2p− 4, if G has no 3-cycles.

Corollary 5.2.5: K5 is nonplanar.

Corollary 5.2.6: K3,3 is nonplanar.

Corollary 5.2.7: Every simple connected planar graph whose minimum degree δ ≤ 5.

Corollary 5.2.8: There are only five regular polyhedra.

5.3 Planarity

If G is planar, then its subgraph is planar. The contrapositive of this statement is: If G contains a

nonplanar subgraph, then G is nonplanar.

Definition 5.3.1: Let e be an edge. If we insert a vertex of degree two in e to make it become a path of

length 2, then this operation is called a subdivision of e. A subdivision of a graph G is a graph obtained

from G by a sequence of edge subdivisions.

Obviously, if G is planar, then any subdivision of G is planar. The converse also holds (see Theo-

rem 5.3.8).

Example 5.3.2: Fig. 1(a) is a subdivision of K3,3. It is isomorphic to a subgraph of the Petersen graph

(Fig. 1(b)) and this shows that Petersen graph is nonplanar.
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Figure 1: A subdivision of K3,3 and Petersen graph.

Definition 5.3.5: A subgraph H of a graph that is a subdivision of K5 or K3,3 is called Kuratowski

subgraph or K-subgraph for short.
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Theorem 5.3.8 (Kuratowski, 1930): A graph is planar if and only if it does not contain K-subgraph.

5.4 Duality

Given a planar graph G, a plane dual (or dual graph) G∗ of G is defined by the following procedures:

1. Take a plane drawing G̃ of G.

2. Choose one point r∗ inside each face r of G̃ — these points are the vertices of G∗.

3. For each e of G̃, draw a line (curve) e∗ connecting the vertices of G∗ on each side of e. Note that if e

is incident with the same face, then this line is a loop.

Moreover, suppose V (G) = V (G̃) = {v1, . . . , vp}, E(G) = E(G̃) = {e1, . . . , eq} and F (G̃) = {r1, . . . , rφ}.
Then V (G∗) = {r∗1, . . . , r∗φ} and E(G∗) = {e∗1, . . . , e∗q}. It is easy to see that G∗ is a connected plane graph.

By Euler’s formula, we have φ(G∗) = p.

More precisely, for a vertex v ∈ V (G) of degree k, let f1, . . . , fk be the faces incident with v lying in

the plane in clockwise direction. Note that they may not be different. Let ai be the common edge incident

with fi and fi+1, where 1 ≤ i ≤ k and fk+1 = f1. The corresponding points for each face are f∗
1 , . . . , f

∗
k .

Then f∗
1a

∗
1f

∗
2a

∗
2 · · · f∗

ka
∗
kf

∗
1 is a closed walk in G∗ which around v in the plane. It indices a unique face

containing v in G∗ of degree k. We may denote this face by v∗ and hence F (G∗) = {v∗1, . . . , v∗p}.
Using these corresponding, we have the following list:

an edge of G ↔ an edge of G∗

a vertex of degree k in G ↔ a face of degree k in G∗

a face of degree k in G ↔ a vertex of degree k in G∗

Note that the plane dual of G depends on the plane drawing of G. Difference plane drawing may induce

non-isomorphic plane duals.

Example 5.4.1: Let G = (V,E) be a graph with V = {A,B,C,D}, E = {AA,AB,BC,CB,BD,CD}.
The following are two plane drawings of G and their corresponding plane duals (write vertices and

dashed lines).
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One can see that the plane duals are not isomorphic.

It can be proved that if G is a connected plane graph, then (G∗)∗ ∼= G. The proof is omitted here.
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