Chapter 2: Connectivity

2.1 Connectedness

Definition 2.1.1:

- 1. A walk W in a graph G is an alternating sequence $(u_0, e_1, u_1, e_2, \ldots, e_k, u_k)$ (or $u_0e_1u_1e_2\cdots e_ku_k$, for short) of vertices and edges that begins and ends with a vertex, where $e_i = u_{i-1}u_i$ for each $i \in \{1, 2, \ldots, k\}$. The vertex u_0 is called the *initial vertex* of W and the vertex u_k is called the *final vertex* of W. The initial or final vertex of W is also called an *end vertex* of W and the natural number k is the *length* of W.
- 2. A trail in G is a walk with all of its edges distinct.
- 3. A path in G is a walk with all its vertices distinct.
- 4. A (u, v)-walk ((u, v)-trail or (u, v)-path) is a walk (respectively, trail or path) with initial vertex u and final vertex v.
- 5. A walk or trail of length at least one is *closed* if the initial vertex and the final vertex coincide. A close trail is also called a *circuit*.
- 6. A cycle is a closed walk with distinct vertices except the initial and final vertices coincide.

By convention, we consider a single vertex as a path (walk) of length zero. Such a path (walk) is called a *trivial path* (walk). However, cycles always have positive length and the only cycles of length 1 are loops. Also, the set of vertices and edges constitute a given walk, trail, path, or cycle in a graph G forms a subgraph of G.

If G is simple or there is no ambiguity about the edges being considered, then we simply write a walk, trial, path, or cycle by a sequence of vertices $u_0u_1\cdots u_k$ instead of $(u_0, e_1, u_1, e_2, \dots, e_k, u_k)$.

Definition 2.1.2: Let $P = (u_0 e_1 u_1 e_2 \cdots e_k u_k)$ and $Q = (v_0 f_1 v_1 f_2 \cdots f_k v_l)$ be two walks in a graph. If $u_k = v_0$, then the *composite* walk is formed by

$$PQ = (u_0e_1u_1e_2\cdots e_ku_kf_1v_1f_2\cdots f_kv_l).$$

The *inverse* walk of P is defined by $P^{-1} = (u_k e_k \cdots u_1 e_1 u_0)$.

Lemma 2.1.3: Let G be a graph having distinct vertices u and v. Any (u, v)-walk contains a (u, v)-path.

Corollary 2.1.4: Suppose W is a circuit. For any $u \in V(W)$, there is a cycle in W containing u.

Definition 2.1.5: Two vertices u and v are connected in a graph G if there is a (u, v)-path in G. A graph G is connected if every pair of distinct vertices $u, v \in V(G)$ are connected. Otherwise G is disconnected.

By Lemma 2.1.3, the term (u, v)-path in the above definition can be replaced by (u, v)-walk.

Proposition 2.1.6: Let G = (V, E) be a graph. Connectivity on V is an equivalence relation*.

^{*}Readers can refer to any algebra textbook for the formal definition of equivalence relation

Let G=(V,E) and let V_1,\ldots,V_{ω} be equivalence classes of the equivalence relation \sim . Then $G[V_1],\ldots,G[V_{\omega}]$ are pairwise disjoint subgraphs and $G=G[V_1]+\cdots+G[V_{\omega}]=\sum_{i=1}^{\omega}G[V_i]$.

Definition 2.1.7: Undertake the defined symbols above, $G[V_1], \ldots, G[V_{\omega}]$ are called *connected components* (or simply *components*) of G. We use $\omega(G)$ to denote the number of component(s) of G.

That is, G is connected if and only if $\omega(G) = 1$.

Theorem 2.1.8: If a graph has exactly two vertices of odd degree, then these two vertices must be connected.

Theorem 2.1.9: For a simple graph G of order p and ω components, we have

$$|E(G)| \le \frac{(p-\omega)(p-\omega+1)}{2}.$$

Definition 2.1.10: A vertex v is a *cut-vertex* if G - v has more components than G. An edge e is a *cut-edge* (or *bridge*) if G - e has more components than G.

Lemma 2.1.11: The number of components $\omega(G) \leq \omega(G-e) \leq \omega(G) + 1$ for any edge e of G.

Corollary 2.1.12: For a graph G and $e \in E(G)$, the following are equivalent:

- (1) The edge e is a bridge of G.
- (2) The edge e is not contained in any cycle of G.

2.2 Distance

Definition 2.2.1: Let G = (V, E) be a graph. For $u, v \in V$, the distance between u and v, denoted $d_G(u, v)$ (or d(u, v) when there is no ambiguity), is the length of the shortest (u, v)-path in G. If there is no path between them in G, then we assign $d_G(u, v) = \infty$.

Note that $d_G(\cdot, \cdot)$ is a metric on G. And if $H \subseteq G$, then $d_G(u, v) \leq d_H(u, v)$ for all $u, v \in V(H)$.

Definition 2.2.2: Let G be a graph and $u \in V(G)$.

1. The eccentricity $\epsilon_G(u)$ (or $\epsilon(u)$) of u in G is the distance from u to the vertex farthest from u in G. That is,

$$\epsilon_G(u) = \max_{v \in V(G)} \{ d_G(u, v) \}.$$

- 2. A *center* of G is a vertex having minimum eccentricity.
- 3. The eccentricity of a center of G is called the *radius* of G and denoted by rad(G).
- 4. The diameter of G is defined by

$$\operatorname{diam}(G) = \max_{u,v \in V(G)} \{d_G(u,v)\} = \max_{u \in V(G)} \{\epsilon_G(u)\}.$$

Suppose G is a graph with diameter k. Then there are two vertices u and v such that d(u,v)=k, which implies there is a (u,v)-path P of length k. Such a path is called a diameter (or diametral path) of G.

2.3 Edge Cuts

Definition 2.3.1: Let G be a connected graph. An *edge cut* S is a set of edges such that the graph G - S is disconnected and G - S' is connected for any subset $S' \subset S$.

Remark 2.3.2: The above definition differs from some books. In most books, it is called a *bond*, and "edge cut" has another meaning. Note that an edge cut is a minimal set of edges that disconnects a connected graph. A graph may contains many edge cuts. Recalled that if $S = \{e\}$ is an edge cut, then e is a cut-edge (bridge).

Lemma 2.3.3: If S is an edge cut of a connected graph G, then G - S has precisely two components.

Theorem 2.3.4: Let G be a connected graph. If C is a cycle in G and S is an edge cut of G, then $|E(C) \cap S|$ is even.

2.4 Edge Connectivity and Connectivity

Definition 2.4.1: Let G be a graph with two or more vertices. The smallest cardinal of an edge cut S of G is called the *edge-connectivity* of G, denoted by $\kappa'(G)$ (or κ'). If $k \leq \kappa'(G)$, then we say that G is k-edge-connected.

Remark 2.4.2: Note that

- 1. For any disconnected graph G, we have $\kappa'(G) = 0$.
- 2. A connected graph G has a bridge if and only if $\kappa'(G) = 1$.
- 3. If G is a graph and G' is the graph obtained from G by removing all of its loops, then $\kappa'(G) = \kappa'(G')$.
- 4. If $G = N_1$, then we define $\kappa'(G) = \infty$ by convention.

Similar to edge-connectivity we may define vertex-connectivity.

Definition 2.4.3: Let G be a graph. The minimum number of vertices of G, whose removal disconnects G or creates a graph with a single vertex, is called the *connectivity* of G and is denoted by $\kappa(G)$ (or κ). If $k \leq \kappa(G)$, then we say that G is k-connected.

Remark 2.4.4: Note that

- 1. For any disconnected graph G, we have $\kappa(G) = 0$.
- 2. If G is a graph and G' is the graph obtained from G by removing all of its loops and collapsing all multiple edges to single edges, then $\kappa(G) = \kappa(G')$.

Example 2.4.5: For $m, n \geq 2$ and $p \geq 1$,

- 1. $\kappa(N_p) = 0$.
- 2. $\kappa(C_p) = 2 \text{ if } p \ge 3.$
- 3. $\kappa(K_p) = p 1$.
- 4. $\kappa(K_{m,n}) = \min\{m, n\}.$

Theorem 2.4.6: For a graph G, we have $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.

Definition 2.4.8: Let G be a graph and $u, v \in V(G)$. If u and v are the only common vertices of two (u, v)-paths P and Q, then these two paths are called *internally disjoint*.

Theorem 2.4.9 (Whitney, 1932): For a connected graph G = (V, E) has three or more vertices, the following statements are equivalent:

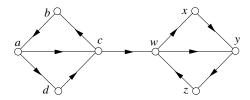
- (1) G is 2-connected.
- (2) For every pair of distinct vertices, there is a cycle in G contains both of them.
- (3) For every pair of distinct vertices, there are two internally disjoint paths in G connecting them.

2.5 Connectedness for Digraphs

In digraph, the concept of connectedness is slightly different from undirected graph.

Definition 2.5.1: A digraph is *connected* (or *weakly connected*) if its underlying graph is connected. A *component* of \overrightarrow{G} means the subdigraph induced by the vertices of the corresponding component of the underlying graph G.

Example 2.5.2: Consider the following digraph.



Clearly it is connected, but it is easy to see that we cannot travel c from w in the above digraph.

Hence the connectivity defined above seems to be different with our intuition. Therefore, we introduce the following definitions.

Definition 2.5.3: A directed walk \overrightarrow{W} in a digraph \overrightarrow{G} is an alternating sequence

$$\overrightarrow{W} = (u_0, e_1, u_1, e_2, \dots, e_k, u_k)$$
 (or $\overrightarrow{W} = u_0 e_1 u_1 e_2 \cdots e_k u_k$, for short)

of vertices and arcs. Where, for each $i \in \{1, 2, ..., k\}$, the tail and head of e_i are u_{i-1} and u_i , respectively.

The definitions of directed trail, path, cycle, etc. are similar to undirected graph and we omit the details here.

Remark 2.5.4: Since each arc has a unique tail and head, there is no ambiguity in writing a directed walk as $\overrightarrow{W} = e_1 e_2 \cdots e_k$, where it is understood that the initial vertex of \overrightarrow{W} is the tail of e_1 and the final vertex is the head of e_k .

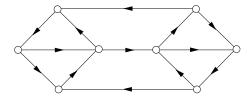
Likewise, if our digraph has no parallel arcs, then we can write a directed walk as a sequence of vertices $\overrightarrow{W} = u_0 u_1 \cdots u_k$.

Lemma 2.5.5: Let \overrightarrow{G} be a digraph having distinct vertices u and v. Any directed (u, v)-walk contains a directed (u, v)-path.

Definition 2.5.6: Let $\overrightarrow{G} = (V, E)$ be a digraph and let $u, v \in V$. If there is a directed (u, v)-path, then we say that u is reachable to v (or v is reachable from u).

Definition 2.5.7: Let $\overrightarrow{G} = (V, E)$ be a digraph. If every vertex is reachable to others, then \overrightarrow{G} is called strongly connected. The strong component of \overrightarrow{G} is a maximal strongly connected subdigraph of \overrightarrow{G} .

Example 2.5.8: The following is a strongly connected digraph.



Definition 2.5.9: Let G be an undirected graph. An *orientation* of G is a digraph obtained from G by assigning each edge a direction. If there is a strongly connected orientation of G, then we call G orientable.

Theorem 2.5.10 (Robbins, 1939): A connected graph G = (V, E) is orientable if and only if it has no bridges.