
Chapter 2: Connectivity

2.1 Connectedness

Definition 2.1.1:

1. A walk W in a graph G is an alternating sequence (u0, e1, u1, e2, . . . , ek, uk) (or u0e1u1e2 · · · ekuk,
for short) of vertices and edges that begins and ends with a vertex, where ei = ui−1ui for each

i ∈ {1, 2, . . . , k}. The vertex u0 is called the initial vertex of W and the vertex uk is called the final

vertex of W . The initial or final vertex of W is also called an end vertex of W and the natural number

k is the length of W .

2. A trail in G is a walk with all of its edges distinct.

3. A path in G is a walk with all its vertices distinct.

4. A (u, v)-walk ((u, v)-trail or (u, v)-path) is a walk (respectively, trail or path) with initial vertex u and

final vertex v.

5. A walk or trail of length at least one is closed if the initial vertex and the final vertex coincide. A close

trail is also called a circuit.

6. A cycle is a closed walk with distinct vertices except the initial and final vertices coincide.

By convention, we consider a single vertex as a path (walk) of length zero. Such a path (walk) is

called a trivial path (walk). However, cycles always have positive length and the only cycles of length 1

are loops. Also, the set of vertices and edges constitute a given walk, trail, path, or cycle in a graph G

forms a subgraph of G.

If G is simple or there is no ambiguity about the edges being considered, then we simply write a walk,

trial, path, or cycle by a sequence of vertices u0u1 · · ·uk instead of (u0, e1, u1, e2, . . . , ek, uk).

Definition 2.1.2: Let P = (u0e1u1e2 · · · ekuk) and Q = (v0f1v1f2 · · · fkvl) be two walks in a graph. If

uk = v0, then the composite walk is formed by

PQ = (u0e1u1e2 · · · ekukf1v1f2 · · · fkvl).

The inverse walk of P is defined by P−1 = (ukek · · ·u1e1u0).

Lemma 2.1.3: Let G be a graph having distinct vertices u and v. Any (u, v)-walk contains a (u, v)-path.

Corollary 2.1.4: Suppose W is a circuit. For any u ∈ V (W ), there is a cycle in W containing u.

Definition 2.1.5: Two vertices u and v are connected in a graph G if there is a (u, v)-path in G. A graph

G is connected if every pair of distinct vertices u, v ∈ V (G) are connected. Otherwise G is disconnected.

By Lemma 2.1.3, the term (u, v)-path in the above definition can be replaced by (u, v)-walk.

Proposition 2.1.6: Let G = (V,E) be a graph. Connectivity on V is an equivalence relation∗.

∗Readers can refer to any algebra textbook for the formal definition of equivalence relation
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Let G = (V,E) and let V1, . . . , Vω be equivalence classes of the equivalence relation ∼. Then

G[V1], . . . , G[Vω] are pairwise disjoint subgraphs and G = G[V1] + · · ·+G[Vω] =
ω∑

i=1
G[Vi].

Definition 2.1.7: Undertake the defined symbols above, G[V1], . . . , G[Vω] are called connected compo-

nents (or simply components) of G. We use ω(G) to denote the number of component(s) of G.

That is, G is connected if and only if ω(G) = 1.

Theorem 2.1.8: If a graph has exactly two vertices of odd degree, then these two vertices must be

connected.

Theorem 2.1.9: For a simple graph G of order p and ω components, we have

|E(G)| ≤ (p− ω)(p− ω + 1)

2
.

Definition 2.1.10: A vertex v is a cut-vertex if G − v has more components than G. An edge e is a

cut-edge (or bridge) if G− e has more components than G.

Lemma 2.1.11: The number of components ω(G) ≤ ω(G− e) ≤ ω(G) + 1 for any edge e of G.

Corollary 2.1.12: For a graph G and e ∈ E(G), the following are equivalent:

(1) The edge e is a bridge of G.

(2) The edge e is not contained in any cycle of G.

2.2 Distance

Definition 2.2.1: Let G = (V,E) be a graph. For u, v ∈ V , the distance between u and v, denoted

dG(u, v) (or d(u, v) when there is no ambiguity), is the length of the shortest (u, v)-path in G. If there is

no path between them in G, then we assign dG(u, v) = ∞.

Note that dG(·, ·) is a metric on G. And if H ⊆ G, then dG(u, v) ≤ dH(u, v) for all u, v ∈ V (H).

Definition 2.2.2: Let G be a graph and u ∈ V (G).

1. The eccentricity ϵG(u) (or ϵ(u)) of u in G is the distance from u to the vertex farthest from u in G.

That is,

ϵG(u) = max
v∈V (G)

{dG(u, v)}.

2. A center of G is a vertex having minimum eccentricity.

3. The eccentricity of a center of G is called the radius of G and denoted by rad(G).

4. The diameter of G is defined by

diam(G) = max
u,v∈V (G)

{dG(u, v)} = max
u∈V (G)

{ϵG(u)}.

Suppose G is a graph with diameter k. Then there are two vertices u and v such that d(u, v) = k,

which implies there is a (u, v)-path P of length k. Such a path is called a diameter (or diametral path) of

G.
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2.3 Edge Cuts

Definition 2.3.1: Let G be a connected graph. An edge cut S is a set of edges such that the graph

G− S is disconnected and G− S′ is connected for any subset S′ ⊂ S.

Remark 2.3.2: The above definition differs from some books. In most books, it is called a bond, and

“edge cut” has another meaning. Note that an edge cut is a minimal set of edges that disconnects a

connected graph. A graph may contains many edge cuts. Recalled that if S = {e} is an edge cut, then e

is a cut-edge (bridge).

Lemma 2.3.3: If S is an edge cut of a connected graph G, then G− S has precisely two components.

Theorem 2.3.4: Let G be a connected graph. If C is a cycle in G and S is an edge cut of G, then

|E(C) ∩ S| is even.

2.4 Edge Connectivity and Connectivity

Definition 2.4.1: Let G be a graph with two or more vertices. The smallest cardinal of an edge cut S

of G is called the edge-connectivity of G, denoted by κ′(G) (or κ′). If k ≤ κ′(G), then we say that G is

k-edge-connected.

Remark 2.4.2: Note that

1. For any disconnected graph G, we have κ′(G) = 0.

2. A connected graph G has a bridge if and only if κ′(G) = 1.

3. If G is a graph and G′ is the graph obtained from G by removing all of its loops, then κ′(G) = κ′(G′).

4. If G = N1, then we define κ′(G) = ∞ by convention.

Similar to edge-connectivity we may define vertex-connectivity.

Definition 2.4.3: Let G be a graph. The minimum number of vertices of G, whose removal disconnects

G or creates a graph with a single vertex, is called the connectivity of G and is denoted by κ(G) (or κ).

If k ≤ κ(G), then we say that G is k-connected.

Remark 2.4.4: Note that

1. For any disconnected graph G, we have κ(G) = 0.

2. If G is a graph and G′ is the graph obtained from G by removing all of its loops and collapsing all

multiple edges to single edges, then κ(G) = κ(G′).

Example 2.4.5: For m,n ≥ 2 and p ≥ 1,

1. κ(Np) = 0.

2. κ(Cp) = 2 if p ≥ 3.

3. κ(Kp) = p− 1.

4. κ(Km,n) = min{m,n}.
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Theorem 2.4.6: For a graph G, we have κ(G) ≤ κ′(G) ≤ δ(G).

Definition 2.4.8: Let G be a graph and u, v ∈ V (G). If u and v are the only common vertices of two

(u, v)-paths P and Q, then these two paths are called internally disjoint.

Theorem 2.4.9 (Whitney, 1932): For a connected graph G = (V,E) has three or more vertices, the

following statements are equivalent:

(1) G is 2-connected.

(2) For every pair of distinct vertices, there is a cycle in G contains both of them.

(3) For every pair of distinct vertices, there are two internally disjoint paths in G connecting them.

2.5 Connectedness for Digraphs

In digraph, the concept of connectedness is slightly different from undirected graph.

Definition 2.5.1: A digraph is connected (or weakly connected) if its underlying graph is connected. A

component of
−→
G means the subdigraph induced by the vertices of the corresponding component of the

underlying graph G.

Example 2.5.2: Consider the following digraph.

b

a

zd

c w

x

y

Clearly it is connected, but it is easy to see that we cannot travel c from w in the above digraph.

Hence the connectivity defined above seems to be different with our intuition. Therefore, we introduce

the following definitions.

Definition 2.5.3: A directed walk
−→
W in a digraph

−→
G is an alternating sequence

−→
W = (u0, e1, u1, e2, . . . , ek, uk) (or

−→
W = u0e1u1e2 · · · ekuk, for short)

of vertices and arcs. Where, for each i ∈ {1, 2, . . . , k}, the tail and head of ei are ui−1 and ui, respectively.

The definitions of directed trail, path, cycle, etc. are similar to undirected graph and we omit the

details here.

Remark 2.5.4: Since each arc has a unique tail and head, there is no ambiguity in writing a directed

walk as
−→
W = e1e2 · · · ek, where it is understood that the initial vertex of

−→
W is the tail of e1 and the final

vertex is the head of ek.

Likewise, if our digraph has no parallel arcs, then we can write a directed walk as a sequence of vertices
−→
W = u0u1 · · ·uk.

Lemma 2.5.5: Let
−→
G be a digraph having distinct vertices u and v. Any directed (u, v)-walk contains

a directed (u, v)-path.
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Definition 2.5.6: Let
−→
G = (V,E) be a digraph and let u, v ∈ V . If there is a directed (u, v)-path, then

we say that u is reachable to v (or v is reachable from u).

Definition 2.5.7: Let
−→
G = (V,E) be a digraph. If every vertex is reachable to others, then

−→
G is called

strongly connected. The strong component of
−→
G is a maximal strongly connected subdigraph of

−→
G .

Example 2.5.8: The following is a strongly connected digraph.

Definition 2.5.9: Let G be an undirected graph. An orientation of G is a digraph obtained from G

by assigning each edge a direction. If there is a strongly connected orientation of G, then we call G

orientable.

Theorem 2.5.10 (Robbins, 1939): A connected graph G = (V,E) is orientable if and only if it has no

bridges.
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