
Chapter 1: Graphs and Networks

1.3 Notation and Basic Definitions

Definition 1.3.1: A graph is an ordered triple G = (V,E, ϕ), where V ̸= ∅, V ∩ E = ∅ and ϕ : E →
P(V ) such that |ϕ(e)| = 1 or 2 for each e ∈ E.

Note that P(V ) denotes the power set of V and the mapping ϕ is called the end map of the graph.

Definition 1.3.2: Elements of V are called vertices of G, and elements of E are called edges of G. The

vertices in ϕ(e) are called the end vertices of the edge e.

Definition 1.3.6: Let G = (V,E). When V and E are finite, the graph G is called a finite graph, and

the cardinal of V is called the order of G and denoted by |G| or p(G), thus |G| = |V |. The number |E| is
called the size of G and sometimes denoted by q(G). More precisely, if |V | = p and |E| = q, then we say

that G is a (p, q)-graph. A graph being not finite is called an infinite graph.

Note that, unless otherwise stated, the term “graph” always means finite graph.

Remark 1.3.7: The graph G is also called an undirected graph. This is different from the digraph

discussed later.

Example 1.3.8: The graph come from Königsberg bridges problem is a (4, 7)-graph. That is, it contains

4 vertices and 7 edges.

Let G be a graph. We often use V and E to denote the vertex set and the edge set, respectively.

When the discussion involves more than one graph, in order to avoid confusion we will use V (G) and

E(G) to denote them, respectively.

We introduce some terminologies in the following:

Definition 1.3.9: Let G = (V,E, ϕ) be a graph.

1. An edge e is called a loop (resp. link) if |ϕ(e)| = 1 (resp. |ϕ(e)| = 2).

2. u, v ∈ V are adjacent or neighbors if ϕ(e) = {u, v} for some e ∈ E. That is, e = uv in our simplified

notation. We also say that e joins u and v; u is adjacent with v and vice versa. Note that u and v

may be the same.

3. e, f ∈ E are adjacent if ϕ(e) ∩ ϕ(f) ̸= ∅, i.e., they have a common end vertex.

4. u ∈ V and e ∈ E are incident if u ∈ ϕ(e). Sometimes, we say that u is incident with e as well as e is

incident with u.

5. E′ ⊆ E is a set of multiple edges or parallel edges if |E′| ≥ 2 and ϕ(e) = ϕ(f) for all e, f ∈ E′.

6. u ∈ V is called isolated if u ̸∈ ϕ(e) for all e ∈ E.

Definition 1.3.10: A graph containing no parallel edges nor no loops is called a simple graph. A graph

that is not simple is called a non-simple graph. A graph containing parallel edges is called a multigraph.
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1.4 Degree

Definition 1.4.1: Let G = (V,E, ϕ) be a graph and u ∈ V . The degree of u, denoted by degG(u), or

deg(u) when there is no ambiguity, is defined by

deg(u) =
∣∣∣{e ∈ E | u ∈ ϕ(e), |ϕ(e)| = 2}

∣∣∣+ 2
∣∣∣{e ∈ E | u ∈ ϕ(e), |ϕ(e)| = 1}

∣∣∣.
That means deg(u) is the number of edges incident with u, where the loops are counted twice.

Theorem 1.4.3 (Handshaking Lemma, Euler): For a graph G = (V,E), we have
∑
u∈V

deg(u) = 2|E|.

Definition 1.4.4: Let G = (V,E) be a graph. A vertex u is called a k-vertex if deg(u) = k. If k is odd

(resp. even), then u is called an odd vertex (resp. even vertex).

Corollary 1.4.5: In any graph there is always an even number of odd vertices.

Corollary 1.4.6: Suppose G is a (p, q)-simple graph (i.e., G is a (p, q)-graph and is also simple). Then

q ≤ 1
2p(p− 1).

Definition 1.4.7: A graph G = (V,E) is called k-regular if deg(u) = k for all u ∈ V . A 3-regular graph

is also called a cubic graph. A graph is regular if it is k-regular for some nonnegative integer k.

The graph below is a famous cubic regular graph called the Petersen graph:

Corollary 1.4.8: Every k-regular graph of order p has
kp

2
edges.

Definition 1.4.9: For a graph G with vertex set V = {v1, . . . , vp}, the sequence (deg(v1), . . . , deg(vp))

with deg(v1) ≥ · · · ≥ deg(vp) is called its degree sequence. The smallest term, deg(vp), of the degree

sequence is called the minimum degree of G and is denoted by δ(G) (or δ), while the largest term,

deg(v1), is called the maximum degree of G and is denoted by ∆(G) (or ∆).

From Handshaking Lemma we have

Corollary 1.4.10: Suppose (d1, . . . , dp) is a degree sequence of a graph, then

p∑
i=1

di is even.

Definition 1.4.11: Let G = (V,E) be a graph and u ∈ V . The open neighborhood of u (or neighborhood

of u, for short), denoted byNG(u) orN(u), is the set of all the neighbors of u inG. The closed neighborhood

of u, denoted by NG[u] or N [u], is defined by N(u) ∪ {u}. In general, for S ⊆ V ,

NG(S) = {v | v ∈ NG(s) for some s ∈ S}

NG[S] = NG(S) ∪ S.

When G is understood, we write N(S) and N [S], respectively.
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Lemma 1.4.12: Suppose G = (V,E) is a graph and A as well as B are subsets of V . The following

statements hold:

1. N(A ∪B) = N(A) ∪N(B);

2. N [A ∪B] = N [A] ∪N [B];

3. N(A ∩B) ⊆ N(A) ∩N(B);

4. N [A ∩B] ⊆ N [A] ∩N [B].

1.5 Some Basic Graphs

The null graph on p vertices is the simple graph Np, where |V (Np)| = p and |E(Np)| = 0.

The path graph (or path for short) on p ≥ 2 vertices is the simple graph Pp, where

V (Pp) = {u1, u2, . . . , up} and

E(Pp) = {u1u2, u2u3, . . . , up−1up} = {uiui+1 | 1 ≤ i ≤ p− 1}.

By convention, let P1 = N1. Pp is also called the p-path. It is easy to see that Pp is a (p, p− 1)-graph.

The cycle graph (or simple cycle) of order p ≥ 3 is the simple graph Cp, where

V (Cp) = {u1, u2, . . . , up} and

E(Cp) = {u1u2, u2u3, . . . , up−1up, upu1} = {uiui+1 | 1 ≤ i ≤ p} if we define up+1 = u1.

Let C1 = (V1, E1), where V1 = {u1}, E1 = {u1u1}.
Let C2 = (V2, E2), where V2 = {u1, u2}, E2 = {e1 = u1u2, e2 = u1u2}.
Thus Cp is simple if and only if p ≥ 3. Cp is also called the p-cycle. C3 is called a triangle and C4 is

called a square. Clearly, Cp is a (p, p)-graph.

A complete graph is a simple graph in which every two distinct vertices are adjacent. The complete

graph of order p is denoted by Kp. Namely

V (Kp) = {u1, u2, . . . , up} and

E(Kp) = {uiuj | 1 ≤ i < j ≤ p}.

Proposition 1.5.1: The complete graph Kp is a (p− 1)-regular graph and contains 1
2p(p− 1) edges.

Proof: Every vertex is adjacent to other p− 1 vertices, so Kp is (p− 1)-regular. By Corollary 1.4.8, the

number of edges in Kp is 1
2p(p− 1). �

Proposition 1.5.2: Suppose G is a (p, q)-simple graph. Then q = 1
2 [p(p− 1)] if and only if G is Kp.

Suppose k ∈ N. A graph G = (V,E) is said to be k-partite if V can be partitioned into k disjoint

subsets V1, . . . , Vk, such that no two vertices within the same set are adjacent. The partition (V1, . . . , Vk)

is called a k-partition of G. When k = 2, G is called bipartite and (V1, V2) is a bipartition of G.

A complete bipartite graph is a simple bipartite graph with bipartition (X,Y ) in which every vertex

of X is adjacent to all vertices of Y . If |X| = m and |Y | = n, then such a graph is denoted by Km,n. The

vertex set and edge set of Km,n are

V (Km,n) = {u1, u2, . . . , um} ∪ {v1, v2, . . . , vn} and

E(Km,n) = {uivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
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It is easy to see that Km,n and Kn,m are the same in some sense (it will be called isomorphic). Hence we

can assume m ≤ n.

The complete bipartite graph K1,n is a called a star (or n-star) and denoted by Sn.

The following proposition can be obtained easily.

Proposition 1.5.3: The complete bipartite graph Km,n is an (m+ n,mn)-graph.

Proposition 1.5.4: Suppose G is a simple bipartite graph with p vertices and q edges, then q ≤ p2

4 .

1.6 Subgraphs

Definition 1.6.1: For graphs G′ = (V ′, E′) and G = (V,E). G′ is called a subgraph of G (also G is a

supergraph of G′) if V ′ ⊆ V and E′ ⊆ E. We write G′ ⊆ G if G′ is a subgraph of G. When G′ ⊆ G and

G′ ̸= G, G′ is a proper subgraph of G and is denoted as G′ ⊂ G.

It is easy to obtain the following properties about subgraphs:

(1) G ⊆ G.

(2) If F ⊆ H and H ⊆ G, then F ⊆ G.

(3) Suppose G = (V,E). For each v ∈ V , H = ({v},∅) is a subgraph of G.

(4) A graph obtained from some edges of G together with their end vertices is a subgraph of G. Such a

subgraph is called an edge-induced subgraph of G. We will give a formal definition later.

Definition 1.6.3: For a nonempty subset W ⊆ V (G), the subgraph of G induced by W , denoted by

G[W ], is the graph with vertex set W whose edge set consists of all the edges of G having their end

vertices in W . G[W ] is also called the induced subgraph of G by W .

In other words, G[W ] is the maximal (with respect to inclusion ‘⊆’) subgraph of G containing W .

Definition 1.6.4: For a nonempty subset F ⊆ E(G), the subgraph of G induced by F , denoted by G[F ],

is the graph with edge set F whose vertex set consists of all the end vertices of F . G[F ] is also called the

edge-induced subgraph of G by F .

In other words, G[F ] is the minimal subgraph of G containing F .

When W = {w1, . . . , wm} ⊆ V (G). We write G[w1, . . . , wm] instead of G[{w1, . . . , wm}] and similar

convention will be adopted for the edge-induced subgraph.

Definition 1.6.5: Let H ⊆ G. If V (H) = V (G), then H is called a spanning subgraph of G. A subgraph

obtained from G by deleting all loops and identifying all parallel edges is called the basic simple graph or

underlying simple graph of G.

Thus the underlying simple graph must be a spanning subgraph of G.
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1.7 Isomorphism

Definition 1.7.1: Let G = (V,E, ϕ) and H = (V ′, E′, ψ) be two graphs. An isomorphism f from G to

H is an ordered pair f = (fV , fE) of bijections fV : V → V ′ and fE : E → E′ satisfying the following

condition:

ϕ(e) = {u, v} implies ψ(fE(e)) = {fV (u), fV (v)}.

That is, f preserves the adjacency of vertices.

Two graphs G and H are isomorphic, denoted by G ∼= H, if there is an isomorphism between them.

For simple graphs, we may ignore the end maps.

Definition 1.7.2: Let G = (V,E) and H = (V ′, E′) be two simple graphs. An isomorphism f : G→ H

is an ordered pair f = (fV , fE) of bijections fV : V → V ′ and fE : E → E′ satisfying the following

condition:

fE(uv) = fV (u)fV (v)

for every edge uv ∈ E.

Definition 1.7.3: Two graphs G and H are equal or identical, denoted by G = H, if V (G) = V (H),

E(G) = E(H) and their end maps are the same.

Remark 1.7.4: Of course, two identical graphs are isomorphic. We may treat isomorphic graphs as the

same graphs.

Definition 1.7.6: Any subgraph of a given graph G that is isomorphic to a complete graph Kh for some

h ∈ N is called an h-clique in G. When the number of vertices in the subgraph is irrelevant, we simply

call it a clique.

Suppose f : G→ H is an isomorphism. Then

1. |V (G)| = |V (H)|.

2. |E(G)| = |E(H)|.

3. degG(u) = degH(fV (u)).

4. The degree sequence of G is the same as that of H.

5. The number of h-cliques in G is the same as that in H.

6.
...

Definition 1.7.8: For simple graph G = (V,E), the complement of G is defined as G = (V,E), where

E = {uv | u, v ∈ V, uv /∈ E}.

Clearly Nn = Kn, Kn = Nn, G = G. G ∼= H if and only if G ∼= H.

1.8 Graph Operations and Constructions

Definition 1.8.1: Let G1 = (V1, E1) and G2 = (V2, E2) be graphs.
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1. The union of G1 and G2 is the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

2. If V1 ∩ V2 = ∅, then G1 and G2 are disjoint. If E1 ∩ E2 = ∅, then G1 and G2 are edge-disjoint.

3. If G1 and G2 are disjoint, then the union G1 ∪ G2 is called the disjoint union of G1 and G2, and

denoted by G1 +G2.

4. If V1 ∩ V2 ̸= ∅, then the graph G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2) is called the intersection of G1 and G2.

5. The symmetric difference of G1 and G2 is the graph G1△G2 = (V1 ∪ V2, E1△E2).

Note that all set operations related to edge sets are multiset operations. It is easy to see that operations

∪, +, ∩ and △ satisfy association and symmetric laws.

Definition 1.8.2: The join of two disjoint graphs G and H, denoted by G∨H, is obtained from G+H

by joining each vertex of G to all vertices of H.

Clearly G ∨H ∼= H ∨G and (G1 ∨G2) ∨G3
∼= G1 ∨ (G2 ∨G3).

Definition 1.8.3: The sequential join G1 ∨G2 ∨ · · · ∨Gk of graphs G1, G2, . . . , Gk is the graph formed

by taking one copy of each graph and adding additional edges from each vertex of Gi to all vertices of

Gi+1, for 1 ≤ i ≤ k − 1.

Note that G1 ∨G2 ∨G3 ̸∼= (G1 ∨G2) ∨G3.

Clearly Km,n
∼= Nm∨Nn. For n ≥ 3, the wheel graph Wn+1 is defined by Wn+1 = K1∨Cn. For n ≥ 2,

the fan graph Fn+1 is defined by Fn+1 = K1 ∨ Pn.

Definition 1.8.4: For graphs G and H, the Cartesian product G ×H (or some books use G�H) has

vertex set V (G)× V (H) and two vertices (u1, v1) and (u2, v2) are adjacent if and only if either

1. u1 = u2 and v1v2 ∈ E(H), or

2. v1 = v2 and u1u2 ∈ E(G).

We call an edge of the first type an H edge, and that of the second type a G edge.

It is clear that G×H ∼= H ×G and (G×H)×K ∼= G× (H ×K). Thus we may denote this product

as G×H ×K. There is a similar definition for the Cartesian product of more graphs.

The hypercube Qn or (n-cube) is defined recursively: Q1 = K2 and Qn = K2 ×Qn−1. That is,

Qn =

n times︷ ︸︸ ︷
K2 × · · · ×K2.

Each vertex of Qn can be labeled as a binary sequence of length n, or equivalently V (Qn) = Zn
2 . Two

vertices in Qn are adjacent if and only if their coordinates differ in exactly one place.

Pm × Pn is called a mesh or a grid. It is also called a 2-mesh and denoted by M(m,n). The n-mesh

M(a1, . . . , an) is the Cartesian product Pa1 × · · · × Pan .

Definition 1.8.5: For any graph G, its line graph L(G) has vertex set consisting of the edges of G, i.e.,

V (L(G)) = E(G). Two vertices of L(G) are adjacent if the corresponding edges of G have a vertex in

common.

Definition 1.8.6: If G = (V,E), for U ⊂ V , the subgraph G − U is obtained from G by removing all

the vertices in U and all the edges of G incident with vertices in U . That is, G− U = G[V \ U ].

If U = {v1, . . . , vs}, then G− U is often written as G− v1 − · · · − vs.
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Definition 1.8.7: If G = (V,E), for F ⊆ E, the subgraph G − F is obtained from G by removing all

the edges in F . Note that all vertices of G are retained.

If F = {e1, . . . , et}, then G− F is often written as G− e1 − · · · − et.

Definition 1.8.8: Let G be a graph. Suppose E′ is a set of edges which are not in G but their end

vertices are vertices of G. G+ E′ denotes the graph obtained from G by adding all edges of E′ to G. If

E′ = {e}, then we simply denote G+ E′ by G+ e.

A non-increasing sequence S of nonnegative integers is called graphical if there is a simple graph whose

degree sequence is S.

Theorem 1.8.9: If a sequence of nonnegative integers (d1, . . . , dp) with d1 ≥ · · · ≥ dp is graphical, then
p∑

i=1
di is even and for each integer k (1 ≤ k < p)

k∑
i=1

di ≤ k(k − 1) +

p∑
j=k+1

min{k, dj}.

Theorem 1.8.10: Suppose S = (d1, d2, . . . , dp) is a non-increasing sequence of nonnegative integers.

Let

S′ = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dp),

where d1 +1 ≤ p. Let S∗ be the non-increasing sequence obtained from S′ by rearranging the terms of S′.

Then S is graphical if and only if S∗ is graphical.

Algorithm: Determining Graphical Degree Sequence

Given a non-increasing sequence S of nonnegative integers.

Step 1. Delete the first number, say k, from S.

Step 2. Subtract 1 from each of the next k terms of S if this is possible. The resulting sequence is denoted

by S′. If S′ cannot be formed, stop; the original sequence is not graphical. If all terms of the

current sequence are zero, stop; the original sequence is graphical.

Step 3. Rearrange the sequence obtained so that it is a sequence S∗ in non-increasing order.

Step 4. Let S = S∗, and return to Step 1.

1.9 Directed Graph

Definition 1.9.1: A directed graph or digraph or network is an ordered triple
−→
G = (V,E, η), where

V ̸= ∅, V ∩ E = ∅ and η : E → V × V is a map.

Elements of V are called vertices of G, and elements of E are called directed edges or arcs. If η(e) =

(u, v), then u is called the tail of e and v the head of e. Vertex u is called a predecessor of v and v is called

a successor of u. We say that u is adjacent to v while v is adjacent from u. Also, u is incident to e and v

is incident from e. A vertex not incident with any arc is called an isolated vertex.

If η(e) = (u, u), then e is called a directed loop. The vertex u is a tail of e and also a head of e.

Two arcs e and f are said to be parallel if η(e) = η(f).

We will assume that all digraphs are finite.
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Definition 1.9.2: Given a digraph, the graph with each arc replaced by an edge is called the underlying

graph. That is, if
−→
G = (V,E, η) and the corresponding underlying graph is G = (V,E, ϕ), then η(e) =

(u, v) ⇒ ϕ(e) = {u, v}.

Definition 1.9.3: A digraph without directed loops and parallel arcs is called a simple digraph.

Similar to undirected graph, we use V and E to denote the vertex set and arc set of a digraph
−→
G ,

respectively. When the discussion involves more than one digraph, in order to avoid confusion, we use

V (
−→
G) and E(

−→
G) to denote them, respectively. We use (u, v) to denote an arc, where u is the tail and v

is the head of the arc. When we adopt this notation, the end map η may be omitted.
−→
G is also called a

(p, q)-digraph if
−→
G contains p vertices and q arcs. Moreover, we use p(

−→
G) and q(

−→
G) to denote the order

and the size of
−→
G .

The directed path on p ≥ 2 vertices is the simple digraph
−→
P p with

V (
−→
P p) = {u1, . . . , up}

E(
−→
P p) = {(u1, u2), . . . , (up−1, up)} = {(ui, ui+1) | 1 ≤ i ≤ p− 1}

The directed cycle on p ≥ 2 vertices is the simple digraph
−→
C p with

V (
−→
C p) = {u1, . . . , up}

E(
−→
C p) = {(u1, u2), . . . , (up−1, up), (up, u1)} = {(ui, ui+1) | 1 ≤ i ≤ p}, where up+1 = u1.

−→
C 1 is defined to be the digraph consisting of a directed loop.

Definition 1.9.6: Let
−→
G = (V,E, η) be a digraph. Let u ∈ V .

1. The indegree of u, denoted by deg−−→
G
(u) or deg−(u), is the number of arcs having u as head.

2. The outdegree of u, denoted by deg+−→
G
(u) or deg+(u), is the number of arcs having u as tail.

3. The inneighborhood, denoted by N−
G (u) or N−(u), and the outneighborhood, denoted by N+

G (u) or

N+(u) of u are given by

N−(u) = {x ∈ V | η(e) = (x, u) for some e ∈ E},

N+(u) = {x ∈ V | η(e) = (u, x) for some e ∈ E}.

Theorem 1.9.7: (Handshaking Lemma) For a digraph
−→
G , we have∑

u∈V (
−→
G)

deg−(u) =
∑

u∈V (
−→
G)

deg+(u) = |E(
−→
G)|.

Definition 1.9.8: A digraph
−→
G is called balanced if for every vertex u of

−→
G , deg−(u) = deg+(u). A

balanced digraph G is called regular if deg−(u) = deg−(v) for all u, v ∈ V (
−→
G).

1.10 Matrix Representations

Definition 1.10.1: Let G = (V,E) be a graph. Suppose we give each vertex of G a name (label). Then

the graph G is called a labeled graph. Mathematically, there is a bijection f : V → L, where L is a set.

The bijection f is called a labeling (or vertex labeling) of G and L is called a label set.
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For general labeling problems, the labeling may not be bijective.

Similarly, we may label edges of a graph and such a labeling is called an edge labeling. We omit the

formal definition here.

Definition 1.10.2: Let G = (V,E, ϕ) be a graph on p vertices labeled by {u1, . . . , up}. For each

i, j ∈ {1, . . . , p} define

aij = |{e ∈ E | ϕ(e) = {ui, uj}}|.

That is, aij is the number of edges connecting ui and uj . The adjacency matrix of G with respect to the

labeling is defined as the p× p matrix A(G) = (aij).

Remark 1.10.3: Let G = (V,E) be a graph.

1. Clearly, A(G) is symmetric.

2. If G is a simple graph, then A(G) is a symmetric binary matrix. That is, it is symmetric and aij ∈
{0, 1} for all i and j. In addition, aii = 0 for all i.

3. |E(G)| =
∑
i≥j

aij =
∑
i≤j

aij.

4. deg(ui) = aii +
n∑

ℓ=1

aiℓ = aii +
n∑

ℓ=1

aℓ i.

Let A be an adjacency matrix of G with respect to a labeling. If we relabel all the vertices, then the

adjacency matrix of G, say A′, with respect to the new labeling is obtained by permuting the rows and

the columns of A accordingly. In other words, A′ = PAP T , for some permutation matrix P , where P T is

the transpose of P . In this case, P T = P−1.

Since two graphs being isomorphic means that the vertices of one graph can be rearranged to match

the other. Therefore, by the discussion above, we obtain the following proposition.

Proposition 1.10.4: Graphs G and H are isomorphic if and only if there is a permutation matrix P

such that A(H) = P−1A(G)P .

Corollary 1.10.5: If G ∼= H, then the spectrum of their adjacency matrices are the same, i.e., the

multisets of their eigenvalues are the same.

Proposition 1.10.8: Let G be a bipartite graph with bipartition (X,Y ). If |X| = m and |Y | = n, then

an adjacency matrix of G is of the form (
Om B

BT On

)
,

for some matrix B, where Ok is the square zero matrix of order k.

Let Jp be the p × p matrix with all entries equal to 1 and Ip be the identity matrix of order p. It is

easy to obtain the following proposition.

Proposition 1.10.9: The adjacency matrix of Kp is Jp − Ip. If G is a simple graph of order p, then

the adjacency matrix of G is Jp − Ip −A(G).

Adjacency matrix describes the relationship between vertices. Another matrix called incident matrix

describes the relationship between vertices and edges.
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Definition 1.10.10: Let G = (V,E) be a graph with vertex labeling V = {u1, . . . , up} and edge

labeling E = {e1, . . . , eq}. The incidence matrix of G with respect to these labelings is the p× q matrix

M(G) = (mij), where the (i, j)-th entry mij is defined by

mij =


0 if ui is not incidence with ej ,

1 if ui is incidence with a link ej ,

2 if ui is incidence with a loop ej .

Remark 1.10.11: By the definition of M(G), the i-th row sum is equal to the degree of ui, while the

sum of each column is 2. Using this property we can prove the handshaking lemma again.

Theorem 1.10.13: Let G = (V,E) be a simple graph. Suppose V = {u1, . . . , up} and E = {e1, . . . , eq}.
Let A and M be the adjacency and incidence matrices of G, respectively. Then MMT = A +D, where

D = diag{deg(u1), . . . , deg(up)}.

Definition 1.10.14: Let
−→
G be a digraph of order p. We label the vertices of G as v1, . . . , vp. The

adjacency matrix of
−→
G , with respect to this labeling, is the p× p matrix A(

−→
G) = (aij), where the (i, j)-th

entry aij is the number of arcs joining from vi to vj .

Note that A(
−→
G) may not be symmetric. Moreover, |E(

−→
G)| =

∑
i,j
aij , the i-th row sum is deg+(vi) and

the i-th column sum is the deg−(vi).

Definition 1.10.16: Let
−→
G be a (p, q)-digraph without loop. Label the vertices as v1, . . . , vp and the arcs

a1, . . . , aq. The incidence matrix of
−→
G , with respect to these labelings, is the p×q matrix M(

−→
G) = (mij),

where the (i, j)-th entry mij is defined by

mij =


1 if the arc aj is incidence from the vertex vi,

−1 if the arc aj is incidence to the vertex vi,

0 otherwise.

Note that the i-th row sum is deg+(vi)− deg−(vi), while the sum of each column is 0.
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