MMAT5380 Graph Theory and Networks Suggested Solution for Assignment 3

3-2: There are eight spanning tree of the graph G.

3-3:

	$(3,2,1,2,\cdot,\cdot)$
	$(3, 2, 1, 2, 2, \cdot)$
	(3, 2, 1, 2, 2, 3)
• 8 • 3	

3-4:

i	augmented Seq.	b_i	В	labeled tree
1	(7, 3, 2, 4, 2, 5, 8)	1	2, 3, 4, 5, 6, 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2	(3, 2, 4, 2, 5, 8)	6	2, 3, 4, 5, 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3	(2, 4, 2, 5, 8)	3	2, 4, 5, 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4	(4, 2, 5, 8)	7	2, 4, 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	(2, 5, 8)	4	2, 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6	(5, 8)	2	5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	(8)	5		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

So the sister sequence is (1, 6, 3, 7, 4, 2, 5) and the labeled tree is described above.

3-5: For any tree with order p, from Theorem 3.1.18 we have

$$k = 2 + \sum_{i=3}^{p-1} (i-2)n_i \ge 2 + \sum_{i=3}^{p-1} n_i = 2 + (p-k) \tag{(*)}$$

where n_i is the number of vertices of degree *i*. Hence $p \leq 2(k-1)$. Therefore Γ_k is a finite set.

[Note that, for a fixed p, there are at most $2^{p(p-1)/2}$ simple graphs of order p.]