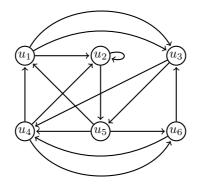
MMAT5380 Graph Theory and Networks Suggested Solution for Assignment 2

2-1:

		u_1	u_2	u_3	u_4	u_5	u_6	$\mathrm{sum} = \mathrm{deg}^+$
A =	u_1	0	1	2	0	0	0	3
	u_2	0	1	0	0	1	0	2
	u_3	0	0	0	1	1	0	2
	u_4	1	1	0	0	0	1	3
	u_5	1	0	0	1	0	1	3
	u_6	0	0	1	1	0	0	2
	$\mathrm{sum} = \mathrm{deg}^-$	2	3	3	3	2	2	



2-2: (a)
$$e(v_1) = 3$$
, $e(v_2) = 3$, $e(v_3) = 2$, $e(v_4) = 2$, $e(v_5) = 2$, $e(v_6) = 2$, $e(v_7) = 3$.

- (b) v_3, v_4, v_5, v_6 are centers.
- (c) The radius is 2 and the diameter is 3.
- (d) $v_1v_3v_4v_2v_5v_6v_7$ is a longest path (or $v_2v_4v_3v_1v_5v_6v_7$, $v_4v_3v_1v_2v_5v_6v_7$).
- 2-3: (a) Choose five (a, f)-walks from ababf, abadf, abcbf, abcbf, abebf, abedf, abfdf, adabf, adadf, adebf, adedf, adfbf, adfdf, aeabf, aeadf and aecbf.
 - (b) There are *abceadf*, *aebcedf*, *aecbadf* and *aecbedf*.
 - (c) There are abcedf and adecbf.

2-4: The corresponding graph is

$$(AAAA) \longrightarrow (BBAA) \longrightarrow (ABAA) \longrightarrow (BBBA) \longrightarrow (AABA)$$
 $(ABBB) \longrightarrow (AABA) \longrightarrow (BABB) \longrightarrow (AABB) \longrightarrow (BABB) \longrightarrow (BABB) \longrightarrow (BABB) \longrightarrow (BBBB)$

There are two shortest ways for the man to cross the river. They are

(AAAA)-(BBAA)-(ABAA)-(BBBA)-(AABA)-(BABB)-(AABB)-(BBBB) and (AAAA)-(BBAA)-(ABAA)-(BBAB)-(AAAB)-(BABB)-(AABB)-(BBBB).

Note that (ABBA), (BAAB), (ABAB) and (BABA) are not allowable.

2-5: Obviously, statements (a), (b) and (c) are true by the definition of distance. For (d), let P_1 be the path from u to v with length d(u, v) and P_2 be the path from v to w of length d(v, w). Then P_1P_2 is a (u, w)-walk with length d(u, v) + d(v, w). By Lemma 2.1.3, there is a (u, w)-path P in P_1P_2 . By the definition of distance, d(u, w) is the least length of paths from u to w. Thus $d(u, v) + d(v, w) \ge d(u, w)$. 2-6: Let $P = u_0 u_1 \cdots u_k$ be a longest path of G. Since P is a longest path, all neighbors of u_0 lie in P. Since $\delta \ge 2$, there is another edge is incident with u_0 but it is not in P, say $u_0 u_l$, where $l \ge 0$. Hence $u_0 \cdots u_l u_0$ is a cycle.

Note that l can be 0. For this case, there is a loop incident with u_0 .

2-7: We know that $2q = \sum_{v \in V(G)} \deg(v) \ge p\delta$ which implies that $\delta \le \frac{2q}{p}$. By Theorem 2.4.6, $\kappa(G) \le \delta(G)$ we have $\kappa(G) \le \frac{2q}{p}$. Note that $\kappa(G)$ is an integer. Therefore $\kappa(G) \le \lfloor \frac{2q}{p} \rfloor$.