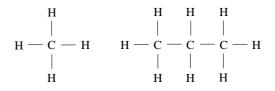
## The Chinese University of Hong Kong

## Department of Mathematics

## MMAT5380 Graph Theory and Networks


## Assignment 1

Please hand in your assignment to the assignment box or the tutor before 6:40p.m. on Sept. 30, 2019 (Monday).

The assignment box is located at the 2nd floor of LSB and opposites to the Room 223.

1-1: Draw a graph with the following vertex set and edge set.

- (a) Vertex set:  $\{u, v, w, x, y\}$  and edge set:  $\{uv, vw, vx, wx, yv, wy\}$
- (b) Vertex set:  $\{1, 2, 3, 4, 5, 6, 7, 8\}$  and edge set:  $\{12, 23, 33, 34, 35, 67, 78, 18, 53, 71\}$ .
- 1-2: For the graph G defined in 1-1(b),
  - (a) List the degree sequence of G.
  - (b) Verify Handshaking Lemma for the graph G.
  - (c) Write down the adjacency matrix and the incidence matrix of G according to the vertex-list and edge-list above.
- 1-3: Figure represents the chemical molecules of methane  $(CH_4)$  and propane  $(C_3H_8)$ .



- (a) Regarding these diagrams as graphs, what can you say about the vertices representing carbon atoms (C) and hydrogen atoms (H)?
- (b) There are two different chemical molecules with formula  $C_4H_{10}$ . Draw the graphs corresponding to these molecules.
- 1-4: (a) Draw a graph on 6 vertices with degree sequence (5, 5, 5, 5, 3, 3); does there exist a simple graph with this degree sequence? Explain your answer.
  - (b) How are your answers to part (a) changed if the degree sequence is (5, 5, 4, 3, 3, 2)? Explain your answer.

- 1-5: (a) Determine which graphs in Figure 1 are subgraphs of the graph G. Explain your answer.
  - (b) Which graphs in Figure 1 are induced subgraphs of G. Explain your answer.

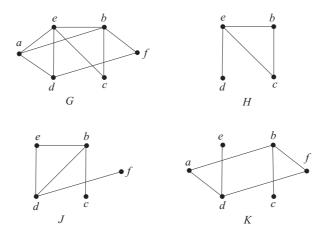
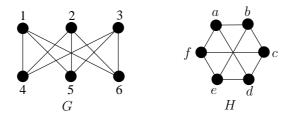




Figure 1:

1-6: Prove that the following two graphs are isomorphic by finding an appropriate isomorphism (show all the corresponding vertices and edges).



- 1-7: (a) Draw the Cartesian product  $C_3 \times P_4$ .
  - (b) Assume that G and H are graphs with  $V(G) = \{u_1, u_2, \dots, u_m\}$  and  $V(H) = \{v_1, v_2, \dots, v_n\}$ , respectively. Let  $(u_i, v_j)$  be a vertex in  $G \times H$ . Prove that  $\deg_{G \times H}(u_i, v_j) = \deg_G(u_i) + \deg_H(v_j)$ .
- 1-8: Suppose G = (V, E) is a graph and A as well as B are subsets of V. Show the following statements:
  - (a)  $N(A \cup B) = N(A) \cup N(B)$ ,
  - (b)  $N(A \cap B) \subseteq N(A) \cap N(B)$ .

END