MMAT5380 Graph Theory and Networks

Suggested Solution for Assignment 1

- 1-2: (a) (6, 3, 3, 2, 2, 2, 1, 1).
 - (b) There are 10 edges. The degree sum is 6 + 3 + 3 + 2 + 2 + 2 + 1 + 1 = 20. So it satisfies the handshaking lemma.

(c) $A(G) =$	$\left(0 \right)$	1	0	0	0	0	1	1)		$\begin{pmatrix} 1 \end{pmatrix}$	0	0	0	0	0	0	1	0	1
	1	0	1	0	0	0	0	0	. $M(G) =$	1	1	0	0	0	0	0	0	0	0
	0	1	1	1	2	0	0	0		0	1	2	1	1	0	0	0	1	0
	0	0	1	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
	0	0	2	0	0	0	0	0		0	0	0	0	1	0	0	0	1	0
	0	0	0	0	0	0	1	0		0	0	0	0	0	1	0	0	0	0
	1	0	0	0	0	1	0	1		0	0	0	0	0	1	1	0	0	1
	$\backslash 1$	0	0	0	0	0	1	0)		$\left(0 \right)$	0	0	0	0	0	1	1	0	0/

1-3: (a) Each carbon atom vertex has degree 4 and each hydrogen atom vertex has degree 1.

(b) The graphs are as follows:

1-4: (a) $(5,5,5,5,3,3) \longrightarrow (4,4,4,2,2) \longrightarrow (3,3,1,1) \longrightarrow (2,0,0)$. The last sequence is not graphical. So there is no simple graph with degree sequence (5,5,5,5,3,3). A graph of order 6 with degree sequence (5,5,5,5,3,3) is

(b) (5,5,4,3,3,2) → (4,3,2,2,1) → (2,1,1,0). The last sequence is graphical which corresponds to P₃. So there is a simple graph with degree sequence (5,5,4,3,3,2). A graph of order 6 with degree sequence (5,5,4,3,3,2) is

1-5: (a) Graphs H and K are subgraphs of G. The graph J is not, because J contains edge bd which is not an edge of G.

- (b) From (a), only H and K are needed to consider. For those two graphs, H is an induced subgraph. An induced subgraph is the maximal subgraph containing the given vertex set. For the graph H, all necessary edges appear. Thus, H is induced. For the graph K, edge ce would also need to appear since that edge is in G. Thus, K is not an induced subgraph of G.
- 1-6: Define F(1) = a, F(2) = c, F(3) = e, F(4) = b, F(5) = d and F(6) = f. The mapping F induces a correspondence from the edges of G to the edges of H as follows: 14 → ab; 15 → ad;
 16 → af; 24 → cb; 25 → cd; 26 → cf; 34 → eb; 35 → ed and 36 → ef. Thus the mapping F preserves the adjacency. So we have shown that G is isomorphic to H.
- 1-7: (a) The right graph of the following figure shows the $C_3 \times P_4$.

(b) Consider a vertex (u_i, v_j) in $G \times H$.

For this fixed vertex v_j in H, vertices (u_i, v_j) and (u_l, v_j) are adjacent if and only if vertices u_i and u_l are adjacent in G. So (u_i, v_j) has $\deg_G(u_i)$ neighbors of the form (u_l, v_j) .

For this fixed vertex u_i in G, vertices (u_i, v_j) and (u_i, v_k) are adjacent if and only if vertices v_j and v_k are adjacent in H. So (u_i, v_j) has $\deg_H(v_j)$ neighbors of the form (u_i, v_k) . Therefore, totally, $\deg_{G \times H}(u_i, v_j) = \deg_G(u_i) + \deg_H(v_j)$.

- 1-8: (a) For $v \in N(A \cup B)$, there is a vertex $u \in A \cup B$ such that v is adjacent with u, i.e., $v \in N(u)$. Since $u \in A$ or $u \in B$, $v \in N(u) \subseteq N(A)$ or $v \in N(u) \subseteq N(B)$. Hence $u \in N(A) \cup N(B)$. Thus, $N(A \cup B) \subseteq N(A) \cup N(B)$. Conversely, for $v \in N(A) \cup N(B)$, we have $v \in N(A)$ or $v \in N(B)$. By definition $N(A) \subseteq N(A \cup B)$ and $N(B) \subseteq N(A \cup B)$. So, $N(A) \cup N(B) \subseteq N(A \cup B)$. We have $N(A \cup B) = N(A) \cup N(B)$.
 - (b) For $v \in N(A \cap B)$, there is a $u \in A \cap B$ such that v is adjacent with u. Since $u \in A$ and $u \in B$, $v \in N(A)$ and $u \in N(B)$. Thus $v \in N(A) \cap N(B)$. We obtain $N(A \cap B) \subseteq$ $N(A) \cap N(B)$.