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Reference books

I Numerical Linear Algebra by Trefethen and Bau (1997)

I Data-Driven Modeling & Scientific Computation by Kutz (2013)
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Topics

Topics: Part 1 – Numerical Linear Algebra by Trefethen and Bau (TB)

I Review of Linear algebra

I Singular value decomposition (SVD)

I QR factorization (Gram–Schmidt/Householder)

I Least squares problem

I Eigenvalue problems

I Eigenvalue algorithms

Topics: Part 2 – Data-Driven Modeling & Scientific Computation by Kutz (K)

I Principal component analysis (PCA)

I Independent component analysis (ICA)

I Compress sensing

I Time frequency analysis

I Image denoising and processing

I Data assimilation
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§7 - Principal component analysis (PCA)
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What is PCA?

Definition from Wikipedia: “PCA is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called
principal components.”

Unpacking the definition:

I Prerequisite: a collection of observation/data.

I Employ an orthogonal transformation to convert the (correlated) data
into a new set of data that is not correlated with each other.

I Statistical procedure - measurement of effectiveness/error involves
quantities from statistics.

PCA provides a roadmap for how to reduce a complex data set to a lower
dimension to reveal the sometimes hidden, simplified structures that often
underlie it.
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PCA motivating example
Consider a sample of heights and weights of 12 people, where we summarised
the adjusted mean-zero data in the matrix A:(

2.9 −1.5 0.1 −1.0 2.1 −4.0 −2.0 2.2 0.2 2.0 1.5 −2.5
4.0 −0.9 0.0 −1.0 3.0 −5.0 −3.5 2.6 1.0 3.5 1.0 −4.7

)
The top row is the adjusted height and the bottom row is the adjusted weight.

A plot shows a positive correlation between height and weight. How do we
quantify this?
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PCA motivating example II

Figure: Taken from J. Shlens. A tutorial on Principal Component Analysis.

Three cameras recording the position of a ball attached to an oscillating
spring moving only in the x-axis. Can we reveal this hidden structure from the
data obtained by the three cameras?

7 / 92



MMAT 5320
Computational

Mathematics - Part 2
Applications

Andrew Lam

Topics

Principal component
analysis (PCA)

Independent
component analysis
(ICA)

More general setting
Consider

I m features (e.g. height, weight, number of siblings, etc.), and
I n samples (e.g. number of individuals in the survey).

We collect these in a data matrix A ∈ Rm×n, A = (xij )1≤i≤m,1≤j≤n where
I row i containing the data for the ith feature,
I column j represents the jth sample of data.

The notation xj = (x1j , . . . , xmj )
> denotes the jth column of A.

Some statistical definitions:

1. The feature sample mean vector x̄ ∈ Rm is the vector whose jth entry is
the average value of the n samples of feature j :

x̄ = (x̄1, x̄2, . . . , x̄m)>, x̄j =
1

n

n∑
j=1

xij ∈ R for j = 1, . . . ,m.

2. The sample variance covariance matrix C = (cpq) ∈ Rm×m is defined as

cpq =
1

n − 1

n∑
j=1

(xpj − x̄p)(xqj − x̄q).

If the data has been preprocessed to have mean zero, i.e., x̄i = 0, we say A
has been adjusted, and consequently

C =
AA>

n − 1
.
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Properties of the sample covariance matrix
For an adjusted data matrix A ∈ Rm×n, the sample covariance matrix is

C =
AA>

n − 1
.

Properties:

I C ∈ Rm×m is symmetric and positive semi-definite.

I The diagonal entries Cii (i = 1, . . . ,m) represents the sample variance of
the ith random variable:

σ2
i = Cii =

1

n − 1

n∑
j=1

(xij − x̄i )
2 =

1

n − 1

n∑
j=1

x2
ij .

I The off-diagonal entries Cik represent the sample covariance between the
ith and kth random variables.

I If Cik is positive, then we say the ith and kth random variables are
positively correlated; if Cik is negative, then they are negatively
correlated. If Cik = 0, then they are not correlated (hence independent).

Related concept: The correlation matrix R = (rpq) ∈ Rm×m is obtained from
normalising:

rpq =
cpq

σpσq
∈ [−1, 1].
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Back to PCA motivating example I
Back to the example with height and weight data, computing the sample
covariance matrix gives

C =
AA>

n − 1
=

1

11

(
53.46 73.42
73.42 107.16

)
.

C12 = C21 > 0 implies height and weight are positively correlated. This is
evident from a line of best fit in the following plot of the data.

But what does the line of best fit represent? The equation of the line is
a(height) + b(weight) = 0 for some a, b ∈ R. This gives us a new variable!
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From correlated to uncorrelated

Remember the definition from wikipedia: “PCA is a statistical procedure that
uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called
principal components.”

I Observations summarised in matrix A ∈ Rm×n (with m = 2 features
“height” and “weight”) and n = 12 samples.

I Possibly correlated variables/features: from covariance matrix

C =
AA>

n − 1
=

1

11

(
53.46 73.42
73.42 107.16

)
,

height and weight are correlated.

It remains to find variables/features (call them X ,Y ) that are uncorrelated
from “height” and “weight”. In particular, the covariance matrix associated to
(X ,Y ), denoted by Ĉ , should look like

Ĉ =

(
ĉ11 0
0 ĉ22

)
.

This means we should seek a transformation C 7→ Ĉ .
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Main idea of PCA

Since C is symmetric and positive semi-definite, it is diagonalisable with real
and nonnegative eigenvalues. Then, C admits an eigenvalue decomposition
C = QĈQ−1 with orthogonal matrix Q and the eigenvalues listed on the
diagonal of Ĉ .

Therefore the new uncorrelated variables (X ,Y ) should correspond to the
eigenvectors of C . Namely, if

Q =

(
q11 q12

q21 q22

)
,

then the new variables are

X = q11(height) + q21(weight), Y = q12(height) + q22(weight),

which don’t have any real physical meaning, since they are linear combinations
of the initial variables “height” and “weight”.

We call these new uncorrelated variables the principal components (p.c.). Note
that the total number of p.c. equals the dimension of the covariance matrix C !

The idea of PCA is to rank the p.c. by how much of the data is captured
along each p.c.. The first p.c. captures the maximum possible information of
the data, the second p.c. would capture the maximum remaining information,
and so on...
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Maximum possible information1

What is a good notion of “maximum possible information”? Let consider the
following data plot

1Figures in this and the next slides are taken from https://stats.stackexchange.com/questions/

2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Maximum possible information II

We can draw many lines through the data points:

The red dots are projections of the data (blue dots) onto the line. The
“spread” of the red dots on the line captures the variance, and the error
between the red dot and its corresponding blue dot is measured by the length
of the connecting red line.
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Choice of maximum possible information
So, by “maximum possible information of the data” we can choose to mean:

I total reconstruction error ER , given by the average squared length of the
red lines, is minimised; or

I the variance Var, measured as the average squared distance from the
origin to each red dot, is maximised.

It turns out they are equivalent! Heuristic explanation:

I The angle between the black line and red line is always 90 degrees.

I By Pythagoras theorem, the sum Var + ER is the average squared
distance from the origin to each blue dot, which is fixed!

Hence, maximising variance is the same as minimising reconstruction error. A
more rigorous proof on the next slide.
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Equivalence of PCA objectives I

Let {x1, . . . , xn} be an adjusted collection of n samples, i.e.,
∑n

i=1 xi = 0. Let
v be a unit vector and L be the line passing through the origin in direction v .

What is the projection of xi onto the line L? Let pi ∈ L be the projection of
xi . Then:

I pi − xi is orthogonal to the line L, and so (pi − xi ) · v = 0.

I pi ∈ L implies pi = cv for some constant c ∈ R.

I v is a unit vector and so pi · v = cv · v = c, i.e., pi = (pi · v)v .

I Hence, pi = (xi · v)v .

Note that the projected points {pi}ni=1 are also centered around the origin:

µ :=
n∑

i=1

pi =
([ n∑

i=1

xi
]
· v
)
v = 0.

The variance/spread of the projection of {xi}ni=1 on L is measured by

Var(v) =
1

n − 1

n∑
i=1

(pi − µ)2 =
1

n − 1

n∑
i=1

p2
i =

1

n − 1

n∑
i=1

(xi · v)2.

Let us rewrite this in terms of the covariance matrix.
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Equivalence of PCA objectives II

If A is the data matrix, whose ith column is xi . Then, (xi · v)2 = v · (xix>i )v ,
and

Var(v) = v ·
( 1

n − 1

n∑
i=1

xix>i
)
v = v ·

1

n − 1
AA>v = v · Cv ,

where C is the covariance matrix.

Next, the error between the data xi and its projection pi is

‖xi − pi‖ = ‖xi − (xi · v)v‖.

But recall from slide Decomposition of a vector II

(xi · v)v = (vv>)xi =⇒ xi − (xi · v)v = (I − vv>)xi .

The reconstruction error can be expressed as

ER(v) =
n∑

i=1

‖xi − (xi · v)v‖2
2 = ‖(I − vv>)A‖2

F ,

with the Frobenius norm ‖ · ‖F .
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Equivalence of PCA objectives III
Theorem: Let A ∈ Rm×n be a data matrix with zero row sum, and let
C = 1

n−1
AA> be its covariance matrix. Let v be a unit vector. Then,

min
v

ER(v) ⇔ max
v

Var(v).

Proof 2: (1) Let tr(B) =
∑k

i=1 Bii denote the trace of the square matrix
B ∈ Rk×k . Then, the Frobenius norm ‖ · ‖F has the alternate characterisation:
‖A‖2

F = tr(A>A) for A ∈ Rm×n.

(2) From the reconstruction error, we see (using (vv>) is symmetric)

ER(v) = ‖(I − vv>)A‖2
F = tr

(
(A− (vv>)A)>(A− (vv>)A)

)
= tr

(
A>A

)
− 2tr

(
A>(vv>)A

)
+ tr

(
A>(vv>)(vv>)A

)
= tr

(
A>A

)
− tr

(
A>(vv>)A

)
since (vv>)(vv>) = vv>

= tr
(
A>A

)
− tr

(
v>AA>v

)
= tr

(
A>A

)
− (n − 1)v>Cv = tr

(
A>A

)
− (n − 1)Var(v).

The first term tr
(
A>A

)
is independent of v , and so minv ER(v) is equivalent

to maxv Var(v).
2https://stats.stackexchange.com/questions/32174/

pca-objective-function-what-is-the-connection-between-maximizing-variance-and-m
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Variance maximisation
Given a covariance matrix C , finding the direction of maximal variance (i.e.,
the first principal component) corresponds to

max
v

Var(v) = v · Cv subject to ‖v‖2 = 1.

We use the Lagrange multiplier method, and introduce the Lagrangian

L(v , µ) = v · Cv − µ(v>v − 1),

for µ ∈ R (known as the Lagrange multiplier for the constraint ‖v‖2 = 1).
Computing the partial derivatives shows

∂L

∂v
= 2(Cv − µv),

∂L

∂µ
= v>v − 1 = ‖v‖2

2 − 1.

Hence, at a critical point (v∗, µ∗) of L we get

Cv∗ = µ∗v∗, ‖v∗‖2
2 = 1,

i.e., v∗ is a unit eigenvector of C with corresponding eigenvalue µ∗.
Substituting (v∗, µ∗) back into the Lagrangian gives

L(v∗, µ∗) = v∗ · Cv∗ = Var(v∗) = v∗ · µ∗v∗ = µ∗‖v∗‖2
2 = µ∗.

Therefore, the maximal variance is the largest eigenvalue λ1 of C , and the
first principal component should be the corresponding eigenvector v1.
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Second principal component

What about the second principal component?

I This should maximise the “remaining variance” not captured by v1.

I This should be orthogonal to v1.

Hence, finding v2 corresponds to

max
v

Var(v) = v · Cv subject to ‖v‖2 = 1 and v · v1 = 0.

Introduce Lagrange multipliers α, β ∈ R and consider

L(v , α, β) = v · Cv − α(v>v − 1)− βv · v1.

At a critical point (v∗, α∗, β∗) we have all partial derivatives of L vanishing:

∂L

∂v
= 2(Cv∗ − α∗v∗)− β∗v1 = 0,

∂L

∂α
= ‖v∗‖2

2 − 1 = 0,
∂L

∂β
= v∗ · v1 = 0.

Solving for β∗:

β∗ = v>1 (β∗v1) = 2(Cv∗ − α∗v∗) · v1 = 2(λ1v1 − α∗v1) · v∗ = 0.

Then, as before, we have Cv∗ = α∗v∗. I.e., (α∗, v∗) is an eigenpair of C , but
which pair? Plugging back into L shows that α∗ should be the second largest
eigenvalue λ2 of C with the second principal component as the corresponding
eigenvector v2.
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PCA in general

From variance maximisation, we find that for an adjusted (i.e., mean zero)
data matrix A ∈ Rm×n with covariance matrix C = 1

n−1
AA> ∈ Rm×m,

I the first principal component, i.e., the direction of maximal variance, is
the eigenvector v1 of C corresponding to the largest eigenvalue λ1;

I the second principal component, i.e., the direction of maximal variance
orthogonal to v1, is the eigenvector v2 of C corresponding to the second
largest eigenvalue λ2;

I the kth principal component, i.e., the direction of maximal variance
orthogonal to span{v1, . . . , vk−1}, is the eigenvector vk of C
corresponding to the kth largest eigenvalue λk .

Since C has m eigenvalues, there will be m principal components.

Remaining issues:

I A procedure to “rank” the eigenvalues in decreasing order, so that we can
extract the principal components more easily.

I A criterion to choose how many principal components to use for a
“good” summary of the data.
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PCA motivating example VI
Returning to the example with “height” and “weight” data. The eigenvalue
decomposition of the covariance matrix C gives

C = QĈQ> with Ĉ =

(
0.1940 0

0 14.4078

)
and Q =

(
−0.8196 0.5729
0.5729 0.8196

)
From this we see that the first principal component is v1 = (0.5729, 0.8196)>,
i.e., the direction of the dotted line, and the second principal component is
v2 = (−0.8196, 0.5729)>.

Just how much of the variance is explained by the first principal component?

When can we discard the second principal component to obtain a simple
predictive model?
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Class exercise

1. How can we ensure that for a symmetric matrix C (such as the
covariance matrix C = 1

n−1
AA>), there is a complete set of orthonormal

eigenvectors? I.e., the matrix C is non-defective. [Hint: look back at the
Schur factorization slides on Part 1].

2. Show that the kth principal component should be taken as the
eigenvector of C corresponding to the kth largest eigenvalue by solving
the variance maximisation problem

max
v

Var(v) = v · Cv subject to ‖v‖2
2 = 1, v · vi = 0 for 1 ≤ i ≤ k − 1

with the help of the Lagrangian

L(v , α, µ1, . . . , µk−1) = v · Cv − α(‖v‖2
2 − 1)−

k−1∑
i=1

µiv · vi ,

where v1, . . . , vk−1 are the first k − 1 principal components.
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Alternate formulation

A problem with the eigenvalue decomposition C = QĈQ> is that there is no
ordering of the eigenvalues in Ĉ , e.g. the “height” vs “weight” example.
What is a decomposition of C that provides a ranking of the eigenvalues in
decreasing value? Ans: The singular value decomposition.

Recall: The (full) singular value decomposition of a matrix B ∈ Rk×l is

B = UΣV>

with U ∈ Rk×k , V ∈ Rl×l orthogonal, and Σ ∈ Rk×l is diagonal.

In particular, Σ = diag(σ1, . . . , σl ) where the singular values

σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0,

are the (positive) square root of the eigenvalues of B>B ∈ Rl×l .

The columns of V are the eigenvectors corresponding to the eigenvalue {σ2
i }

of B>B. Moreover, the SVD can be written as a sum of rank-one matrices:

B = UΣV> =
r∑

i=1

σiuiv
>
i

where rank(B) = r ≤ min(k, l) and ui , vi are the ith columns of U and V .
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Formulation with SVD

Therefore, performing the SVD of the scaled data matrix transpose
B = 1√

n−1
A> ∈ Rn×m, we obtain orthogonal matrices U ∈ Rn×n, V ∈ Rm×m

and diagonal matrix Σ ∈ Rn×m such that

B =
1

√
n − 1

A> = UΣV>.

How does this help?

I The set of singular values σ1, . . . , σm contained on the diagonal of Σ
coincide with the square root of the eigenvalues λ1, . . . , λm of
B>B = 1

n−1
AA> = C . Moreover, they are arranged so that

σ1 ≥ σ2 ≥ · · · ≥ σm.

I The columns of V are the eigenvectors of B>B = C , i.e., the matrix V
contains the principal components.

Thus, computing the SVD of 1√
n−1

A> provides an ordering of the

eigenvalues, as well as the principal components in one fell swoop! This
answers the first issue about an efficient decomposition that allows us to rank
the eigenvalues in order.
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Variance and eigenvalues

Before discussing how to choose the number of principal components, we first
relate the notion of variance and eigenvalues.

The correlation of variables in the data sample (e.g. “height” and “weight”)
are neatly summarized in the covariance matrix C .

The variance is an important quantity, as a larger variance means a larger
dispersion of data points along a line (principal component), and a larger
dispersion means more information of the data points are contained on the
line.

How do we quantify the variance of the data along a principal component?
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Variance and eigenvalues II

If the covariance matrix C ∈ Rm×m is diagonal, i.e., C = diag(λ1, . . . , λm),
then the m variables {x1, . . . , xm} that compose the data matrix A are
uncorrelated (as Cij = 0 for i 6= j), and the (sample) variance of xi is λi .

From the SVD 1√
n−1

A> = UΣV>, we have the eigenvalue decomposition

C = VΣ2V>.

This also gives a change of basis, transforming from the standard basis
{e1, . . . , em} to a new basis {v1, . . . , vm} of principal components, so that the
covariance matrix in the new basis is diagonal.

Then, the variance along the kth principal component is just λk , i.e., the kth
largest eigenvalue of C .
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Selection of principal components

In applications, PCA can be viewed as a form of dimension reduction. For an
adjusted data matrix A ∈ Rm×n with large m, n� 1, PCA is used to extract
out a smaller number K of principal components that can capture the essence
of the data.

In the previous example with “height” and “weight” data, the plot shows that
it is enough to obtain the first principal component for the line of “best” fit.

A more concrete way of selecting the number K of principal component is to
look at their contribution to the total variance.
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Total and explained variance I
Let us consider an example data set3

The 13 columns denote the different features, and each row (5 out of 124
shown here) is a particular sample of the data. In our notation, this
corresponds to the transpose data matrix A> ∈ R13×124.

The procedure is:
1. Adjust the above data matrix A> by subtracting the mean of each

column (aka standardise the data set).

2. Construct the covariance matrix C ∈ R13×13.

3. Compute the eigenvalues and eigenvectors of C .

Before deciding how many principal components to keep we plot the variance
explained ratios of the eigenvalues, which is the fraction

λj∑13
i=1 λi

3Figures taken from https://towardsdatascience.com/

principal-component-analysis-for-dimensionality-reduction-115a3d157bad
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Total and explained variance II
The variance explained ratio plot is

From this we see that

I the first principal component accounts for 40% of the variance,

I the first and second components account for 60% of the variance,

I of course, 100% of the variance is accounted for by using all principal
components.

So, a suitable number of principal components depends on how much variance
you want to capture. There is always a trade-off between computational
efficiency/storage (smaller K) and performance (larger captured variance).
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Measuring accuracy I

Suppose k principal components are selected for an adjusted set of n samples
{x1, . . . , xn}. Then, the projection of xi to the k-dimensional subspace
spanned by the principal components {v1, . . . , vk} is

pi = (xi · v1)v1 + · · ·+ (xi · vk )vk =
k∑

j=1

(vj · xi )vj .

The reconstruction error for the ith data point xi is therefore

ei = xi − pi =
m∑

j=k+1

(xi · vj )vj ,

since {v1, . . . , vm} forms an orthonormal basis of Rm. Then,

‖ei‖2
2 =

m∑
j=k+1

(xi · vj )2.

The relative reconstruction error Ek using k principal components is

Ek =
(∑n

i=1 ‖ei‖2
2∑n

i=1 ‖xi‖2
2

)1/2
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Measuring accuracy II

Using the orthonormality of {v1, . . . , vm}, and the fact that they are
eigenvectors of C , we can show (class exercise) that

n∑
i=1

‖ei‖2
2 = (n − 1)

m∑
j=k+1

λj ,
m∑
i=1

‖xi‖2
2 = (n − 1)

m∑
j=1

λj .

Hence, the relative reconstruction error can be expressed as

Ek =
(∑m

j=k+1 λj∑m
j=1 λj

)1/2
.

Due to the equivalence between variance maximisation and minimising
reconstruction error, Ek provides a measure of the loss of variance by choosing
k out of m principal components.

At present there is no defining criterion to pick the best k. The heuristics is
“pick the smallest k that captures at least 85/90/95% of the variance”. While
this is fine for low dimensions, for high dimensions m, n� 1 it is questionable
if high variance = high importance.
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Projected data
Suppose we choose k out of m principal components after the analysis of an
adjusted data matrix A ∈ Rm×n.

Let us construct the projection matrix W ∈ Rm×k whose columns are the k
principal components v1, . . . , vk . We define the PCA subspace as the vector
space spanned by the columns of W . Then, the data in the PCA subspace is
summarised by the matrix Y := W>A ∈ Rk×n.

In particular,

Y =

— v1 —
...

— vk —


 | | |

x1 x2 · · · xn
| | |

 =

 | | |
y1 y2 · · · yn
| | |

 ,

where yj gives the coordinate of the jth sample in the PCA subspace:

yj = (v1 · xj , v2 · xj , . . . , vk · xj )>.

Furthermore, if we calculate the covariance matrix CY of the data Y , we see

CY =
1

n − 1
YY> =

1

n − 1
W>AA>W = W>CW = W>VΣ2V>W .

Since V>W ∈ Rm×k is diagonal with entries 1, we have

CY = W>VΣ2V>W = diag(σ2
1 , . . . , σ

2
k ).

Hence, in the PCA subspace the features/principal components are
uncorrelated!
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Application - Facial recognition

Goal: To build a computational model of facial recognition, i.e., an algorithm
that determines whether a facial image belongs to some individual we know.

Difficulties: Faces are complex and multidimensional. Many things can
complicate the recognition algorithm, e.g. lighting, pose, background,
foreground, smiling, frowning etc.

Approach: Use PCA to decompose a training set of facial images into a small
set of characteristic feature images called eigenfaces (developed by Turk and
Pentland 1991). The linear span of these eigenfaces is denoted as the face
space.

Recognition is performed by projecting a new facial image into the face space.
Then, it can be classified by comparing its position with the positions of
known individuals in the face space.
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The Eigenface approach I
Every two-dimensional image I with N × N array of pixels can be considered
as a vector of dimension N2. A typical 256-by-256 pixel image lies in a 65,536
dimensional space (Huge!)

The key assumption is that the images of faces will not be randomly
distributed in this huge image space, but can be described by a relatively low
dimensional subspace, which we call the face space.

Suppose we have M faces Γ1, . . . , ΓM , each can be interpreted as a vector of
dimension N2. The averaged face is Ψ := 1

M

∑M
i=1 Γi .

Figure: Taken from Turk and Pentland (91). Left is the data of face images. Right is the
averaged face
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The Eigenface approach II

We define the deviations Φi := Γi −Ψ for 1 ≤ i ≤ M, and apply PCA to the
set of data {Φ1, . . . ,ΦM}.

Construct the data matrix A = [Φ1|Φ2| · · · |ΦM ] ∈ RN2×M , and the covariance
matrix

C =
1

M − 1
AA> ∈ RN2×N2

.

The task is to extract of the first k principal components from the
eigenvectors of C to build the face space.

Practical issue: Determining the eigenvalues and eigenvectors of a N2-by-N2

matrix is an intractable task!

Does this means we give up?
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The Eigenface approach III
Solution: Consider the matrix

B :=
1

M − 1
A>A ∈ RM×M .

If M < N2, i.e., the number of data points in image space is less than the
dimension of the image space. Then, it might be more feasible to find the
eigenvalues/eigenvectors of B.

But what’s the point? Let v be an eigenvector of B with eigenvalue µ. Then,

Bv =
1

N − 1
A>Av = µv =⇒ ABv =

1

N − 1
AA>Av = C(Av) = µAv .

I.e., Av is an eigenvector of C with eigenvalue µ.

Are they also orthogonal? If u and v are two orthogonal eigenvectors of B,
then

Au · Av = u>A>Av = (M − 1)u>Bv = µv (M − 1)u>v = 0.

Consequences:

I There are only M meaningful eigenvectors from the covariance matrix C ,
as the rest are associated with the zero eigenvalue.

I The calculations are greatly reduced!
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The Eigenface approach IV

Let {v1, . . . , vM} be the orthonormal eigenvectors of B = 1
M−1

A>A, ranked

with decreasing values of corresponding eigenvalues, and set

wi = Avi for 1 ≤ i ≤ M.

Then, {w1, . . . ,wM} are the eigenvectors of C with non-zero eigenvalues.

Figure: The first seven eigenfaces calculated from the data set.

Exercise. If µ is the eigenvalue corresponding to the orthonormal eigenvector
v for B, what is the corresponding eigenvalue to the eigenvector Av for C?
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Recognising new faces
Fix k < M (can be chosen arbitrarily or by looking at the variance explained
ratio plot), then the face space S is

S = span{w1, . . . ,wk}.

Given a new face Γ, its coordinate in the face space S is given by the vector
(γ1, . . . , γk ), where

γi = wi · (Γ−Ψ) for 1 ≤ i ≤ k.

Its approximation Γ̂ can be expressed as

Γ̂ =
k∑

i=1

γiwi

Figure: A new face image (left) and its projection to the face space spanned by the 7
eigenfaces.
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§8 - Independent component analysis (ICA)
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The Cocktail party problem

I Two conversations happening simultaneously.

I Two microphones placed at different locations and receive a mixture of
signals (the conservations + other noise).

I How can we separate out the signals to reconstruct each conversation?

Mathematically: let s1(t) and s2(t) be the signals from the two conservations.
We measure the mixed recorded signals

x1(t) = a11s1(t) + a12s2(t),

x2(t) = a21s1(t) + a22s2(t),

at microphones 1 and 2, where aij are the mixing parameters.

The mathematical problem: Given (x1(t), x2(t)), find (s1(t), s2(t)).
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Blind source reconstruction

Figure: Taken from https://www.cs.ubc.ca/~jnutini/documents/mlrg_pca.pdf

From the observed mixed signals x1(t) and x2(t), recover the two original
signals s1(t) and s2(t).
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Setting of a more general problem

Suppose we record a multi-dimensional data x , each sample is a random draw
from an unknown probability distribution P(x).

We assume there exists some underlying sources s where each source si is
statistically independent of all other sources sj , j 6= i .

The key assumption of the independent component analysis (ICA) is that the
observed data x is a linear mixture of the underlying source s, i.e., there is an
unknown invertible square matrix A such that

x = As.

The goal of ICA is find the unknown mixing matrix A, or more specifically, an
approximation W to its inverse A−1, so that

ŝ := W x

is a good approximation of the true underlying source s = A−1x .
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Challenges and strategies

Since the mixing matrix A and the underlying source s unknown, it appears
impossible to infer both A and s from the equation

x = As.

One strategy (divide and conquer) is to just find the mixing matrix A, as
oppose to finding both A and s simultaneously. We will again use the singular
value decomposition, namely if

A = UΣV>,

then we will find ways to get approximations Ũ, Σ̃ and Ṽ just from the data x
so that

W := Ṽ Σ̃−1Ũ>

is a good approximation of A−1.
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Probability recap

In these slides we will always assume X is a real continuous random variables
with values in (−∞,∞). Associated to X is its probability distribution
function fX , which gives

P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx .

I.e., the probability that the random variable X realises a value in the interval
[a, b] is given by the integral of fX over [a, b].

Note that for continuous random variables, it does not make sense to find
P(X = c).

The Expectation/Mean of a random variable X with probability distribution
pX is

E(X ) :=

∫ ∞
−∞

xpX (x)dx =: µ,

and the variance of X is

E((X − µ)2) =

∫ ∞
−∞

(x − µ)2pX (x)dx =: σ2.
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Joint distribution and independence

Two random variables X and Y can be assigned a joint probability distribution
pX ,Y , if for any subset D ∈ R2 it holds

P((X ,Y ) ∈ D) =

∫
D
pX ,Y (x , y)dx dy .

E.g.,

P((X ,Y ) ∈ (a, b)× (c, d)) =

∫ d

c

∫ b

a
pX ,Y (x , y)dx dy .

We define the marginal distribution pX of X by

pX (x) =

∫ ∞
−∞

pX ,Y (x , y)dy

and the marginal distribution pY of Y by

pY (y) =

∫ ∞
−∞

pX ,Y (x , y)dx .

Then, X and Y are independent if the joint distribution can be factorised as

pX ,Y (x , y) = pX (x)pY (y).
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Ambiguities of ICA

The ICA problem involves solving

x = As

for unknown A and random variable s. Immediately, we see that

I it is not possible to determine the variance of s, since a scalar multiple of
a component sj can be cancelled by dividing columns of A by the same
scalar. I.e., (

a11 a12

a21 a22

)(
s1

s2

)
=

(
a11/α a12/β
a21/α a22/β

)(
αs1

βs2

)
.

To deal with this, we fix the variance of each signal si to be 1, i.e.,
Var(si ) = E((si − E(si ))2) = E(s2

i ) = 1. [This is called Whitening] But
note that there is still the ambiguity of the sign, since −si is also a
solution with variance 1.

I there is no natural ordering of the signal components s, since for any
permutation matrix P, it holds x = AP−1Ps and AP−1 is a new
unknown mixing matrix. I.e.,(

a11 a12

a21 a22

)(
s1

s2

)
=

(
a21 a22

a11 a12

)(
s2

s1

)
.

But in practice, this is not a big problem.
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Illustration I

Consider two independent random variables s1 and s2, whose probability
distributions are the uniform distribution

p(si ) =

{
1

2
√

3
if −

√
3 ≤ si ≤

√
3,

0 otherwise.

Then, the mean is zero and the variance is 1. The joint probability density is
the product p(s1, s2) = p(s1)p(s2) due to the independence, which is again a
uniform distribution on the square [−

√
3,
√

3]2.

48 / 92



MMAT 5320
Computational

Mathematics - Part 2
Applications

Andrew Lam

Topics

Principal component
analysis (PCA)

Independent
component analysis
(ICA)

Illustration II

Consider a mixing matrix

A =

(
2 3
2 1

)
applied to the sample for the signals s = (s1, s2) on the left, leading to the
sample for the mixture x = (x1, x2) on the right.

The new random variables x = As are not independent, since if x1 attains the
maximum value, then we can infer the value of x2.
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Uncorrelated

Two random variables X and Y are uncorrelated if their covariance is zero:

E((X − E(X ))(Y − E(Y ))) = E(XY )− E(X )E(Y ) = 0.

Lemma: Independence implies uncorrelated.

Proof:

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xypX ,Y (x , y)dxdy

=
(∫ ∞
−∞

xpX (x)dx
)(∫ ∞

−∞
ypY (y)dy

)
= E(X )E(Y ).

On the other hand, uncorrelated does not imply independence!
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Non-Gaussian condition

In any ICA algorithm, there is a fundamental restriction that the underlying
signals s1, . . . , sN cannot be Gaussian random variables, i.e., their probability
distribution is not the normal/Gaussian distribution N(µi , σi ).

Why? Suppose the mixing matrix A is orthogonal, i.e., a rotation. For two
independent random variable s1 and s2 ∼ N(0, 1), their joint probability
distribution is

p(s1, s2) = p(s1)p(s2) =
1

2π
exp

(
−

s2
1 + s2

2

2

)
=

1

2π
exp

(
−
‖s‖2

2

)
.

Under the orthogonal matrix A, we have ‖As‖ = ‖s‖, which means the
probability distribution does not change under A.

This implies that there is no information on the directions of the columns of
A, and hence we cannot estimate A.

Therefore, within the ICA algorithm, we should make it so that the computed
output ŝ = W x should have a non-Gaussian distribution by maximising
certain measures of non-Gaussianity.
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Standardised moments

Let X be a random variable with a probability distribution p and mean
µ = E(X ). The standardised moment of degree k is the ratio

µ̃k =
µk

σk
,

where the kth moment about the mean is

µk := E((X − µ)k ) =

∫ ∞
−∞

(x − µ)kp(x)dx ,

and the kth power of the standard deviation is

σk :=
√

E((X − µ)2)
k

.

Note: µ̃1 = 0 (1st standardised moment is always zero), while µ̃2 = 1 (2nd
standardised moment is 1).

Definitions: We call µ̃3 the skewness and µ̃4 the kurtosis.

Note: by definition of the mean and variance, µ1 = 0 and µ2 = Var(X ) = σ2.
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Class exercise

Consider a random variable X with the normal probability distribution pX (x)

pX (x) =
1

√
2πσ2

exp
(
−

(x − µ)2

2σ2

)
.

Show that

I the skewness µ̃3 = E((X−µ)3)

σ3 is zero.

I the kurtosis µ̃4 = E((X−µ)4)

σ4 is 3.

Hint: Use a suitable substitution, integration by parts, and the following fact:∫ ∞
−∞

e−z2
dz =

√
π.
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Kurtosis I

The Kurtosis is the 4th standardised moment

Kurt(X ) =
E((X − µ)4)

(E((X − µ)2))2
= E

[(X − µ
σ

)4
]

is a measure of the “tailedness” of the probability distribution pX of X .
Equivalently, it is a measure of outliers in the distribution.

Since Gaussian distribution has kurtosis 3, it is common to define the excess
kurtosis

EKurt(X ) = Kurt(X )− 3 =
µ4

σ4
− 3.

Then, we say a probability distribution pX is

I mesokurtic if EKurt(X ) = 0.

I leptokurtic if EKurt(X ) > 0 (“Lepto-” means slender and so distributions
have “fatter tails”, aka supergaussian).

I platykurtic if EKurt(X ) < 0 (“Platy-” means broader and so distributions
have “thinner tails”, aka subgaussian).

Note: there is an inconsistency in the literature where the word “kurtosis” is
often associated to the formula E(X 4)− 3(E(X 2)), which is the excess
kurtosis in this course!
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Kurtosis II

Graphically:

Figure: Taken from https://www.statisticshowto.datasciencecentral.com/

probability-and-statistics/statistics-definitions/kurtosis-leptokurtic-platykurtic/.

I Platykurtic distributions (cyan, blue, purple) have tails that are “thinner”
compared to the normal distribution, or in some cases, non-existent.

I Leptokurtic distributions (red, orange, green) have tails that are “fatter”
than the normal distribution.
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Two-by-two case SVD-based ICA (Farid and Adelson)

Suppose we have two signals x = (x1, x2) and two sources s = (s1, s2).
Assuming the mixing matrix A is invertible/full rank, visually the mixing and
separation process can be summarised with the help of the SVD of A as

The mixing matrix A first rotates the signals S with V>, then stretches to a
parallelogram with Σ, and then rotate again with U to get the data X .
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Step 1 - Recovering U>

Geometrically, we want to align the axes of the parallelogram with the
standard axes. The orthogonal/rotation matrix U is of the form

U =

(
cos θ − sin θ
sin θ cos θ

)
for some angle θ.

We assume the data X is composed of M points {(x1(j), x2(j))}Mj=1, and we

can extract the long and short axes of the parallelogram (as they correspond to
the direction of maximal and minima variance, aka the principal components).

Let θ be the angle between the the long axis and the horizontal axis. For each
data point (x1(j), x2(j)), under the action of U> they become(

z1(j)
z2(j)

)
= U>

(
x1(j)
x2(j)

)
=

(
x1(j) cos θ + x2(j) sin θ
−x1(j) sin θ + x2(j) cos θ

)
.
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Recovering U> II

The variance of the projected data {(z1(j), 0)}Mj=1 onto the horizontal axis is

Var(θ) =
M∑
j=1

|z1(j)|2 =
M∑
j=1

x1(j)2 cos2 θ + 2x1(j)x2(j) cos θ sin θ + x2
2 (j) sin2 θ.

The direction of maximal variance is given by the angle θ∗ maximising this
function, and the direction of minimal variance is given by the angle θ∗ − π

2
.

Figure: Variance projected onto horizontal axis. Taken from H. Farid and E.H. Adelson. J. Optical.
Soc. America (1999)

58 / 92



MMAT 5320
Computational

Mathematics - Part 2
Applications

Andrew Lam

Topics

Principal component
analysis (PCA)

Independent
component analysis
(ICA)

Step 1 - Recovering U> III

Differentiating Var(θ) gives (class exercise)

d

dθ
Var(θ) =

M∑
j=1

(
[x2

2 (j)− x2
1 (j)] sin 2θ + 2x1(j)x2(j) cos 2θ

)
.

Then,

d

dθ
Var(θ∗) = 0 ⇔

sin 2θ∗

cos 2θ∗
= −

2
∑M

j=1 x1(j)x2(j)∑M
j=1 x

2
2 (j)− x2

1 (j)

⇔ θ∗ =
1

2
tan−1

(
−

2
∑M

j=1 x1(j)x2(j)∑M
j=1 x

2
2 (j)− x2

1 (j)

)
.

The orthogonal matrix U>, associated to the rotation of the parallelogram
back to its aligned position, is given by

U> =

(
cos θ∗ sin θ∗
− sin θ∗ cos θ∗

)
.
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Step 2 - Recovering Σ−1

Since the variance is associated to the singular values, we can estimate the
singular values along the two directions as

σ2
1 = Var(θ∗) =

N∑
j=1

[ (
x1(j) x2(j)

)(cos θ∗
sin θ∗

)]2
,

σ2
2 = Var(θ∗ − π

2
) =

M∑
j=1

[ (
x1(j) x2(j)

)(cos(θ∗ − π
2

)
sin(θ∗ − π

2
)

)]2
.

This gives us the diagonal elements of Σ = diag(σ1, σ2). To undo this scaling,
the inverse Σ−1 is

Σ−1 =

(
1
σ1

0

0 1
σ2

)
.

This is well-defined, as A is assumed to be full-rank, and so σ1 and σ2 are
positive!
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Part 3 - Recovering V
The last step is to obtain the rotation matrix V , which is more subtle, as we
need to produce nearly independent non-Gaussian probability distributions for
s1 and s2.

For this we will use the kurtosis. From the data {(x1(j), x2(j))}Mj=1, we denote
the transformed data (

y1(j)
y2(j)

)
= Σ−1U>

(
x1(j)
x2(j)

)
.

Suppose the rotation matrix V is of the form

V =

(
cosψ sinψ
− sinψ cosψ

)
for some angle ψ. Under the action of V , we have(

s1(j)
s2(j)

)
= V

(
y1(j)
y2(j)

)
=

(
y1(j) cosψ + y2(j) sinψ
−y1(j) sinψ + y2(j) cosψ

)
.
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Recovering V II

We choose ψ∗ as the angle maximising both the variance and the excess
kurtosis of the first signal s1. Graphically:

Figure: Fourth moment projected onto horizontal axis. Taken from H. Farid and E.H. Adelson. J.
Optical. Soc. America (1999)

From the calculation of U>, maximising variance means that

M∑
j=1

(
[y2

2 (j)− y2
1 (j)] sin 2ψ∗ + 2y1(j)y2(j) cos 2ψ∗

)
= 0.

Keep this in mind!
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Recovering V III

Since we assumed the variance of s1 to be equal to 1, the excess kurtosis, as a
function of ψ, is

EKurt(ψ) =
M∑
j=1

(
y1(j) cosψ + y2(j) sinψ

)4
− 3.

Then, (see H. Farid, E.H. Adelson Separating Reflections from Images Using Independent

Component Analysis)

d

dψ
EKurt(ψ) =

M∑
j=1

− 1
8
y4

1 (j)(8 sin 2ψ + 4 sin 4ψ) + y3
1 (j)y2(j)(2 cos 2ψ + 2 cos 4ψ)

+ 3y2
1 (j)y2

2 (j) sin 4ψ + y1(j)y3
2 (j)(2 cos 2ψ − 2 cos 4ψ)

+ 1
8
y2

1 (j)(8 sin 2ψ − 4 sin 4ψ).

However, there is no analytical solution to d
dψ

EKurt(ψ) = 0! I.e., we cannot

find a formula for ψ∗.
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Recovering V III
To obtain an analytical solution, we instead maximise the normalised kurtosis

K(ψ) =
M∑
j=1

1

y2
1 (j) + y2

2 (j)

(
y1(j) cosψ + y2(j) sinψ

)4
.

A shortish calculation shows

dK

dψ
=

M∑
j=1

[y2
2 (j)− y2

1 (j)] sin 2ψ + 2y1(j)y2(j) cos 2ψ

+
M∑
j=1

1

y2
1 (j) + y2

2 (j)

(
[2y3

1 (j)y2(j)− 2y1(j)y3
2 (j)]︸ ︷︷ ︸

=:A(j)

cos 4ψ
)

+
M∑
j=1

1

y2
1 (j) + y2

2 (j)

(
[3y2

1 (j)y2
2 (j)− 1

2
y4

1 (j)− 1
2
y4

2 (j)]︸ ︷︷ ︸
=:B(j)

sin 4ψ
)
.

By the variance maximisation, the red term vanishes! So, the angle ψ∗
maximising K(ψ) and Var(ψ) is given by

ψ∗ = 1
4

tan−1

[
−
∑M

j=1 A(j)/(y2
1 (j) + y2

2 (j))∑M
j=1 B(j)/(y2

1 (j) + y2
2 (j))

]
.
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SVD-based ICA – Summary for N = 2 case

Given the data x , the reconstructed signal s is

s = A−1x = VΣ−1U>x

=

(
cosψ∗ sinψ∗
− sinψ∗ cosψ∗

)( 1
σ1

0

0 1
σ2

)(
cos θ∗ sin θ∗
− sin θ∗ cos θ∗

)
x

where

θ∗ =
1

2
tan−1

(
−

2
∑M

j=1 x1(j)x2(j)∑N
j=1 x

2
2 (j)− x2

1 (j)

)
,

σ1 =

 M∑
j=1

[
x1(j) cos θ∗ + x2(j) sin θ∗

]2

1/2

,

σ2 =

 M∑
j=1

[
x1(j) cos(θ∗ − π

2
) + x2(j) sin(θ∗ − π

2
)
]2

1/2

,

ψ∗ =
1

4
tan−1

(
−
∑M

j=1 A(j)/(y2
1 (j) + y2

2 (j))∑M
j=1 B(j)/(y2

1 (j) + y2
2 (j))

)
,

and A(j),B(j), yi (j) can be found in previous slides.
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Numerical experiment (Farid and Adelson)
I Original signal: x1 - image of Einstein, x2 - image of Mandrill (a species

of primate).

I Mixing matrix

A =

(
1.00 −0.49
0.50 −0.66

)
I Output observations: y1 and y2
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Numerical experiment (Farid and Adelson)

Third column is the sampled joint
probability distribution.

Actual Estimated

A

(
1.00 −0.49
0.50 −0.66

) (
1.00 −0.63
0.49 −0.79

)
θ 35.7◦ 37.4◦

σ1/σ2 4.41 4.55
ψ 35.4◦ 41.4◦
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