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> Numerical Linear Algebra by Trefethen and Bau (1997)
» Data-Driven Modeling & Scientific Computation by Kutz (2013)
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Topics

Topics: Part 1 — Numerical Linear Algebra by Trefethen and Bau (TB)
> Review of Linear algebra
> Singular value decomposition (SVD)
> QR factorization (Gram—Schmidt/Householder)
> Least squares problem
» Eigenvalue problems

» Eigenvalue algorithms

Topics: Part 2 — Data-Driven Modeling & Scientific Computation by Kutz (K)

> Principal component analysis (PCA)

> Independent component analysis (ICA)
» Compress sensing

» Time frequency analysis

> Image denoising and processing

» Data assimilation
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§7 - Principal component analysis (PCA)




What is PCA?

Definition from Wikipedia: “PCA is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of called
principal components.”

Unpacking the definition:

> Prerequisite: a collection of observation/data.

» Employ an orthogonal transformation to convert the (correlated) data
into a new set of data that is not correlated with each other.

> Statistical procedure - measurement of effectiveness/error involves
quantities from statistics.

PCA provides a roadmap for how to reduce a complex data set to a lower
dimension to reveal the sometimes hidden, simplified structures that often
underlie it.
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PCA motivating example
Consider a sample of heights and weights of 12 people, where we summarised Maﬂf;a“tc'ii;n?"z
the adjusted mean-zero data in the matrix A:
Andrew Lam
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Principal component
analysis (PCA)
The top row is the adjusted height and the bottom row is the adjusted weight.
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A plot shows a positive correlation between height and weight. How do we

quantify this?
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cameras ‘
Principal component

N 'mm R analysis (PCA)

camera A

camera A camera B camera C

Figure: Taken from J. Shlens. A tutorial on Principal Component Analysis.

Three cameras recording the position of a ball attached to an oscillating
spring moving only in the x-axis. Can we reveal this hidden structure from the
data obtained by the three cameras?
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. MMAT 5320
More general setting oz
Consider Ma“‘:,r::itcﬁi;nzm ’

> m features (e.g. height, weight, number of siblings, etc.), and
» n samples (e.g. number of individuals in the survey).
We collect these in a data matrix A € R™*", A = (xj)1<i<m,1<j<n Where

Andrew Lam

> row /i containing the data for the ith feature, Prir;cipal(;ocn;;;onent
. . analysis
> column j represents the jth sample of data. !
The notation x; = (x1j,...,Xm;) | denotes the jth column of A.

Some statistical definitions:
1. The feature sample mean vector X € R™ is the vector whose jth entry is
the average value of the n samples of feature j:

s e o - 1 .
x:(xl,xz,...,xm)T, xj-:;ZXUGRfor_jzl,...,m.

Jj=1

2. The sample variance covariance matrix C = (¢pq) € R™*™ is defined as
1 n
Cq = 7 D0 = Rp)(Xgj — %q)-
J=1

If the data has been preprocessed to have mean zero, i.e., X; = 0, we say A
has been adjusted, and consequently

_AAT

n—1

C
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Properties of the sample covariance matrix i)
Mathematics - Part 2
For an adjusted data matrix A € R™X"  the sample covariance matrix is Applications
T Andrew Lam
_AA
T on—1"
Principal component
Properties: analysis (PCA)

» C € R™X™M is symmetric and positive semi-definite.

» The diagonal entries C;; (i = 1,..., m) represents the sample variance of
the ith random variable:

1 < _ 1 <
of = Cj = D b — %)’ = > Xk
=1 n—1

n—1

> The off-diagonal entries Cj; represent the sample covariance between the
ith and kth random variables.
> If Cj is positive, then we say the ith and kth random variables are
positively correlated; if Cj, is negative, then they are negatively
correlated. If Cj = 0, then they are not correlated (hence independent).
The R = (rpq) € R™*™ is obtained from
normalising:

rog = —P € [~1,1].
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Back to PCA motivating example |
Back to the example with height and weight data, computing the sample
covariance matrix gives
c_ AAT 1 (5346 73.42
N n—1 - 11 7342 10716 ’ Principal component
analysis (PCA)
Ci2 = 1 > 0 implies height and weight are positively correlated. This is
evident from a line of best fit in the following plot of the data.

weight (zero-centered)
4

.

/

/
height
(zero-centered)

/
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But what does the line of best fit represent? The equation of the line is
a(height) + b(weight) = 0 for some a, b € R. This gives us a new variable!



From correlated to uncorrelated

Remember the definition from wikipedia: “PCA is a statistical procedure that
uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of called
principal components.”

> Observations summarised in matrix A € R™*" (with m = 2 features
"height” and "weight”) and n = 12 samples.

» Possibly correlated variables/features: from covariance matrix

c— AAT 1 (5346 73.42
T n—1 11 \73.42 107.16)°

height and weight are correlated.

It remains to find variables/features (call them X, Y) that are uncorrelated
from “height” and “weight”. In particular, the covariance matrix associated to
(X, Y), denoted by C, should look like

=~ 1 0
(3 2)

This means we should seek a transformation C — C.
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Main idea of PCA

Since C is symmetric and positive semi-definite, it is diagonalisable with real
and nonnegative eigenvalues. Then, C admits an eigenvalue decomposition
C= QCQ*}\ with orthogonal matrix @ and the eigenvalues listed on the
diagonal of C.

Therefore the new uncorrelated variables (X, Y') should correspond to the
eigenvectors of C. Namely, if
_ (911 Q12
Q= (Q21 q22> ’

then the new variables are

X = qui(height) + go1(weight), Y = gi2(height) + go2(weight),

which don’t have any real physical meaning, since they are linear combinations

of the initial variables “height” and “weight".

We call these new uncorrelated variables the principal components (p.c.). Note
that the total number of p.c. equals the dimension of the covariance matrix C!

The idea of PCA is to rank the p.c. by how much of the data is captured

along each p.c.. The first p.c. captures the maximum possible information of
the data, the second p.c. would capture the maximum remaining information,

and so on...
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What is a good notion of “maximum possible information”? Let consider the

fO”OW”'lg data P|0t Principal component
analysis (PCA)

LFigures in this and the next slides are taken from https://stats.stackexchange.com/questions/

2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
13 /92
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We can draw many lines through the data points: Applications

Andrew Lam

Principal component
analysis (PCA)

The red dots are projections of the data (blue dots) onto the line. The
“spread” of the red dots on the line captures the variance, and the error
between the red dot and its corresponding blue dot is measured by the length
of the connecting red line.
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Choice of maximum possible information @it
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So, by “maximum possible information of the data” we can choose to mean: Applications
> total reconstruction error Eg, given by the average squared length of the Andrew Lam

red lines, is minimised; or

> the variance Var, measured as the average squared distance from the o
.. . .. Principal component
origin to each red dot, is maximised. analysis (PCA)

It turns out they are equivalent! Heuristic explanation:
> The angle between the black line and red line is always 90 degrees.

» By Pythagoras theorem, the sum Var 4 Eg is the average squared
distance from the origin to each blue dot, which is fixed!

Hence, maximising variance is the same as minimising reconstruction error. A
more rigorous proof on the next slide.
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Equivalence of PCA objectives | Computations
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Let {x1,...,xn} be an adjusted collection of n samples, i.e., Y7 ; x; = 0. Let °

v be a unit vector and L be the line passing through the origin in direction v. (wiliens (Lam

What is the projection of x; onto the line L? Let p; € L be the projection of Principal component
x;. Then: analysis (PCA)

> p; — x; is orthogonal to the line L, and so (p; — x;) - v =0.

> p; € L implies p; = cv for some constant ¢ € R.

> v is a unit vector andso p;-v=cv-v =c, ie, pi=(p;i-v)v.
> Hence, p; = (x; - v)v.

Note that the projected points {p;}7_; are also centered around the origin:

" _Zp, = ([Zx] v)v=o.

i=1

The variance/spread of the projection of {x;}7_; on L is measured by

Var(v 72(@ n)? = 72 7= nflz(Xf-V)%

i=1

Let us rewrite this in terms of the covariance matrix.

16 /92



Equivalence of PCA objectives Il

If Ais the data matrix, whose ith column is x;. Then, (x; - v)2 = v - (x;x;")v,
and

Var(v) =v - ( ! zn:x;x,T)v: V‘LAATV: v-Cyv,
i=1

n—1<< n—1
where C is the covariance matrix.
Next, the error between the data x; and its projection p; is
lIxi = pill = llxi — (xi - v)vl.
But recall from slide Decomposition of a vector Il
(xi-viv=(wl)x, = x—(x viv=_—-w')x.

The reconstruction error can be expressed as
n
2 Ty a2
Er(v) =D lIxi — (xi - v)vli3 = [[(/ — w AJZ,
i=1

with the Frobenius norm || - || .
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Equivalence of PCA objectives Il

Theorem: Let A € R™X" be a data matrix with zero row sum, and let

C= nlIAAT be its covariance matrix. Let v be a unit vector. Then,

min Eg(v) < maxVar(v).
v v

Proof 2: (1) Let tr(B) = Zf:l Bj; denote the trace of the square matrix
B € Rk*k. Then, the Frobenius norm || - || has the alternate characterisation:
|Al|Z = tr(AT A) for A € R™¥7.
(2) From the reconstruction error, we see (using (vv ') is symmetric)
Er(v) = I/ = wDAI} = (A= (WA (A= (wT)A))
= tr<ATA> - 2tr<AT(va)A> T tr(AT(wT)(wT)A)
= tr(ATA) - tr(AT(va)A) since (w )(w ') =wT
=uw(ATA) —u(vTAATY)
= tr(ATA> —(n—1)v'Cv= tr(ATA> — (n—1)Var(v).

The first term tr(ATA) is independent of v, and so min, Eg(v) is equivalent
to maxy Var(v).

O
2https://stats.stackexchange.com/questions/32174/

pca-objective-function-what-is-the-connection-between-maximizing-variance-and-m
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Variance maximisation izt
. . . Lo o . . ) Mathematics - Part 2
Given a covariance matrix C, finding the direction of maximal variance (i.e., Applications
the first principal component) corresponds to Al Lam

maxVar(v) = v-Cv  subject to [|v|> = 1.
v

Principal component
We use the Lagrange multiplier method, and introduce the Lagrangian analysis (PCA)

L(Vrlj') =v: CV*N(VT‘,* 1)v

for u € R (known as the Lagrange multiplier for the constraint ||v|j2 = 1).
Computing the partial derivatives shows

oL

oL
— =2(Cv—uv), —=viv-1=]|v|3-1
ov

o
Hence, at a critical point (v*, u*) of L we get
v = v, B =1,

i.e., v* is a unit eigenvector of C with corresponding eigenvalue p*.
Substituting (v*, u*) back into the Lagrangian gives

L(v*, ™) = v - Cv* = Var(v®) = v* - u'v* = " [v*[3 =

Therefore, the maximal variance is the largest eigenvalue A1 of C, and the
first principal component should be the corresponding eigenvector vj.
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Second principal component Computational

Mathematics - Part 2

What about the second principal component? Applications

> This should maximise the “remaining variance” not captured by v;. Pl L
> This should be orthogonal to v;.

. . Principal component
Hence, finding v» corresponds to analysis (PCA)

ml?xVar(v) =v-Cv subjectto|v|2=1and v-v; =0.
Introduce Lagrange multipliers o, 8 € R and consider
Lv,a,8)=v-Cv—a(viv—1)— v v.
At a critical point (v*,a*, 3*) we have all partial derivatives of L vanishing:

oL
ov

oL

* * ok * aL *
=2(Cv* —a*v*)—pB*vy =0, — =|v Hgflzo, %—

v®-vi =0.
oo’ !
Solving for g*:

B* = v (B*vi) =2(Cv* —a*v*) vy =2(M\vy —a*vy) - v* =0.
Then, as before, we have Cv* = a*v*. le., (a*,v*) is an eigenpair of C, but
which pair? Plugging back into L shows that a* should be the second largest
eigenvalue A of C with the second principal component as the corresponding

eigenvector vp.
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From variance maximisation, we find that for an adjusted (i.e., mean zero)

Andrew Lam
data matrix A € R™X" with covariance matrix C = ﬁAAT c Rmxm,

. . . . . . . . . Principal component
» the first principal component, i.e., the direction of maximal variance, is analysis (PCA)

the eigenvector v; of C corresponding to the largest eigenvalue A1;

> the second principal component, i.e., the direction of maximal variance
orthogonal to vy, is the eigenvector v, of C corresponding to the second
largest eigenvalue Ap;

> the kth principal component, i.e., the direction of maximal variance
orthogonal to span{vi,...,vk_1}, is the eigenvector v, of C
corresponding to the kth largest eigenvalue \j.

Since C has m eigenvalues, there will be m principal components.

Remaining issues:

> A procedure to “rank” the eigenvalues in decreasing order, so that we can
extract the principal components more easily.

> A criterion to choose how many principal components to use for a
“good” summary of the data.



PCA motivating example VI

Returning to the example with “height” and "weight” data. The eigenvalue

decomposition of the covariance matrix C gives

0 14.4078

C=QCQT with C= (0'1940 0 ) and Q = (

From this we see that the first principal component is vi = (0.5729, 0.8196)T,
i.e., the direction of the dotted line, and the second principal component is

vo = (—0.8196,0.5729) T .

Just how much of the variance is explained by the first principal component?

When can we discard the second principal component to obtain a simple

predictive model?

—0.8196 0.5729
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Class exercise

1. How can we ensure that for a symmetric matrix C (such as the
covariance matrix C = ﬁAAT), there is a complete set of orthonormal
eigenvectors? l.e., the matrix C is non-defective. [Hint: look back at the
Schur factorization slides on Part 1].

2. Show that the kth principal component should be taken as the
eigenvector of C corresponding to the kth largest eigenvalue by solving
the variance maximisation problem

maxVar(v) =v-Cv subjectto |[v[|3=1, v-vj=0for1<i<k-—1
v

with the help of the Lagrangian

k—1

L(VvavlJ‘l" . 'Hu‘k—l) =v-Cv— O‘(”VH% - 1) - ZMI’V " Vi,
i=1

where vi,...,v,_1 are the first k — 1 principal components.
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Alternate formulation ot
R Mathematics - Part 2
A problem with the eigenvalue decomposition C = QCQT is that there is no arelcztions
ordering of the eigenvalues in C, e.g. the “height” vs “weight” example. Andrew Lam

What is a decomposition of C that provides a ranking of the eigenvalues in
decreasing value? Ans: The singular value decomposition.

Principal component
) L i i analysis (PCA)
Recall: The (full) singular value decomposition of a matrix B € R¥*/ is

B=uUzv’
with U € Rk*k v/ € R'*! orthogonal, and ¥ € R¥*/ is diagonal.
In particular, ¥ = diag(o1, .. .,0/) where the singular values
01>022>---2>0,2>0,
are the (positive) square root of the eigenvalues of BT B € R/*/,

The columns of V are the corresponding to the eigenvalue {01‘2}
of BT B. Moreover, the SVD can be written as a sum of rank-one matrices:

,
B=UzVv' = Zoiu;vi—r
i=1

where rank(B) = r < min(k, /) and u;, v; are the ith columns of U and V.



Formulation with SVD e

Mathematics - Part 2

Therefore, performing the SVD of the scaled data matrix transpose Cppliteatitesins
B = \/,71771AT € R"™ M we obtain orthogonal matrices U € R"<" V ¢ RM*xm Andrew Lam

and diagonal matrix ¥ € R"*™ such that

1 T T Principal component
B=——A" =UxXV'. analysis (PCA)
vn—1

How does this help?

> The set of singular values o1, ...,0m contained on the diagonal of *
coincide with the square root of the eigenvalues Ay, ..., Ay of
BB = ﬁAA—r = C. Moreover, they are arranged so that

01 >00> > 0m.

> The columns of V are the eigenvectors of BTB = C, i.e., the matrix V
contains the principal components.

Thus, computing the SVD of \/nl—il

eigenvalues, as well as the principal components in one fell swoop! This
answers the first issue about an efficient decomposition that allows us to rank
the eigenvalues in order.

AT provides an ordering of the
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Variance and eigenvalues st
Mathematics - Part 2
Applications
Before discussing how to choose the number of principal components, we first Andrew Lam

relate the notion of variance and eigenvalues.

. . . ot " m . " Principal component
The correlation of .varla_bles in the ¢.iata sampl_e (e.g. “height” and “weight”) analye (PCAY
are neatly summarized in the covariance matrix C.

The variance is an important quantity, as a larger variance means a larger
dispersion of data points along a line (principal component), and a larger
dispersion means more information of the data points are contained on the
line.

How do we quantify the variance of the data along a principal component?
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Variance and eigenvalues Il

If the covariance matrix C € R™*™ s diagonal, i.e., C = diag(A1,...,Am),
then the m variables {xi,...,xm} that compose the data matrix A are
uncorrelated (as Cj = 0 for i # j), and the (sample) variance of x; is A;.

From the SVD \/%AT = UZ VT, we have the eigenvalue decomposition

c=vz?vT.

This also gives a change of basis, transforming from the standard basis
{e1,...,em} to a new basis {vg,..
covariance matrix in the new basis is diagonal.

Data in Original Coordinates Data in PC Coordinates

Then, the variance along the kth principal component is just Ay, i.e., the kth
largest eigenvalue of C.

., Vm} of principal components, so that the
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Selection of principal components

In applications, PCA can be viewed as a form of dimension reduction. For an
adjusted data matrix A € R™*" with large m, n > 1, PCA is used to extract
out a smaller number K of principal components that can capture the essence

of the data.

In the previous example with “height” and “weight” data, the plot shows that
it is enough to obtain the first principal component for the line of “best” fit.

weight (zero-centered)|
/
o S

A more concrete way of selecting the number K of principal component is to

look at their contribution to the total variance.
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Total and explained variance | Computational

i Mathematics - Part 2
Let us consider an example data set? athematics - Part

Applications

0 1 2 3 4 5 6 7 8 9 10 1un 12 13 AndreW Lam
0 1 1423 171 243 156 127 280 306 028 229 564 104 392 1065
11 1320 178 214 112 100 265 276 026 128 433 105 340 1050
2 1 1316 236 267 186 101 280 324 030 281 568 103 317 1185 -

Principal component

3 1 1437 195 250 168 113 3.85 349 024 218 780 086 345 1480 analysis (PCA)
4 1 1324 259 287 210 118 280 269 039 182 432 104 293 735

The 13 columns denote the different features, and each row (5 out of 124
shown here) is a particular sample of the data. In our notation, this
corresponds to the transpose data matrix AT € R13x124,

The procedure is:
1. Adjust the above data matrix AT by subtracting the mean of each
column (aka standardise the data set).

2. Construct the covariance matrix C € R13%13,

3. Compute the eigenvalues and eigenvectors of C.

Before deciding how many principal components to keep we plot the variance
explained ratios of the eigenvalues, which is the fraction

A
213 )\

3Figures taken from https://tovardsdatascience.com/
principal-component-analysis-for-dimensionality-reduction-115a3d157bad
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Total and explained variance Il st
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The variance explained ratio plot is yreifeeens

Andrew Lam

10 { — cumulative explained variance
individual explained variance

Principal component
analysis (PCA)

Explained variance ratio

0 2 4 6 ] 10 12 14
Principal component index
From this we see that
» the first principal component accounts for 40% of the variance,
> the first and second components account for 60% of the variance,

> of course, 100% of the variance is accounted for by using all principal
components.

So, a suitable number of principal components depends on how much variance
you want to capture. There is always a trade-off between computational
efficiency /storage (smaller K) and performance (larger captured variance).
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Measuring accuracy |

Suppose k principal components are selected for an adjusted set of n samples

{x1,...,xn}. Then, the projection of x; to the k-dimensional subspace
spanned by the principal components {vi,..., v} is
k
pi= (X vi)vi+ -+ (xi - vigvie = > (v - ).
j=1

The reconstruction error for the ith data point x; is therefore

m
e=xi—pi= Y (x-v)y,
j=k11
since {vi,...,vm} forms an orthonormal basis of R™. Then,
m
2 2
el = > (xi-v)*
j=k+1

The relative reconstruction error Ej using k principal components is

_ (Shaledye
Sl
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Measuring accuracy |l

Using the orthonormality of {vi,...,vn}, and the fact that they are
eigenvectors of C, we can show (class exercise) that
n m m
2
Dolel3=(n—1) > A, Z Ixill3 = (n=1) DA
i=1 j=k+1 j=1

Hence, the relative reconstruction error can be expressed as

Be= (%L"zl)v )1/2'

Due to the equivalence between variance maximisation and minimising
reconstruction error, E, provides a measure of the loss of variance by choosing

k out of m principal components.

At present there is no defining criterion to pick the best k. The heuristics is
“pick the smallest k that captures at least 85/90/95% of the variance” .
this is fine for low dimensions, for high dimensions m, n > 1 it is questionable

if high variance = high importance.
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Projected data st
Suppose we choose k out of m principal components after the analysis of an Mathematics - Part 2

Applications
adjusted data matrix A € R™*",
Andrew Lam

Let us construct the projection matrix W € R™*k whose columns are the k

principal components vy, ..., vx. We define the PCA subspace as the vector Principal component
space spanned by the columns of W. Then, the data in the PCA subspace is analysis (PCA)
summarised by the matrix Y := WT A € RkX7,

In particular,
v —
! [ | I \

Y = : X1 X2 o Xn = |y Y2 0 Y,

where y; gives the coordinate of the jth sample in the PCA subspace:

— v —

T
yi=(vi-x,va-x,..., v X))
Furthermore, if we calculate the covariance matrix Cy of the data Y, we see
1 1

Cy = 1YYT = 71WTAATW: wTecw =wTvs2vTw.
n— n—

Since VT W € R™*k is diagonal with entries 1, we have
Cy = WTVE2VT W = diag(o?, ..., 0%).

Hence, in the PCA subspace the features/principal components are

uncorrelated!
33/92
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Goal: To build a computational model of facial recognition, i.e., an algorithm Prieiisel @erpena:
that determines whether a facial image belongs to some individual we know. el ((REAY)

Difficulties: Faces are complex and multidimensional. Many things can
complicate the recognition algorithm, e.g. lighting, pose, background,
foreground, smiling, frowning etc.

Use PCA to decompose a training set of facial images into a small
set of characteristic feature images called (developed by Turk and
Pentland 1991). The linear span of these eigenfaces is denoted as the

Recognition is performed by projecting a new facial image into the face space.
Then, it can be classified by comparing its position with the positions of
known individuals in the face space.

34 /92



The Eigenface approach |
Every two-dimensional image | with N X N array of pixels can be considered
as a vector of dimension N2. A typical 256-by-256 pixel image lies in a 65,536
dimensional space (Huge!)

The key assumption is that the images of faces will not be randomly
distributed in this huge image space, but can be described by a relatively low
dimensional subspace, which we call the face space.

Suppose we have M faces I'1,...,y, each can be interpreted as a vector of
dimension N2. The averaged face is W := ﬁ Zf\il Fi.

Figure: Taken from Turk and Pentland (91). Left is the data of face images. Right is the
averaged face
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We define the deviations ®; :=T; — W for 1 < i < M, and apply PCA to the

Principal

set of data {d)l, RN (DM}_ ar:ar:;s?:(;%rr/;;;onent

. 2 )
Construct the data matrix A = [®1|P3| -+ |[dy] € RN"XM “and the covariance
matrix

1 T N2 x N2
C=——AA"€R .
M—-1

The task is to extract of the first k principal components from the
eigenvectors of C to build the face space.

Practical issue: Determining the eigenvalues and eigenvectors of a N?-by-N?
matrix is an intractable task!

Does this means we give up?
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B:= TATA e RMXM,

Principal component

If M < N2, i.e., the number of data points in image space is less than the analysis (PCA)
dimension of the image space. Then, it might be more feasible to find the
eigenvalues/eigenvectors of B.

But what's the point? Let v be an eigenvector of B with eigenvalue . Then,

1 1
Bv = TATAV =puv = ABv= ﬁAATAV = C(Av) = pAv.

l.e., Av is an eigenvector of C with eigenvalue p.

Are they also orthogonal? If u and v are two orthogonal eigenvectors of B,
then

Au-Av=u"ATAv = (M —1)u" Bv = p,(M —1)u" v =0.

Consequences:

> There are only M meaningful eigenvectors from the covariance matrix C,
as the rest are associated with the zero eigenvalue.

> The calculations are greatly reduced!
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Let {vi,...,vm} be the orthonormal eigenvectors of B = =1 A A ranked

. . . . Andrew Lam
with decreasing values of corresponding eigenvalues, and set

wi=Ay; forl1<i< M. .
== Principal component
analysis (PCA)

Then, {wi,...,wp} are the eigenvectors of C with non-zero eigenvalues.

Figure: The first seven eigenfaces calculated from the data set.

Exercise. If p is the eigenvalue corresponding to the orthonormal eigenvector
v for B, what is the corresponding eigenvalue to the eigenvector Av for C?
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Recognising new faces
Fix k < M (can be chosen arbitrarily or by looking at the variance explained
ratio plot), then the face space S is

S =span{wi, ..., wk}.

Given a new face I, its coordinate in the face space S is given by the vector
(915 - -+ »Yk), where
yi=wi-(T=W¥) forl<i<k.

Its approximation f can be expressed as

k
F=> viw
i=1

Figure: A new face image (left) and its projection to the face space spanned by the 7
eigenfaces.
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microphane 1
0 i
0
Independent
microphone 2 component analysis
(IcA)

» Two conversations happening simultaneously.

» Two microphones placed at different locations and receive a mixture of
signals (the conservations + other noise).

» How can we separate out the signals to reconstruct each conversation?
Mathematically: let s1(t) and s(t) be the signals from the two conservations.
We measure the mixed recorded signals

x1(t) = ansi(t) + a2s2(t),
xo(t) = an1s1(t) + axs2(t),
at microphones 1 and 2, where aj; are the mixing parameters.

The mathematical problem: Given (x1(t), x2(t)), find (s1(t), s2(t)).
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True Sources

Independent
component analysis
(ICA)

500 1000 1500 2000
Observations (mixed signal)

~4 500 1000 1500 2000

Figure: Taken from https://www.cs.ubc.ca/~jnutini/documents/mlrg_pca.pdf

From the observed mixed signals x1(t) and x2(t), recover the two original
signals s1(t) and s(t).
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Setting of a more general problem

Suppose we record a multi-dimensional data x, each sample is a random draw
from an unknown probability distribution P(x).

We assume there exists some underlying sources s where each source s; is
statistically independent of all other sources s;, j # i.

The key assumption of the independent component analysis (ICA) is that the
observed data x is a linear mixture of the underlying source s, i.e., there is an
unknown invertible square matrix A such that

x = As.

The of ICA is find the unknown mixing matrix A, or more specifically, an
approximation W to its inverse A~1, so that

5:= Wx

is a good approximation of the true underlying source s = A~ 1x.

MMAT 5320
Computational
Mathematics - Part 2
Applications

Andrew Lam

Independent
component analysis
(ICA)

43 /92



Challenges and strategies Computations
Mathematics - Part 2
Applications

Andrew Lam

Since the mixing matrix A and the underlying source s unknown, it appears
impossible to infer both A and s from the equation
x = As. Icr;dr:gcezrr‘\g::tana\ysis
(IcA)
One strategy (divide and conquer) is to just find the mixing matrix A, as
oppose to finding both A and s simultaneously. We will again use the singular
value decomposition, namely if

A=UzVT,

then we will find ways to get approximations U, % and V just from the data x
so that

is a good approximation of A~L
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Probability recap
In these slides we will always assume X is a real continuous random variables

with values in (—o0, 00). Associated to X is its probability distribution
function fx, which gives

Pa< X < b) = /b e (x)dx.

l.e., the probability that the random variable X realises a value in the interval
[a, b] is given by the integral of fx over [a, b].

Note that for continuous random variables, it does not make sense to find
P(X = c).

The Expectation/Mean of a random variable X with probability distribution
px is

B = [ spx(x)dx = .
and the variance of X is

B(X - ) = [ (= wPex(x)de = o2
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Joint distribution and independence

Two random variables X and Y can be assigned a joint probability distribution
px,y, if for any subset D € R? it holds

PX.Y) € D) = [ oyl
Eg.,
d prb
P((X,Y) € (a,b) x (c, d)) :/ / px.v (%, y)dx dy.
c a
We define the marginal distribution px of X by
oo
px(x) :/ px,v (x,y)dy
— 00
and the marginal distribution py of Y by

py(y) = /OO px7y(X,y)dx.

Then, X and Y are independent if the joint distribution can be factorised as

px,vy(x,y) = px(x)py ().
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Ambiguities of ICA
The ICA problem involves solving
x = As

for unknown A and random variable s. Immediately, we see that

> it is not possible to determine the variance of s, since a scalar multiple of
a component s; can be cancelled by dividing columns of A by the same

scalar. l.e.,

ann a2 (s1) _ (au/a  aw/B\ (as

a1 an) \s ar/a  an/B) \Bs2)’
To deal with this, we fix the variance of each signal s; to be 1, i.e.,
Var(s;) = E((s; — E(s;))?) = E(s?) = 1. [This is called ] But
note that there is still the ambiguity of the sign, since —s; is also a
solution with variance 1.

> there is no natural ordering of the signal components s, since for any
permutation matrix P, it holds x = AP~ 1Ps and AP~1 is a new
unknown mixing matrix. l.e.,

a1 a2 S1\ _ (@1 a2 s2
azi a2 S2 ail ai2 S1

But in practice, this is not a big problem.
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[llustration |

Consider two independent random variables s; and sp, whose probability
distributions are the uniform distribution
1 .
L if —V3<5<V3,
p(si) =4 23 T
0 otherwise.
Then, the mean is zero and the variance is 1. The joint probability density is

the product p(s1, s2) = p(s1)p(s2) due to the independence, which is again a
uniform distribution on the square [—\/§7 \/5]2
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Consider a mixing matrix Andrew Lam

2 3
applied to the sample for the signals s = (s, s2) on the left, leading to the It
sample for the mixture x = (x1,x2) on the right. E;:Cn;p)onentana\ysis

The new random variables x = As are not independent, since if x; attains the
maximum value, then we can infer the value of x».
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Uncorrelated

Two random variables X and Y are uncorrelated if their covariance is zero:
E((X — E(X))(Y — E(Y))) = E(XY) — E(X)E(Y) = 0.
Lemma: Independence implies uncorrelated.

Proof:

o0 o0
E(XY) = / / xypx,y (x, y)dxdy
— o0 — 00

= (/_O:O xpx(x)dx) (/_o:o va(Y)dy) = E(X)E(Y).

On the other hand, uncorrelated does not imply independence!
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In any ICA algorithm, there is a fundamental restriction that the underlying
signals s, ..., sy cannot be Gaussian random variables, i.e., their probability
distribution is not the normal/Gaussian distribution N(u;, o;).

Why? Suppose the mixing matrix A is orthogonal, i.e., a rotation. For two L’;‘:":Z:‘:::;na‘ysis
independent random variable s; and s, ~ N(0, 1), their joint probability (IcA)

distribution is

1 512+s§) 1 ( ||s||2)
s;, ) =p(si)p(s2) = —exp| ——=) = —exp( — — ).
pls,s2) = p(su)p(s) = - exp (= L2 ) = —ep (— 1)
Under the orthogonal matrix A, we have ||As|| = ||s||, which means the
probability distribution does not change under A.

This implies that there is no information on the directions of the columns of
A, and hence we cannot estimate A.

Therefore, within the ICA algorithm, we should make it so that the computed

output 5§ = Wx should have a non-Gaussian distribution by maximising
certain measures of non-Gaussianity.
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Let X be a random variable with a probability distribution p and mean ndrew Lam

u = E(X). The standardised moment of degree k is the ratio

~ Hk
Mk = —5
4 Independent
) component analysis
where the kth moment about the mean is (ICA)

¢S]

= B(X = 10 = [ (= ) p(x)dx,

and the kth power of the standard deviation is

k
ok = \JE((X = p)?) -

Note: fi; = 0 (1st standardised moment is always zero), while i = 1 (2nd
standardised moment is 1).

Definitions: We call i3 the skewness and fi4 the kurtosis.

Note: by definition of the mean and variance, p; = 0 and p> = Var(X) = o2,



MMAT 5320
Computational

Class exercise
Mathematics - Part 2

Applications

Andrew Lam

Consider a random variable X with the normal probability distribution px(x)

1 (x=n? o
Px (X) = W exp ( - 252 ) : Erg;%zne:ttana\ysis
Show that
3
> the skewness i3 = w is zero.

4
> the kurtosis fig = w is 3.

Hint: Use a suitable substitution, integration by parts, and the following fact:

R 2
/ e dz = /7.
— 00
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Kurt(X) =

E(X = )" [ X—pa
CCEr e el

is a measure of the “tailedness” of the probability distribution px of X.

Equivalently, it is a measure of outliers in the distribution. ldgpareaic
component analysis
(IcA)

Since Gaussian distribution has kurtosis 3, it is common to define the excess

kurtosis

EKurt(X) = Kurt(X) —3 =22 3
ot '

Then, we say a probability distribution px is
> mesokurtic if EKurt(X) = 0.

> if EKurt(X) > 0 (“Lepto-" means slender and so distributions
have “fatter tails”, aka supergaussian).

> platykurtic if EKurt(X) < 0 (“Platy-" means broader and so distributions
have “thinner tails”, aka subgaussian).

Note: there is an inconsistency in the literature where the word “kurtosis” is
often associated to the formula E(X*) — 3(E(X?)), which is the excess
kurtosis in this course!
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Kurtosis 11

Graphically:

Figure: Taken from https://www.statisticshowto.datasciencecentral.com/
probability-and-statistics/statistics-definitions/kurtosis-leptokurtic-platykurtic/.

> Platykurtic distributions (cyan, blue, purple) have tails that are “thinner
compared to the normal distribution, or in some cases, non-existent.

> Leptokurtic distributions (red, orange, green) have tails that are “fatter
than the normal distribution.

azomsrep

hhooHNW

S<
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Two-by-two case SVD-based ICA (Farid and Adelson)

Suppose we have two signals x = (x1, x2) and two sources s = (s1, 52).
Assuming the mixing matrix A is invertible/full rank, visually the mixing and
separation process can be summarised with the help of the SVD of A as

mixing separation

[

AW AWA

|

\J

:U.
P

The mixing matrix A first rotates the signals S with VT, then stretches to a
parallelogram with X, and then rotate again with U to get the data X.

L]

A\

51

=
*

J
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Geometrically, we want to align the axes of the parallelogram with the
standard axes. The orthogonal/rotation matrix U is of the form

cosf —sinf
U= (sin 0  cosf )
for some angle 6.
We assume the data X is composed of M points {(x1(j), x2(j)) j’\il, and we

can extract the long and short axes of the parallelogram (as they correspond to
the direction of maximal and minima variance, aka the principal components).

Let 8 be the angle between the the long axis and the horizontal axis. For each
data point (x1(j), x2(j)), under the action of UT they become

(20) =7 (20) = (Caransalheess)
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Recovering UT 11

The variance of the projected data {(z1(j), 0)}1.’\11 onto the horizontal axis is

M M
Var(0) = > " |21()1> = Y _ x1(j)? cos® 0 + 2x1(j)x2(j) cos O'sin 0 + 3 (j) sin® 0.
j=1

j=1

The direction of maximal variance is given by the angle 6, maximising this

function, and the direction of minimal variance is given by the angle 0. — 7.

A B c D

£

5

£

5

2

°

§

3

2]
A B c D

Figure: Variance projected onto horizontal axis. Taken from H. Farid and E.H. Adelson. J. Optical.
Soc. America (1999)
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Differentiating Var(0) gives (class exercise)

M
d . o L
ZVar(0) =S ([xg(J) — x2(j)] sin 20 + 2x1(j)x2(j) cos 29).
do :
j=1 Independent
component analysis
(ICA)

Then,
H M . .
iVar(@,k):o & sin20, _ 2352 xal)x()
do cos 20, ZJ 1X2(J) _ Xl(f)
zJ'I\/:ll X22(J) _Xl(J)

The orthogonal matrix UT, associated to the rotation of the parallelogram
back to its aligned position, is given by

uT = cosfx  sinf.
~ \—sinf. cosb. )’
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Step 2 - Recovering ¥ 1
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Since the variance is associated to the singular values, we can estimate the

singular values along the two directions as

N
. cos B\ 12 ndependen
0'1 = Var 0* Z [ Xl(J XZ(J)) (Sin 6*) ] ) Ico(:n::ongnttana\ysis
= (ICA)
M
N cos(0x — 5)\ 12
o3 = Var(0 2) Z [ x()  x() (sm(e* -3) ]

Jj=1

This gives us the diagonal elements of
the inverse X" i

= diag(o1,02). To undo this scaling,

This is well-defined, as A is assumed to be full-rank, and so o1 and o> are

positive!
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Part 3 - Recovering V oz
The last step is to obtain the rotation matrix V, which is more subtle, as we Maﬂf;aﬁt;::i;nzmz
need to produce nearly independent non-Gaussian probability distributions for

Andrew Lam
s1 and sp.
b3 > : y
. v,
Independent
ﬁ \ cr;r:gzge:: analysis
v* (IcA)

For this we will use the kurtosis. From the data {(x1(j), xz(J))} , we denote

the transformed data
y1(4) —1yT Xl(.i))
L) =X""U L)
(yz(,l)) (Xz(J)
Suppose the rotation matrix V is of the form

_ [ cosyp  siny
V= (—sin'd) cosz/))

for some angle v. Under the action of V, we have

(20) = v (28) = (ryomndens).
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A B Cc D
Independent
component analysis
(ICA)
€
]
£
S
=
e
€
>
£
A B C D

Figure: Fourth moment projected onto horizontal axis. Taken from H. Farid and E.H. Adelson. J.
Optical. Soc. America (1999)

From the calculation of UT, maximising variance means that
(b20) = yE ()1 sin 20 + 21 (1)y2()) cos 246, ) = 0.
j=1
Keep this in mind!
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Since we assumed the variance of s; to be equal to 1, the excess kurtosis, as a
function of v, is

M

Independen
EKu I’t Z ( COS 1)[} + yZ(J) sin d)) -3 comgzne:ttana\ysis
— (IcA)

Then, (see H. Farid, E.H. Adelson Separating Reflections from Images Using Independent
Component Analysis)

N

%EKurt(w) = Z 7%yf(j)(8 sin 2¢p + 4sin49) + v (j)y2(j)(2 cos 24 + 2 cos 44))
j=1

+3y7()y5 (j) sin 4 + y1(j)y3 (j)(2 cos 2¢ — 2 cos 41))
%y (J)(8sin2y — 4sin4y).

However, there is no analytical solution to ﬁEKurt(w) = 0! l.e., we cannot
find a formula for ..
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Recovering V Il
To obtain an analytical solution, we instead maximise the normalised kurtosis

M
K(’L/) Z 2(_]) ( ( )COSzﬁ +y2(j) 5in'¢>4.

A shortish calculation shows

- _Z[}Q(J ()]sin2¢ + 2y1(j)y2(j) cos 24
j=
M
gj 07520 (RR00) - 210)30) cos 40
=A()

(B20)v30) — 2vi() — Tyl sin4w).
=:B(j)

Mz 1T

+

1
= viG)+y30)
By the variance maximisation, the red term vanishes! So, the angle 1.
maximising K (1) and Var(v) is given by
e [ 1, AG)/ ) +y22(,-))]
¢ S BG)/ (2U) +v2 ()
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SVD-based ICA — Summary for N = 2 case

Given the data x, the reconstructed signal s is

s=Ax=vEtUTx

_ ( cos [ sin Y [,% 0 cos 0. sin 0 X
—sinty  costx 0 J% —sinf.  cos 0y

where

o
5
=

; (_ 2521 xa(pel) )
SR 30) - <0))

1/2

[xl(j) cos B« + x2(j) sin 0*}2 )

Mz

(-
I
—

o+
[9)
=}

Py =

2
| [
Bl /\.\/_\ N | =
M=

1 <Z,Ml AG)/ (2 0) +y22(')))
> 7, BG)/(20) + v3())

and A()), B(j), yi(j) can be found in previous slides.

1/2
2
[a() cos(0 — 5) +x2(j) sin(0x — 3)] ) :
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» Original signal: x; - image of Einstein, x» - image of Mandrill (a species at/:ppalitc::ionsan

of primate). Andrew Lam

Topics
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analysis (PCA)
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component analysis
(ICA)

> Mixing matrix

A_ (100 —0.49
~\o050 —0.66

» Output observations: y; and y»
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Numerical experiment (Farid and Adelson)
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Rotate 1 Independent ‘
component analysis
(ICA)
Actual Estimated
A (1.00 —o.49> <1.00 —0.63)
0.50 —0.66 0.49 —-0.79
6 35.7° 37.4°
o1/02 441 4.55
Y 35.4° 41.4°

Rotate 2

Third column is the sampled joint
probability distribution.
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