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Reference books

I Numerical Linear Algebra by Trefethen and Bau (1997)

I Data-Driven Modeling & Scientific Computation by Kutz (2013)
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Topics

Topics: Part 1 – Numerical Linear Algebra by Trefethen and Bau (TB)

I Review of Linear algebra

I Singular value decomposition (SVD)

I QR factorization (Gram–Schmidt/Householder)

I Least squares problem

I Eigenvalue problems

I Eigenvalue algorithms

Topics: Part 2 – Data-Driven Modeling & Scientific Computation by Kutz (K)

I Principal component analysis (PCA)

I Independent component analysis (ICA)

I Compress sensing

I Image denoising and processing

I Data assimilation
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How much do you remember?

Let m, n ∈ N (natural numbers), x a n-dimensional column vector and A a
m × n matrix:

x =


x1

x2

...
xn

 , A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


︸ ︷︷ ︸

n columns


m rows

We assume all coefficients x1, . . . , xn, a11, . . . , amn are complex numbers,
denoted by C, and write

x ∈ Cn, A ∈ Cm×n.

Matrix-vector multiplication: The vector b = Ax is the m-dimensional column
vector defined as

bi =
n∑

j=1

aijxj for i = 1, 2, . . . ,m.
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Matrix-vector multiplication: The vector b = Ax is the m-dimensional column
vector defined as

bi =
n∑

j=1

aijxj for i = 1, 2, . . . ,m.

Graphically: b is a linear combination of the columns of A:

“New” way of thinking about matrix-vector products!

Question: Does it makes sense to compute b = Ax where A ∈ Cn×m and
x ∈ Cn?
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Matrix-matrix multiplication: For l ,m, n ∈ N, and matrices A ∈ Cl×m and
C ∈ Cm×n, the product matrix B = AC is a l × n matrix with entries

bij =
m∑

k=1

aikckj for 1 ≤ i ≤ l , 1 ≤ j ≤ n.

Graphically:

column b1 = linear combination of columns of A with coefficients

given by the column c1

column bk = linear combination of columns of A with coefficients

given by the column ck
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Range and nullspace

A matrix A ∈ Cm×n takes a vector x ∈ Cn and outputs a vector b = Ax ∈ Cm.

A : Cn → Cm x 7→ Ax .

The range of A (or column space of A), denoted range(A), is the set

{y ∈ Cm : y = Ax for some x ∈ Cn} ⊂ Cm

Theorem: range(A) is the space spanned by the columns of A.

The nullspace of A, denoted null(A), is the set

{x ∈ Cn : Ax = 0} ⊂ Cn.

Example:

I A ∈ Cn×n is the identity matrix - range(A) = Cn and null(A) = 0

I m = 3, n = 2:

A =

 1 2
−1 0
2 0

 null(A) =

 x1 + 2x2 = 0
−x1 = 0
2x1 = 0

 =

{(
0
0

)}
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Rank and Inverse

The column rank of a matrix is the dimension of the column space (the
number of linearly independent columns). The row rank of a matrix is the
dimension of the space spanned by its rows.

Theorem: Row rank = Column rank. ∴ Both are referred to as rank of the
matrix.

For a non-square matrix A ∈ Cm×n, we say A has full rank if

rank(A) = min(m, n).

(What’s wrong with taking max(m, n)?)

For a square matrix A ∈ Cm×m, we say A is invertible/non-singular if
rank(A) = m (i.e., full rank). Then, there is a matrix Z ∈ Cm×m (also of full
rank) such that

AZ = ZA = I .

The matrix Z is called the inverse of A, denoted Z = A−1.

Keep in mind: In general, AB 6= BA for two matrices A ∈ Cm×n and
B ∈ Cn×m.
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Adjoint

For a complex number a = x + iy , i =
√
−1, its complex conjugate is

ā = x − iy . If a is a real number then a = ā.

The hermitian conjugate/adjoint of A ∈ Cm×n, denoted as A∗ is the n ×m
matrix with (i , j)th entry

a∗ij = āji

Graphically:

A matrix A ∈ Cm×m is hermitian if A = A∗.

If A ∈ Rm×n is a real matrix, its adjoint is called the transpose, denoted as
A>. If A ∈ Rm×m is also hermitian, then A is called symmetric.

Exercise: Show that (AB)∗ = B∗A∗.
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Inner products

The inner product between two vectors x , y ∈ Cm is

x∗y =
m∑
i=1

x̄iyi .

The Euclidean norm of x ∈ Cm is

‖x‖ =
√
x∗x =

( m∑
i=1

x∗i xi
)1/2

and the angle θ between two vectors x , y ∈ Cm is

cos θ =
Re(x∗y)

‖x‖‖y‖
,

where Re denotes the real part.

Properties:

I ‖x‖ = ‖x∗‖ and ‖x‖ = 0 if and only if x = 0.

I θ ∈ [0, π].

I (αx)∗(βy) = ᾱβx∗y for α, β ∈ C.
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Orthogonality

A pair of vectors x and y are orthogonal if x∗y = 0.

Two sets of vectors X = {x1, . . . , xn} and Y = {y1, . . . , ym} for n,m ∈ N are
orthogonal if (x i )∗(y j ) = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

A set of nonzero vectors S is orthogonal if its elements are pairwise orthogonal,
i.e., for all x , y ∈ S with x 6= y , then x∗y = 0. [S is orthogonal to itself].

We say S is orthonormal if all elements of S satisfies ‖x‖ = 1.

Theorem: The vectors in an orthogonal set S are linearly independent (LI).

Proof: (1) Suppose to the contrary, S = {x1, . . . , xn} is not LI. Then, xn can
be written as a linear combination of {x1, . . . , xn−1}:

xn = c1x
1 + · · ·+ cn−1x

n−1 for ci ∈ C.

(2) Computing 0 < ‖xn‖2 = (xn)∗(xn) shows

‖xn‖2 = (xn)∗
( n−1∑

i=1

cix
i
)

=

n−1∑
i=1

ci (x
n)∗(x i ) = 0

(3) Contradiction.
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Decomposition of a vector I

Let v ∈ Cm be a vector, and S = {q1, . . . , qm} is an orthogonal set. Then, S
is a basis of Cm.

But what is the “formula” for v?

Since (scalar) × vector = vector, if v = c1q1 + c2q2 + · · ·+ cmqm for scalar
ci ∈ C, we take the inner product of v with qk and use orthogonality:

q∗k v = c1(q∗k q1) + c2(q∗k q2) + · · ·+ cn(q∗k qn) = ck (q∗k qk ) = ck‖qk‖2.

So a first formula for v in terms of the set S is

v =
n∑

i=1

q∗i v

‖qi‖2︸ ︷︷ ︸
=ci

qi

 or v =
n∑

i=1

(q∗i v)︸ ︷︷ ︸
=ci

qi for S orthonormal

 .
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Decomposition of a vector II

Another viewpoint: we use (matrix) ∗ vector = vector.

For q, v ∈ Cm, the product (q∗v)q is again a vector in Cm, with jth
component

[(q∗v)q]j =
( m∑

i=1

[q]i [v ]i
)
[q]j =

m∑
i=1

[q]j [q]i [v ]i =
m∑
i=1

Aji [v ]i

where A ∈ Cm×m is the matrix

Aji = [q]j [q]i = (qq∗)ji , A =


[q]1[q]1 [q]1[q]2 . . . [q]1[q]m
[q]2[q]1 [q]2[q]2 . . . [q]2[q]m

...
...

. . .
...

[q]m[q]1 [q]m[q]2 . . . [q]m[q]m


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Decomposition of a vector III

Continuing... From the first viewpoint we derive for an orthonormal set S :

v =
m∑
i=1

(q∗i v)qi =
m∑
i=1

(qiq
∗
i )v =

m∑
i=1

Aiv ,

where matrices Ai ∈ Cm×m are defined as Ai = (qiq
∗
i ):

Ai =


[qi ]1

[qi ]2

...
[qi ]m

([qi ]1 [qi ]2 . . . [qi ]m
)

Summary: Two ways to express a vector v using inner products and
orthonormal sets.

(1) v is a sum of coefficients q∗i v times vectors qi ;

(2) v is the sum of orthogonal projections (qiq
∗
i ) of v .

Exercise: What is the rank of the projection matrices Ai?
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Unitary matrices I

A matrix Q ∈ Cm×m is unitary if Q∗Q = I , i.e., Q∗ = Q−1.

So,

(q∗i qj ) =

{
0 if i 6= j ,

1 if i = j ,

i.e., the columns {qi}mi=1 of Q forms an orthonormal basis of Cm.

Multiplication: For Q unitary and x ∈ Cm, the product Qx ∈ Cm is the linear
combination of columns {qi}mi=1 with coefficient of x :

Qx = x1q1 + x2q2 + · · ·+ xmqm.
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Unitary matrices II

For Q unitary and b ∈ Cm, what is the product Q∗b ∈ Cm?

Expand b in the basis {qi}mi=1:

b = (q∗1 b)q1 + · · ·+ (q∗mb)qm.

Then, using Q∗qj = ej (jth standard unit vector), yields

Q∗b = (q∗1 b)e1 + (q∗2 b)e2 + · · ·+ (q∗n b)en =


q∗1 b
q∗2 b

...
q∗n b

 ,

i.e., Q∗b is the vector of coefficients of the expansion of b in the basis {qi}mi=1.
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Vector norms

A norm ‖ · ‖ : Cm → R is a function satisfying

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

(ii) ‖αx‖ = |α|‖x‖ for all α ∈ C.

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

Examples: for 1 ≤ p <∞ the p-norm is defined as

‖x‖p =
( m∑

i=1

|xi |p
)1/p

.

For p =∞, the ∞-norm is defined as

‖x‖∞ = max
1≤i≤m

|xi |.

Property: For 1 ≤ p ≤ q ≤ ∞, it holds for any x ∈ Cm

‖x‖∞ ≤ ‖x‖q ≤ ‖x‖p ≤ ‖x‖1 ≤ m‖x‖∞.

Meaning – all p-norms are equivalent.
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Matrix norms

A matrix A ∈ Cm×n can be regarded as a vector in Cmn, so one example of a
norm is the Frobenius norm ‖ · ‖F :

‖A‖F =
( m∑

i=1

n∑
j=1

|aij |2
)1/2

.

Another common choice is the induced matrix norms: let ‖ · ‖(n) and ‖ · ‖(m)

be norms on Cn and Cm. The induced matrix norm ‖A‖(m,n) is the smallest
number C such that the following holds

‖Ax‖(n) ≤ C‖x‖(m) for all x ∈ Cm.

Equivalently, (exercise)

‖A‖(m,n) = sup
x∈Cm,x 6=0

‖Ax‖(n)

‖x‖(m)

= sup
x∈Cm,‖x‖(m)=1

‖Ax‖(n).
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Induced p-matrix norms

When ‖ · ‖(n) and ‖ · ‖(m) are taken to be the same p-norm, the induced

p-matrix norm for A ∈ Cm×n is defined as

‖A‖p := sup
x∈Cm,x 6=0

‖Ax‖p
‖x‖p

= sup
x∈Cm,‖x‖p=1

‖Ax‖p .

Examples and characterisations:

I the 1-norm, ‖A‖1 is the maximum column sum, i.e.,
‖A‖1 = max1≤j≤n

∑m
i=1 |aij |.

I the 2-norm, ‖A‖2 is the square root of the largest eigenvalue of A∗A.

I the ∞-norm, ‖A‖∞ is the maximum row sum, i.e.,
‖A‖∞ = max1≤i≤m

∑n
j=1 |aij |.

The Frobenius norm ‖ · ‖F is not an induced matrix norm. But for square
matrices A ∈ Cm×m it satisfies

‖A‖2 ≤ ‖A‖F ≤
√
m‖A‖2.

20 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Inequalities I

Two positive real numbers (p, q) are said to be conjugate if 1
p

+ 1
q

= 1.

E.g., (2, 2), (4, 4
3

), (10, 10
9

), (1,∞), etc.

Hölder’s inequality for a product of two vectors x , y ∈ Cm is

|x∗y | =
( m∑

j=1

x jyj
)1/2≤ ‖x‖p‖y‖q =

( m∑
j=1

|xi |p
)1/p( m∑

k=1

|yk |q
)1/q

.

The Cauchy–Schwarz inequality is the special case p = q = 2:

|x∗y | ≤ ‖x‖2‖y‖2.

Lemma: For A ∈ Cm×n and B ∈ Cn×q , it holds for any 1 ≤ p ≤ ∞

‖AB‖p ≤ ‖A‖p‖B‖p .

Observe:

I this inequality is for matrices;

I note the difference with Hölder’s inequality.
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Inequalities II

Lemma: For A ∈ Cm×n and B ∈ Cn×q , it holds for any 1 ≤ p ≤ ∞

‖AB‖p ≤ ‖A‖p‖B‖p .

Proof: (1) Let x ∈ Cn be a nonzero vector, and set y = x
‖x‖p

. Then,

‖y‖p = 1. By property of norm:

‖Ay‖p =
1

‖x‖p
‖Ax‖p .

Taking maximum over all such y ∈ Cn, we see

‖A‖p = max
‖y‖p=1

‖Ay‖p ≥
‖Ax‖p
‖x‖p

⇒ ‖Ax‖p ≤ ‖A‖p‖x‖p .

(2) Set y = Bx for x ∈ Cq gives

‖ABx‖p = ‖Ay‖p ≤ ‖A‖p‖y‖p = ‖A‖p‖Bx‖p ≤ ‖A‖p‖B‖p‖x‖p .

Take maximum over all x such that ‖x‖p = 1 gives

‖AB‖p = max
‖x‖p=1

‖ABx‖p ≤ ‖A‖p‖B‖p .
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§2 - Singular value decomposition (SVD)
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Reduced SVD I
Suppose A ∈ Cm×n, m > n, is a matrix of full rank, i.e., rank(A) = n. We
want to find matrices

I Σ̂ ∈ Cn×n diagonal matrix,
I Û ∈ Cm×n with orthonormal columns,
I V ∈ Cn×n with orthonormal columns,

such that

AV = ÛΣ̂ ⇔ A = ÛΣ̂V ∗ ⇔ Avj = σjuj

Schematically
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Reduced SVD II

Remarks:

I V is unitary and so V ∗ is the inverse of V .

I Û is not unitary since it is not a square matrix.

I Convention: σ1 ≥ σ2 ≥ · · · ≥ σn > 0 are real numbers, called the singular
values of A.

I {vj} are the right singular vectors and {uj} are the left singular vectors.
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Geometric viewpoint

Let’s take A ∈ Rm×n with m > n and full rank.

Geometrically, we can visualise the effects of A on an orthonormal basis
{v1, v2, . . . , vn}.

E.g., for n = 2, {v1, v2} spans out the unit circle S in R2. Then, A transforms
S to the set AS , which is a (hyper)ellipse in Rm.

Think of taking the unit ball in Rm and stretching the unit directions
{e1, . . . , em} with the vectors {σ1u1, . . . , σmum} (the principle semiaxes of the
hyperellipise).

The SVD helps us capture the transformation.

26 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Full SVD

If A ∈ Cm×n with m > n is full rank, we have the reduced SVD: A = ÛΣ̂V ∗.

The matrix Û ∈ Cm×n is not unitary, although its columns are orthonormal.
So, just add m − n orthonormal columns to Û, leading to a unitary matrix
U ∈ Cm×m. But dimensions don’t match now, unless, we add m − n rows of
zeros to Σ̂, leading to a new matrix Σ ∈ Cm×n (same dim. as A).

The full SVD of a matrix A is

A = UΣV ∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary, and Σ ∈ Cm×n has the singular
values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 in its diagonal:
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Full SVD - non full rank case

If A is not of full rank, i.e., rank(A) = p < n, then the singular values satisfy
σp+1 = · · · = σn = 0.

In this case we can only determine {u1, . . . , up} for the left singular vectors
and {v1, . . . , vp}. How do we build U and V?

Simple:

I add m− p (arbitrary) orthonormal rows to the matrix Ũ = (u1|u2| · · · |up)

I add n − p (arbitrary) orthonormal rows to the matrix Ṽ = (v1|v2| · · · |vp).

Then, the full SVD A = UΣV ∗ still makes sense.

Theorem: Any matrix A ∈ Cm×n admits a (full) singular value decomposition
A = UΣV ∗ with unitary matrices U and V , and a diagonal matrix Σ whose
entries are nonnegative real numbers in nonincreasing order.

Proof on the next slide....
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Existence proof of full SVD

Proof: (1) The matrix A∗A ∈ Cn×n is hermitian and positive semidefinite, i.e.,

(A∗A)> = A∗A, z∗(A∗A)z = ‖Az‖2
2 ≥ 0 for all z ∈ Cn.

Hence, the eigenvalues of A∗A are all nonnegative. Let’s order them as
σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

p > 0, σ2
p+1 = σ2

p+2 = · · · = σ2
n = 0.

(2) Let {v1, . . . , vp} be an orthonormal set of eigenvectors for positive
eigenvalues, and {vp+1, . . . , vn} an orthonormal basis for the nullspace of
A∗A, i.e., (A∗A)vi = σ2

i vi .

(3) We build matrix V ∈ Cn×n whose columns are v1, . . . , vn, and define for
1 ≤ i ≤ p, the vectors ui = 1

σi
Avi . Then, for any 1 ≤ i , j ≤ p,

u∗j ui =
1

σiσj
(Avj )

∗(Avi ) =
1

σiσj
(vjA

∗Avi ) =
σi

σj
v∗j vi =

{
1 if i = j ,

0 if i 6= j
.

So {u1, . . . , up} is an orthonormal set. We add m − p arbitrary orthonormal
vectors as columns to build the matrix U ∈ Cm×m.

(4) Set Σ ∈ Cm×n to be the diagonal matrix with entries σ1, . . . , σp [the
positive square root] and zero everywhere else. Then, we claim A = UΣV ∗.
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Proof of claim

Let U ∈ Cm×m, V ∈ Cn×n and Σ ∈ Cm×n be as above. Then, AV ∈ Cm×n

and UΣ ∈ Cm×n. Let us compute their ith column:

(UΣ)i =

{
σiui if 1 ≤ i ≤ p,

(0, . . . , 0)> if p + 1 ≤ i ≤ n,

(AV )i = Avi =

{
σiui if 1 ≤ i ≤ p,

(0, . . . , 0)> if p + 1 ≤ i ≤ n,

since {vp+1, . . . , vn} is an orthonormal basis of the nullspace of A∗A, and

Nullspace(A) = Nullspace(A∗A),

which implies Avi = 0 for i ∈ {p + 1, . . . , n}.

(Leftover Exercise) Show that for any A ∈ Cm×n,

Nullspace(A) = Nullspace(A∗A).
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Example

Find a SVD for

A =

0 2
0 0
0 0

 .

(1) Compute A∗A:

A∗A =

(
0 0
0 4

)
and its eigenvalues are σ2

1 = 4 and σ2
2 = 0 (rank deficient).

(2) Find eigenvectors: v1 = (0, 1)>. So we set v2 = (1, 0)>. Then,
u1 = 1

2
Av1 = (1, 0, 0)>, and we choose u2 = (0, 1, 0)> and u3 = (0, 0, 1)>.

(3) Write down the SVD:0 2
0 0
0 0

 =

1 0 0
0 1 0
0 0 1

2 0
0 0
0 0

( 0 1
1 0

)
.

Notice, we could have chosen u2 = (0, 0, 1)> and u3 = (0, 1, 0)>, giving a
different matrix U and a different SVD. ∴ there can be many SVD for the
same matrix.
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Rank one representation of SVD

Let A ∈ Cm×n and A = UΣV ∗ be its SVD. Suppose
rank(A) = r < min(m, n). Then, we can write Σ as a sum of r matrices Σj ,
where Σj = diag(0, . . . , 0, σj , 0, . . . , 0), and

A =
r∑

j=1

UΣjV
∗ =

r∑
j=1

Aj .

What does these Aj look like? Let’s look at the columns of UΣ1 ∈ Cm×n.
Note that the first column is σ1u1 and all other columns are zero. Hence,

UΣ1V
∗ = (σ1u1|0|0| · · · |0)V ∗ = σ1


u1

1v
1
1 u1

1v
2
1 · · · u1

1v
n
1

u2
1v

1
1 u2

1v
2
1 · · · u2

1v
n
1

...
...

. . .
...

un1v
1
1 un1v

2
1 · · · un1v

n
1


= σ1u1v

∗
1 .

Therefore, the SVD is actually a sum of r rank-one matrices:

A = UΣV ∗ =
r∑

i=1

σiuiv
∗
i .
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Low rank approximation
Let A ∈ Cm×n with rank(A) = r , and let 0 ≤ ν < r be a natural number. We
say Aν ∈ Cm×n is the best rank-ν approximation of A with respect to the
norm ‖ · ‖ if

‖A− Aν‖ ≤ ‖A− B‖ for all B ∈ Cm×n s.t. rank(B) ≤ ν.

If

I ‖ · ‖ = ‖ · ‖2, the induced 2-norm, then the above inequality is equivalent
to

‖A− Aν‖2 = σν+1 ≤ ‖A− B‖2.

I ‖ · ‖ = ‖ · ‖F , the Frobenius norm, then the above inequality is equivalent
to

‖A− Aν‖F =
√
σ2
ν+1 + · · ·+ σ2

r ≤ ‖A− B‖F .

Applications in principle component analysis, total least squares, data
compression, etc.

Eckart–Young–Mirsky theorem: In both cases, the answer is simply

Aν =
ν∑

i=1

σiuiv
∗
i

33 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Proof of Eckart–Young–Mirsky theorem (induced 2-norm) I

(1) By definition, for unitary U and V , and diagonal Σ with nonnegative
entries in nonincreasing order, the induced 2-norm of UΣV ∗ is

‖UΣV ∗‖2 = σ1.

Then,

‖A− Aν‖2 = largest singular value of (A− Aν) = σν+1.

Note: since ν < r , σν+1 is always positive!

(2) Let B ∈ Cm×n with rank(B) = ν. Then dim Ker(B) = r − ν.

Let V (ν+1) = (v1| . . . |vν+1) ∈ Cm×ν+1, then

dim Ker(B) + dim Range(V (ν+1)) = r − ν + ν + 1 = r + 1.

This means there exists a vector w ∈ Ker(B) ∩ Range(V (ν+1)), i.e.,

w = γ1v1 + · · ·+ γν+1vν+1.

By rescaling γi , we can assume ‖w‖2 = 1, i.e.,

γ2
1 + · · ·+ γ2

ν+1 = 1.
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Proof of Eckart–Young–Mirsky theorem (induced 2-norm) II

(3) Recalling the inequality ‖Aw‖2 ≤ ‖A‖2‖w‖2 = ‖A‖2, we see

‖A− B‖2 ≥ ‖(A− B)w‖2 = ‖Aw‖2

since w ∈ Ker(B). But since AV = UΣ and

w = γ1v1 + · · ·+ γν+1vν+1, with γ2
1 + · · ·+ γ2

ν+1 = 1,

it holds

Aw =
ν+1∑
i=1

γiAvi =
ν+1∑
i=1

γiσiui

and so

‖Aw‖2 =
( ν+1∑

i=1

γ2
i σ

2
i |ui |

2
) 1

2 ≥ σν+1

( ν+1∑
i=1

γ2
i |ui |

2
)1/2

= σν+1

( ν+1∑
i=1

γ2
i

)1/2
= ‖A− Aν‖2,

where we used σi ≥ σν+1 for i = 1, . . . , ν, and |ui | = 1.
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Proof of Eckart–Young–Mirsky theorem (Frobenius norm)

(1) Lemma: Let A,B ∈ Cm×n with rank(B) ≤ k. Then,

σi+k (A) ≤ σi (A− B).

(i + k)th singular value of A is less than ith singular value of A− B.

(2) Recall (from exercise) ‖A‖F =
√
σ2

1 + · · ·+ σ2
p . Then,

‖A− Aν‖2
F =

p∑
i=ν+1

σi (A)2 =

p−ν∑
j=1

σj+ν(A)2

(3) Using lemma, we have

‖A− Aν‖2
F ≤

p−ν∑
j=1

σj (A− B)2 ≤
p∑

j=1

σj (A− B)2 = ‖A− B‖2
F .
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Proof of Lemma

Focus on case i = 1, i.e., σk+1(A) ≤ σ1(A + B) for B ∈ Cm×n with
rank(B) ≤ k.

(1) Recalling proof of EYM-theorem for induced 2-norm, let A = UΣV ∗ be
the SVD of A, and V (k+1) = (v1| · · · |vk+1) ∈ Cm×(k+1). Then,

dim Ker(B) + dim Range(V (k+1)) = r + 1,

and there exists a vector w ∈ Ker(B) ∩ Range(V (k+1)).

(2) Looking at ‖Aw‖2 and establish lower and upper bounds. First the upper
bound:

‖Aw‖2 = ‖(A− B)w‖2 ≤ ‖A− B‖2‖w‖2 = σ1(A− B)‖w‖2.

Now, for the lower bound, let w = γ1v1 + · · ·+ γk+1vk+1, then

‖Aw‖2
2 =

k+1∑
i=1

γ2
i σi (A)2 ≥ σk+1(A)2

k+1∑
i=1

γ2
i = σk+1(A)2‖w‖2

2.

Combining:

σk+1(A)2‖w‖2
2 ≤ ‖Aw‖2

2 ≤ σ1(A− B)2‖w‖2
2.
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Proof of Lemma (general case) 1

Now for the general case σi+k (A) ≤ σi (A− B) for 2 ≤ i ≤ r − k.

(1) Let C ∈ Cm×n with rank(C) ≤ i + k − 1. Then by previous proof

σi+k (A) ≤ σ1(A− C).

(2) Consider the matrices (A−B)i−1 and Bk , where we recall for A = UΣV ∗,

Aj =
∑j

i=1 σi (A)uiv
∗
i - the best rank-j approximation of A. Then, the sum

C = (A− B)i−1 + Bk has at most rank i + k − 1.

(3) Substitute this matrix C gives

σi+k (A) ≤ σ1(A− (A− B)i−1 − Bk ) = σ1((A− B)− (A− B)i−1 + (B − Bk ))

Then, by inequality (exercise)

σ1(X + Y ) ≤ σ1(X ) + σ1(Y ) for any X ,Y ∈ Cm×n,

we have

σi+k (A) ≤ σ1((A− B)− (A− B)i−1) + σ1(B − Bk )

= σi (A− B) + σk+1(B) = σi (A− B)

as rank(B) ≤ k implies σk+1(B) = 0.

1https://www.victorchen.org/2016/01/23/svd-and-low-rank-approximation/
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Class exercise

Consider the matrix

A =

(
−2 11
−10 5

)
.

1. Determine a SVD of A of the form A = UΣV ∗.

2. List the singular values, left singular vectors, right singular vectors of A,
and draw a labelled picture of the unit ball in R2 and its image under A,
together with the singular vectors.

3. What is the induced 1-, 2-, ∞-, and Frobenius norms of A?

4. Use the SVD to compute the inverse of A.

5. What is the best rank-1 approximation A1 of A with respect to the
Frobenius norm? Compute ‖A− A1‖ for the 1-, 2-, ∞-, and Frobenius
norms.
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§3 - QR factorization
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Projectors

Definition: A square matrix P is called a projector if

P2 = P.

Easy properties:

I If v ∈ Range(P), then Pv = v .

I For any v , it holds Pv − v ∈ Ker(P).

I If P is a projector, so is I − P, called the complement, where I is the
identity matrix.

Lemma: Let P be a projector. Then,

I Range(I − P) = Ker(P), i.e., I − P maps all vectors to Ker(P).

I Ker(I − P) = Range(P),

I Range(P) ∩ Ker(P) = {0}, i.e., the projector splits Cm into two
subspaces. Equivalently, for any w ∈ Cm, there exists (unique) u ∈ Cm

and v ∈ Ker(P) such that w = Pu + v .

Exercise: Proof the lemma.
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Orthogonal projectors

Previous lemma:

P projector ⇒ Cm = Range(P)⊕ Ker(P),

where for two subspaces S1 and S2, the direct sum S1 ⊕ S2 implies

I S1 ∩ S2 = {0},
I S1 + S2 = {s = s1 + s2|s1 ∈ S1, s2 ∈ S2} = Cm.

Hence, we say that P is a projection along Ker(P) onto Range(P).

E.g., Ker(P) = span{(0, 1)>} and Range(P) = span{(1, 0)>}.

If in addition, Ker(P) is orthogonal to Range(P), then we call P a orthogonal
projector.
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Orthogonal projectors

Theorem: A projector P is orthogonal if and only if P is hermitian, i.e.,
P = P∗.

Proof (⇐): Let P be a hermitian matrix and a projector.

Then, setting S1 = Range(P) and S2 = Ker(P), we have to show
S1 ∩ S2 = {0}, S1 ⊕ S2 = Cm and S1 ⊥ S2.

Since Range(I − P) = Ker(P) = S2, the inner product between any two
elements Px ∈ S1 and (I − P)y ∈ S2 is

x∗P∗(I − P)y = x∗(P − P2)y = x∗(P − P)y = 0,

since P2 = P. So S1 ⊥ S2 and S1 ∩ S2 = {0}.

Furthermore, any x ∈ Cm can be written as x = Px + (I − P)x ∈ S1 ⊕ S2.
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Orthogonal projectors

Proof (⇒): Suppose P is an orthogonal projector along S2 onto S1 with
subspaces S1 ⊕ S2 = Cm, S1 ⊥ S2, and dim(S1) = n < m.

Let {q1, . . . , qm} be an orthonormal basis for Cm, where {q1, . . . , qn} is a
basis for S1 and {qn+1, . . . , qm} a basis for S2. Then,

Pqj = qj for 1 ≤ j ≤ n, while Pqj = 0 for n + 1 ≤ j ≤ m.

To show P is hermitian, we derive the SVD for P. Let Q ∈ Cm×m be the
unitary matrix with ith column qi , for 1 ≤ i ≤ m. Then,

PQ =


...

...
...

q1 . . . qn 0 . . .
...

...
...


Q∗PQ =

(
In×n 0n×(m−n)

0(m−n)×n 0(m−n)×(m−n)

)
=: Σ.

where Σ is a diagonal matrix with 1 in the first n entries. Then, the SVD for
P is P = QΣQ∗, and

P∗ = (QΣQ∗)∗ = QΣQ∗ = P.
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Construction
Recall from slide Decomposition of a vector, if {q1, . . . , qm} is an orthonormal
basis of Cm, then any vector v ∈ Cm can be represented as

v =
m∑
i=1

(qiq
∗
i )v where qiq

∗
i ∈ Cm×m.

Let Q̂ ∈ Cm×n be the matrix with ith column qi for 1 ≤ i ≤ n.

Claim: P = Q̂Q̂∗ is an orthogonal projector onto range(Q̂), and

Pv =
n∑

i=1

(qiq
∗
i )v

Proof : (1) Easy to check P = P∗, and so P is orthogonal projector.

(2) Class Exercise: Show Q̂Q̂∗ =
∑n

i=1(qiq
∗
i ). [Hint: recall the picture]

column bk = linear combination of columns of A with coefficients

given by the column ck
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Construction II

Consequences:

I The projector P =
∑n

i=1(qiq
∗
i ) = Q̂Q̂∗ can be regarded as a sum of

rank-one orthogonal projectors:

P =
n∑

i=1

Pi , Pi = qiq
∗
i ∈ Cm×m.

I The complement I − P = I − Q̂Q̂∗ is also an orthogonal projector (onto

the space range(Q̂)⊥) [since (I − P)∗ = (I − P)].

I For a rank-one projector A = qq∗ ∈ Cm×m with unit vector q, its
complement A⊥ := I − qq∗ is of rank m − 1.

Therefore, for an orthonormal basis of Cm, orthogonal projectors can be
constructed easily.

But what about if you don’t have an orthonormal basis?
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Construction III

Suppose {a1, . . . , an} is a set of LI vectors in Cm. How do we construct an
orthogonal projector to span{a1, . . . , an}?

Define the matrix A ∈ Cm×n whose ith column is ai for 1 ≤ i ≤ n. Then,
range(A) = span{a1, . . . , an}. If v ∈ Cm is an arbitrary vector and P is an
orthogonal projector onto range(A) [which we want to identify]. We have

I y := Pv ∈ range(A) and ∃x ∈ Cm such that y = Ax ,

I v − y ∈ (range(A))⊥, and so

I the inner products of ai and v − y are all zero, i.e., a∗i (v − y) = 0 for
1 ≤ i ≤ n.

I In matrix form: A∗(v − y) = A∗(v − Ax) = 0 or A∗Ax = A∗v .

I Now, {a1, . . . , an} are LI, and so A has full rank, which implies A∗A is
invertible.

I Therefore, x = (A∗A)−1A∗v and y = Ax = A(A∗A)−1A∗v . Hence,

y = Pv = A(A∗A)−1A∗v ⇒ P = A(A∗A)−1A∗.

If {a1, . . . , an} are orthonormal as well, then A = Q̂ and A∗A = I , which gives

P = Q̂Q̂∗ like before.
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Example

Consider the matrix

A =

1 0
0 1
1 0

 .

What is the orthogonal projector P onto range(A) = {(x , y , x) : x , y ∈ C}?

(1) Columns of A are LI, so A has full rank.

(2) Matrix calculations:

A∗A =

(
2 0
0 1

)
, (A∗A)−1 =

(
1/2 0

0 1

)

P = A(A∗A)−1A∗ =

1/2 0 1/2
0 1 0

1/2 0 1/2


Then, the projection of a point (1, 2, 3) to range(A) is P(1, 2, 3) = (2, 2, 2).
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Class exercise

Find the orthogonal projector P onto range(A) for the following matrices

1.

A =

 i 0
i 2
−1 1− i


2.

A =


−1 0 0
0 1 0
1 1 3
2 0 0


3.

A =

0 1 1
2 −1 0
3 0 0


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Matrix factorizations

Motivation: Let A ∈ Rm×m where m is a large number, e.g., m = 1090. Given
b ∈ Rm, solve Ax = b.

If A has a special structure, e.g., diagonal/triangular. The computation
x = A−1b can be done (with some effort, but not impossible!)

If A has no such structure, then it is nearly impossible (for us or for
computers) to calculate x = A−1b.

If A exhibits a factorization, e.g., the Cholesky factorization A = U>U where
U is upper triangular, then we can find the solution x in two steps:

1. Solve for U>y = b or y = U−>b,

2. Then solve for Ux = y or x = U−1y .

For non-square matrices A ∈ Cm×n, the QR factorization splits A into the
product of unitary Q ∈ Cm×m and upper triangular R ∈ Cm×n. Then,

Ax = b ⇔ Rx = Q>b,

which is easier to solve.
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Reduced QR factorization

Let A ∈ Cm×n be of full rank with columns a1, . . . , an. Aim: to find vectors
q1, q2, . . . such that for each j = 1, . . . , n,

span{q1, . . . , qj} = span{a1, . . . , aj}.

This is equivalent to

Why? Recall,

column ak = linear combination of columns of Q with coefficients

given by the column rk .

a1 = r11q1 and so if r11 6= 0, span{a1} = span{q1}.
a2 = r12q1 + r22q2, and so a2 ∈ span{q1, q2}, which implies

span{a1, a2} ⊂ span{q1, q2}.

For the converse, we see r22q2 = a2 − r12
r11

a1, so if r22 6= 0, we have

q2 ∈ span{a1, a2}.

51 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Reduced and Full QR factorization

So, in order for span{a1, . . . , aj} = span{q1, . . . , qj}, we have to find an upper

triangular matrix R̂ ∈ Cn×n with non-zero diagonal, so that

A = Q̂R̂,

where Q̂ ∈ Cm×n is the matrix with columns q1, . . . , qn. If {q1, . . . , qn} is an

orthonormal set, then A = Q̂R̂ is the reduced QR factorization of A.

Like the SVD, there is a Full QR factorization. If m ≥ n, we add m − n
orthonormal columns to Q̂, making it into a unitary matrix Q ∈ Cm×m, while
also adding m− n rows of zero to R̂, making it into an upper triangular matrix
R ∈ Cm×n. The result A = QR is the full QR factorization.

Exercise: Show that the columns {qn, . . . , qm} in Q span the complement to
range(A).
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Gram–Schmidt orthogonalization

To obtain the (reduced) QR factorization of a full ranked matrix A ∈ Cm×n,
we have to find:

I orthonormal vectors {q1, . . . , qn};
I entries rij ∈ C for 1 ≤ i ≤ m and 1 ≤ j ≤ n

satisfying

a1 = r11q1, a2 = r12q1 + r22q2, . . . , an =
n∑

i=1

rinqi .

One way is via the Gram–Schmidt orthonormalization process: Let
{a1, . . . , an} be a set of LI vectors (not necessary orthogonal).

Step 1: Set r11 = ‖a1‖ 6= 0 and q1 = a1
‖a1‖

= 1
r11

a1. Then, span{a1} =

span{q1}.

Step 2: Set v2 = a2 − (q∗1 a2)q1 and r22 = ‖v2‖ and q2 = 1
r22

v2. Then,

I v2 6= 0 and r22 6= 0, otherwise a2 is a linear combination of a1!

I q∗2 q2 = 1
r2
22

(v∗2 v2) = 1.

I q∗1 q2 = 1
r22

(q∗1 v2) = 1
r22

((q∗1 a2)− (q∗1 a2)) = 0, and so {q1, q2} is an

orthonormal set.

I we set r12 = (q∗1 a2) so that a2 = r22q2 + r12q1.
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Gram–Schmidt orthogonalization

Step k: suppose q1, . . . , qk−1 have been defined and they form an
orthonormal set. We now set

vk = ak −
k−1∑
i=1

(q∗i ak )qi , rkk = ‖vk‖, qk =
1

rkk
vk ,

and

rik = (q∗i ak ) for 1 ≤ i ≤ k − 1.

Exercise: Show that {q1, . . . , qk} is an orthonormal set with span{a1, . . . ak}
= span{q1, . . . , qk}.

Once all n vectors have been calculated, we have the reduced QR factorization
by setting matrix Q̂ with columns {q1, . . . , qn} and upper triangular matrix R̂
with entries rij .

In many commercial softwares, another variant of the Gram–Schmidt
orthonormalization process (called modified Gram–Schmidt) is used instead of
the method presented above. Since, the above method is prone to numerical
instability due to rounding errors on computers.
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Gram–Schmidt orthogonalization

Theorem: Every A ∈ Cm×n with m ≥ n has a full QR factorization (and hence
also a reduced QR factorization).

Proof: (1) Suppose first A has full rank, then the Gram–Schmidt algorithm

gives a reduced QR factorization A = Q̂R̂.

(2) Failure can occur only if at some step j , vj = aj −
∑j−1

i=1 (q∗i aj )qi = 0. But
this contradicts the full rank assumption of A.

(3) Now suppose A does not have full rank, then as described above, at some
step j , we have vj = 0. Then, we just pick an arbitrary unit vector qj that is
orthogonal to {q1, . . . , qj−1} and continue the process.

(4) To get the full QR factorization, we extend the Gram–Schmidt process
after step n by adding an additional m − n steps, each time introducing
vectors qj that are orthonormal to {q1, . . . , qj−1} for n + 1 ≤ j ≤ m.

What about the case m < n? Try following the Gram–Schmidt procedure.
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Example

A =

1 2 0
0 1 0
1 0 1

 .

Then, a1 = (1, 0, 1)> and r11 = ‖a1‖ =
√

2, so

q1 =
a1

r11
= (1/

√
2, 0, 1/

√
2)>.

Next, v2 = a2 − (q∗1 a2)q1 = (1, 1,−1)> and r22 = ‖v2‖ =
√

3, so

q2 =
v2

r22
= (1/

√
3, 1/
√

3,−1/
√

3)>, r12 = q∗1 a2 =
√

2.

Next, v3 = a3 − 1√
2
q1 + 1√

3
q2 = (−1/6, 1/3, 1/6)>, and r33 = ‖v3‖ = 1/

√
6,

so

q3 =
v3

r33
= (−1/

√
6, 2/
√

6, 1/
√

6)>, r13 = q∗1 a3 = 1/
√

2, r23 = q∗2 a3 = −1/
√

3.

Hence,

A =


1√
2

1√
3

− 1√
6

0 1√
3

2√
6

1√
2
− 1√

3
1√
6



√

2
√

2 1√
2

0
√

3 − 1√
3

0 0 1√
6


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Gram–Schmidt projections

The (classical) GS process suffers from numerical instability due to rounding
errors. To overcome this, orthogonal projections are used to derive a
reformulation.

Let A ∈ Cm×n be of full rank and {aj}nj=1 are the columns of A. Again the

aim is to find orthonormal vectors {q1, . . . , qn} such that

span{a1, . . . , aj} = span{q1, . . . , qj} for each j = 1, . . . , n.

Suppose, we define

q1 =
P1a1

‖P1a1‖
, q2 =

P2a2

‖P2a2‖
, . . . , qn =

Pnqn

‖Pnqn‖
,

for some orthogonal projectors P1, . . . ,Pn. Then, it is clear that ‖qi‖ = 1 for
1 ≤ i ≤ n. But what conditions do we need Pi to satisfy?

I P2
i = Pi and P∗i = Pi [Defn. of an orthogonal projector]

I Pj projects Cm onto the space orthogonal to span{q1, . . . , qj−1}.

E.g., v2 := P2a2 will be orthogonal to span{q1}. v3 = P3a3 will be orthogonal
to span{q1, q2}, and so on... ⇒ {q1, . . . , qn} will be an orthonormal set.
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Modified Gram–Schmidt

Aim: to define

q1 =
P1a1

‖P1a1‖
, q2 =

P2a2

‖P2a2‖
, . . . , qn =

Pnqn

‖Pnqn‖
,

with orthogonal projections Pi for 1 ≤ i ≤ n such that

I Pj projects Cm onto the space orthogonal to span{q1, . . . , qj−1}.
Then, each Pj ∈ Cm×m must be of rank m − (j − 1) [(why?)]. Therefore, we
can choose P1 = I the identity matrix.

For j = 2, we recall from Construction II that rank-one projector
A = qq∗ ∈ Cm×m (with unit vector q) has a complement A⊥ := I − qq∗ of
rank m − 1. This motivates us to choose

P2 = I − q1q
∗
1 =: P⊥q1

.

Class Exercise: Show that for two orthogonal unit vectors q1 and q2, the
matrix X defined as

X = P⊥q2
P⊥q1

= (I − q2q
∗
2 )(I − q1q

∗
1 )

is an orthogonal projector which projects Cm onto the space orthogonal to
span{q1, q2}. What is the rank of X?
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Modified Gram–Schmidt

Hence, for each j ∈ {2, . . . , n} we define

Pj = P⊥qjP⊥qj−1
. . .P⊥q1

with P1 = I . Then, {P1, . . . ,Pn} satisfies the required properties.

For example, given {q1, . . . , qj−1}, in order to obtain qj , we perform the
calculations in the following order:

v
(1)
j = aj ,

v
(2)
j = P⊥q1

v
(1)
j = v

(1)
j − (q1q

∗
1 )v

(1)
j ,

v
(3)
j = P⊥q2

v
(2)
j = v

(2)
j − (q2q

∗
2 )v

(2)
j ,

...

vj := v
(j)
j = P⊥qj−1

v
(j−1)
j = v

(j−1)
j − (qj−1q

∗
j−1)v

(j−1)
j ,

qj : = vj/‖vj‖.

Then, one defines

rjj = ‖vj‖, rij = q∗i aj for 1 ≤ i ≤ j − 1.
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Another interpretation of modified Gram–Schmidt

In practice, it is common to initialise vi = ai and later overwrite them after
computations to save storage. Each step of the modified Gram–Schmidt
algorithm can be interpreted as a right-multiplication by a square
upper-triangular matrix.

E.g., at the first step, we multiply first column a1 by 1/r11 where r11 = ‖a1‖,
and then subtract r1j times the result from each of the remaining columns ai .
This is equivalent to right multiplication by a matrix R1:

Here on the left we have set vi = ai .

The next steps are similar.
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At the ith step, we subtract rij/rii times column i of the current matrix from
columns j > i , and replace column i by 1/rii times itself. This corresponds to
multiplication with upper-triangular matrices Ri of the form

At the end of the iteration we have

AR1R2 · · ·Rn︸ ︷︷ ︸
=:R̂−1

= Q̂

leading to the reduced QR factorization of A.
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Householder triangularization

While (modified) Gram–Schmidt is a feasible method to compute the QR
factorization. We introduce another method which is numerically more stable.

In previous slide, the modified Gram–Schmidt algorithm can be seen as
applying a succession of upper triangular matrices Rk on the right of A so that

AR1 . . .Rn = Q̂ ∈ Cm×n

has orthonormal columns. Setting R̂ = R−1
n · · ·R−1

1 we get the reduced QR

factorization A = Q̂R̂. Hence, GS is the method of triangular
orthogonalization.

Householder’s method instead applies a succession of unitary matrices Qk on
the left of A, so that

Qn · · ·Q1A = R

is upper triangular. The matrix

Q := Q∗1 Q
∗
2 · · ·Q∗n

is unitary and we get the full QR factorization A = QR. Hence, Householder’s
method is orthogonal triangularization.
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Idea of Householder’s method

I Multiplying A with Q1 should reduces all entries below (1,1) entry in the
first column to zero.

I Then, multiplying with Q2 should reduce all entries below the (2,2) entry
in the second column of Q1A to zero,

I and so on ...

For example, if A is a 5× 3 matrix.

In general, Qk only operates on rows k, . . . ,m. After n steps (assuming here
m ≥ n), all entries below the main diagonal would have been eliminated, and
Qn · · ·Q1A = R is then an upper triangular matrix.
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Finding the unitary matrices

To find these unitary matrices, we choose them to be of the form

Qk =

(
I(k−1)×(k−1) 0

0 F

)
where F ∈ C(m−k+1)×(m−k+1) is a unitary matrix.

I Note that multiplication by Qk leaves the first k − 1 rows unchanged.

I We want the multiplication by F to change the kth column as intended
in the Householder method., i.e., it create zeros below the kth diagonal
entry. This is done by so-called Householder reflectors.

Idea: let x ∈ Cm−k+1 be the (sub)vector containing the (k, k), . . . , (k,m)
entries from the kth column. The action of F should look like

where e1 = (1, 0, . . . , 0)> ∈ Cm−k+1.
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Householder reflectors I

Geometric picture for x ∈ R2, i.e., m − k + 1 = 2: We want to transform

x =

(
×
×

)
F−→ Fx =

(
‖x‖

0

)
= ‖x‖e1.

The vector v = ‖x‖e1 − x generates a (hyper)plane H (which is orthogonal to
v), so that when we reflect point x across H, we land at Fx .

Then, if v is a unit vector,

Fx = x − 2(v∗x)v = (I − 2vv∗)x , i.e., F = I − 2vv∗.
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Householder reflector II

More generally, we set

F = I − 2
vv∗

‖v‖2
= I −

2vv∗

v∗v
for v = ‖x‖e1 − x .

Recall the orthogonal projector P defined by

P = I −
vv∗

‖v‖2

which projects a vector w ∈ C2 (in this picture) to the plane orthogonal to v .
In comparison, we need to go twice in the direction of v to get to the point Fx .
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Householder reflectors III

In implementations, computations can become unstable during subtraction.
For example, if the angle between H and the e1 axis is small, then the
magnitude of ‖x‖e1 and x are very close, and computing the subtraction
v = ‖x‖e1 − x may lead to loss of significance/unwanted cancellation.

To remedy this, the general rule is to reflect the vector x to z‖x‖e1, where z
is any scalar with |z| = 1.

I In the real case, |z| = 1 implies z = ±1;

I In the complex case, there is a circle of possibilities for z
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Householder reflectors IV
In the real case, there are two reflections: across H+ and across H−:

Reflection across H± gives F± = I − 2v±v∗±
‖v±‖2

2
where v± = ±‖x‖e1 − x .

To avoid numerical instability, it is recommended to choose to reflect x to the
vector that is not too close to x itself, i.e., choose v so that ‖v‖ is large. For
example, we can choose (where x1 is the 1st component of x)

z =

{
−sign(x1) if x1 6= 0,

1 if x1 = 0,
sign(y) =


1 Re(y) > 0,

−1 Re(y) < 0,

sign(Im(y)) Re(y) = 0,

and set v = −sign(x1)‖x‖e1 − x .

Exercise: It is customary to use v = sign(x1)‖x‖e1 + x . Show that this gives
the same Householder reflector F .
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Householder QR factorization
The Householder algorithm computes the triangular matrix R of the full QR
factorization of a matrix A ∈ Cm×n (for m ≥ n):

Step 1: Set x = a1 as the first column of A, construct vector
v1 = sign(x1)‖x‖e1 + x where e1 = (1, 0, . . . , 0)> ∈ Cm, and Householder

reflector F1 = I − 2v1v
∗
1

‖v1‖2 ∈ Cm×m. Then,

Q1 = F1.

Step 2: Set x = â2 = (â22, . . . , â2n)> ∈ Cm−1 as the second column of Q1A
without the first entry. Construct vector v2 = sign(x1)‖x‖e1 + x where
e1 = (1, 0, . . . , 0)> ∈ Cm−1, and Householder reflector

F2 = I − 2v∗2 v∗2
‖v2‖2 ∈ C(m−1)×(m−1). Then,

Q2 =

(
1 0
0 F2

)
.

Step k: Set x ∈ Cm−k+1 as the kth column of Qk−1 · · ·Q1A without the first
k − 1 entries. Construct vector vk ∈ Cm−k+1 and Householder reflector
Fk ∈ C(m−k+1)×(m−k+1). Then,

Qk =

(
Ik−1×k−1 0

0 Fk

)
.

Then, Q = Q1Q2 · · ·Qn and R = Q∗A.
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Householder algorithm (implementation)

In practice, there is no need to compute matrices Q1, . . . ,Qn as described
above. A pseduocode for the Householder QR factorization would be the
following:

Notation: If A is a matrix, then we set Ai1:i2,j1:j2 to be the submatrix of size
(i2 − i1 + 1)× (j2 − j1 + 1) with upper-left corner ai1,j1 and lower-right corner
ai2,j2 . In the case the submatrix reduces to a subvector of a row or column we
write Ai,j1:j2 or Ai1:i2,j .

This updates the matrix A into the upper triangular matrix R while storing the
n reflection vectors v1, . . . , vn.
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Class exercise

1. Show that for a unit vector v , the Householder matrix P = I − 2vv∗ for a
unit vector v is hermitian, unitary, and has eigenvalues ±1.

2. Compute the singular values of P.

3. Show that P has determinant equal to −1.

4. Compute the full/reduced QR factorization of

A =


1 2 3
4 5 6
7 8 7
4 2 3
4 2 2


using Householder or Gram–Schmidt.

5. Given knowledge of the reflection vectors v1, . . . , vn, write down a code to
compute the product Q∗b for an arbitrary b ∈ Rm without explicitly
constructing the matrix Q.
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Matrix-vector problem

Problem: Given a matrix A ∈ Cm×n and vector b ∈ Cm, find a solution x ∈ Cn

to the equation Ax = b.

I If m = n, then there is a (unique) solution if A is invertible.

I If m > n, # equ. > # unknowns, i.e., the system is overdetermined, and
typically there is no solutions.

I If m < n, # equ. < # unknowns, i.e., the system if underdetermined,
and typically there is an infinite number of solutions.

Example:

2x = 6, 3x = 6 ⇔ Ax = b with A =

(
2
3

)
, b =

(
6
6

)
has no solution. While

2x1 + 3x2 = 5 ⇔ Ax = b with A =
(
2 3

)
, b =

(
5
)

has infinitely many solutions of the form (t, 1
3

(5− 2t)) for any t ∈ R.
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Overdetermined case

The undetermined case can be partially solved by selecting, amongst all
possible solutions, one that has the smallest norm, e.g., the 2-norm.

For the overdetermined case, the residual

r = b − Ax ∈ Cm

will never be zero, but an acceptable solution to Ax = b would be a vector x∗
whose residual is the smallest w.r.t to some norm.

Choosing the 2-norm leads to the general least squares problem: Given
A ∈ Cm×n with m ≥ n, and b ∈ Cm, find x∗ ∈ Cn such that

‖b − Ax∗‖2 ≤ ‖b − Ay‖2 for all y ∈ Cn.

Equivalently,

‖b − Ax∗‖2 ≤ ‖b − z‖2 for all z ∈ range(A).
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Solving the least squares problem

Goal: Find Ax ∈ range(A) closest to b.

Geometrically: the answer y is equal Pb, where P is the projection onto
range(A).

So, we need to find x such that Ax = y = Pb in order to solve the least
squares problem.
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Solving the least squares problem II

Theorem: Let A ∈ Cm×n with m ≥ n and b ∈ Cm be given. A vector x ∈ Cn

solves the least squares problem if and only if it solves the normal equation

A∗Ax = A∗b.

Proof: (1) If x is a solution, then residual r = b − Ax is orthogonal to
range(A). This means

A∗r = 0 ⇒ A∗(b − Ax) = 0.

(2) If x solves the normal equation, then A∗(b − Ax) = 0, and this means its
residual r = b − Ax is orthogonal to range(A). Let’s define P ∈ Cm×m as the
orthogonal projector onto range(A). Then, (recall the geometric picture)

Pb = Ax .

(3) Let z ∈ range(A) be arbitrary and set y = Pb. Then, b − y = r is
orthogonal to z − y ∈ range(A), and so by Pythagorean theorem

‖b − z‖2
2 = ‖b − y‖2

2 + ‖y − z‖2
2 ≥ ‖b − y‖2

2,

which means y = Pb = Ax solves the least squares problem.
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Supplementary

Pythagorean theorem: If x and y are orthogonal, then

‖x + y‖2
2 = ‖x‖2

2 + ‖y‖2
2.

Exercise: Prove this.

Exercise: Show that if A has full rank if and only if A∗A is invertible.
Consequently, deduce that the solution to the normal equation is unique if and
only if A has full rank.
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Pseudoinverse

Let A ∈ Cm×n (m ≥ n) be of full rank. Then, an acceptable solution x∗ to an
overdetermined system Ax = b is the solution to the least squares problem:

‖b − Ax∗‖2 ≤ ‖b − Ay‖2 for all y ∈ Cm.

The previous theorem shows x∗ can be computed from the normal equation

x∗ = (A∗A)−1A∗b.

This motivates defining (A∗A)−1A∗ as the pseduoinverse A+.

I Note that A+ = (A∗A)−1A∗ ∈ Cn×m, as it maps b ∈ Cm to x∗ ∈ Cn, i.e.,
if m > n, then A+ has more columns than rows.

I If A ∈ Cm×m is invertible, then

A+ = (A∗A)−1A∗ = A−1(A∗)−1A∗ = A−1.

Pseudoinverse coincides with the usual inverse.
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QR method for least squares

The classical way to solve the least squares problem is to solve the normal
equation A∗Ax = A∗b.

I Good when A is full rank.

I But calculations can become unstable with rounding (small rounding
errors can grow large).

The modern classical method is to use reduced QR factorization
(Gram–Schmidt/Householder). Construct A = Q̂R̂, and the orthogonal

projector P = Q̂Q̂∗. Then, y = Pb = Q̂Q̂∗b, and

Ax = Pb ⇒ Q̂R̂x = Q̂Q̂∗b ⇒ x = R̂−1(Q̂∗b).

As R̂ is upper-triangular, R̂−1 is easy to compute! This also gives another
formula for the pseudoinverse2

A+ = R̂−1Q̂∗.

I Nowadays the standard method. Good when A is full rank.

I Less ideal if A is rank-deficient.

2typo in previous version, don’t forget Q∗

78 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

SVD method for least squares

For rank-deficient matrices, we can compute the reduced SVD A = ÛΣ̂V ∗.
The orthogonal projection P is now P = ÛÛ∗ and

y = Pb = ÛÛ∗b.

Then,

Ax = Pb ⇒ ÛΣ̂V ∗ = ÛÛ∗b ⇒ x = V Σ̂−1Û∗b.

This gives another formula for the pseudoinverse

A+ = V Σ̂−1Û∗.

Comparison with QR method:

I QR factorization reduces the least squares problem to solving a triangular
system of equations (solve R̂x = Q̂∗b).

I SVD reduces the problem to a diagonal system of equations (solve

Σ̂w = Û∗b and then set x = Vw).
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Class exercise

1. Looking back at the slide Construction III explain why the orthogonal
projection P to range(A) for the reduced QR factorization is P = Q̂Q̂∗,

and why for the SVD factorization it is P = ÛÛ∗.

2. Solve the overdetermined system Ax = b with

A =


1 2 3
4 5 6
7 8 7
4 2 3
4 2 2

 , b =


−1
2
1
1
5


with (i) the normal equation, (ii) the QR method, (iii) the SVD method.
What can you say about the corresponding solutions from each of these
methods?

80 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

§5 - Eigenvalue problems

81 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Review

Let A ∈ Cm×m be a square matrix. A nonzero vector x ∈ Cm is an eigenvector
of A corresponding to an eigenvalue λ ∈ C if

Ax = λx .

The set of all eigenvalues of A is called the spectrum, denoted by Λ(A).

To find eigenvalues, the standard way is to compute the charateristic
polynomial

pA(x) = det(zI − A)

which is a polynomial of degree m, and search for its roots. Namely λ is an
eigenvalue of A if and only if pA(λ) = 0.

Each λ eigenvalue has two notion of mulitplicity:

I algebraic multiplicity - the number of times λ appears as a repeated root
of pA.

I geometric multiplicity - the number of LI eigenvectors corresponding to λ,
aka the dimension of the eigenspace of λ.

An eigenvalue is called simple if its algebraic multiplicity is 1.
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Review II

Example:

A =

1 2 1
1 −1 1
2 0 −1


has a characteristic polynomial pA(z) = −(z − 3)(z + 1)2.

So the eigenvalues of A are λ1 = 3 and λ2 = λ3 = −1. The eigenvector for
λ1 = 3 is obtained by solving (A− 3I )v1 = 0 which gives v1 = (1, 1/2, 1)>.
For λ2 = λ3 = −1, we see that

0 = (A + I )w =

2 2 1
1 0 1
2 0 2

w1

w2

w3

 =

2w1 + 2w2 + w3

w1 + w3

2w1 + 2w3

 .

We can choose v2 = (1,−1/2,−1)> as an eigenvector. Is there more?

Unfortunately, there is no other choice of w , therefore

I λ = 3 has algebraic and geometric multiplicity 1,

I λ = −1 has algebraic multiplicity 2 and geometric multiplicity 1.
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Eigenvalue decomposition

Let A ∈ Cm×m be a square matrix. Its eigenvalue decomposition is the
factorization

A = XΛX−1,

where X ∈ Cm×m is invertible and Λ ∈ Cm×m is diagonal.

This factorization is not guaranteed to exist for general square matrices!

Rewriting as AX = ΛX yields the graphically picture

or equivalently

Axj = λjxj .
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Similarity transformations

If X ∈ Cm×m is invertible, the transformation

A 7→ X−1AX

is called a similarity transformation.

Related – similar matrices: A ∈ Cm×m and B ∈ Cm×m are similar if there
exists an invertible X ∈ Cm×m such that B = X−1AX .

Also related – equivalent matrices: A ∈ Cm×n and B ∈ Cm×n are equivalent if
there exist invertible P ∈ Cn×n and invertible Q ∈ Cm×m such that
B = Q−1AP.

Note:

I Similarity only defined for square matrices!

I Similar ⇒ Equivalent, but not the other way round.

I A and B are equivalent means there are bases B1 of Cn and B2 of Cm

such that B is the matrix A w.r.t these new bases.

I A and B are similar means there is a basis B of Cm (m = n) such that B
is the matrix A w.r.t the basis B.
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Properties of similarity transformation

Theorem: If X is invertible, then A and X−1AX have the same characteristic
polynomial. Hence, they have the same eigenvalues, and the same
algebraic/geometric multiplicity.

Proof: (1) A straightforward calculation

pX−1AX (z) = det(zI − X−1AX ) = det(X−1(zI − A)X )

= det(X−1)det(zI − A)det(X ) = pA(z).

Therefore, A and X−1AX have the same eigenvalues and algebraic multiplicity.

(2) Notice y is an eigenvector of A if and only if X−1y is an eigenvector of
X−1AX , since

Ay = λy ⇔ X−1AX (X−1y) = λ(X−1y).

Also {yi}i are LI if and only if {X−1yi}i are LI. Therefore, the geometric
multiplicity for each eigenvalue of A and X−1AX also agree.
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Algebraic multiplicity ≥ Geometric multiplicity

Theorem: The algebraic multiplicity of an eigenvalue is greater than/equal to
its geometric multiplicity.

Proof: (1) Suppose the geometric multiplicity of λ is n. Then, there are n LI
eigenvectors {v1, . . . , vn} corresponding to λ.

(2) To the set {v1, . . . , vn} we add orthogonal vectors {vn+1, . . . , vm} such
that the resulting matrix V ∈ Cm×m with ith column vi is invertible. Then,
defining B = V−1AV we see

B =

(
λI C
0 D

)
for some C ∈ Cn×(m−n) and D ∈ C(m−n)×(m−n)

(3) By properties of the determinant, and as A and B are similar,

pA(z) = det(zI − A) = det(zI − B) = (z − λ)ndet(zI − D).

As we cannot rule out if λ is also a root to pD(z), the algebraic multiplicity of
λ is at least n.
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Defective matrices

An eigenvalue of a matrix A ∈ Cm×m is called defective if its algebraic
multiplicity > its geometric multiplicity.

A matrix is called defective if it has at least one defective eigenvalue.
Otherwise it is non-defective.

Theorem: A diagonal matrix is non-defective.

Proof: Let λ be an eigenvalue of the diagonal matrix A. Then,

algebraic multiplicity = no. of times it appears on the diagonal.

An eigenvector for entry λi = aii is the unit vector ei , and {e1, . . . , em} are LI.
Therefore

geometric multiplicity = no. of times it appears on the diagonal.
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Diagonalizability

Theorem: A ∈ Cm×m is non-defective if and only if it has an eigenvalue
decomposition A = XΛX−1 with X invertible and Λ diagonal.

Proof: (⇒) A non-defective implies A has m LI eigenvectors. Let X be the
matrix whose columns are these eigenvectors. Then, X is invertible and
AX = XΛ, whre Λ is the diagonal matrix with entries equal to the eigenvalues
of A.

(⇐) Since Λ is diagonal it is non-defective, and as the eigenvalue
decomposition means A is similar to Λ, and similarity transformation preserves
algebraic and geometric multiplicities of eigenvalues, we must have A is also
non-defective.

This result motivates the definition: A ∈ Cm×m is diagonalizable ⇔ it has an
eigenvalue decomposition A = XΛX−1 ⇔ it is non-defective.
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Unitary diagonalizability

If A = XΛX−1 and the columns of X is orthonormal, then X is a unitary
matrix, i.e., X∗ = X−1 (why?).

In this case, we say A ∈ Cm×m is unitary diagonalizable if A = QΛQ∗ for
some unitary matrix Q and diagonal matrix Λ.

Note:

I The “eigenvalue decomposition” A = QΛQ∗ can also be seen as a SVD
for the square matrix A.

I If A is hermitian, i.e., A = A∗, then it is unitary diagonalizable and all
entries in Λ are real. (To be proven later...)
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Schur factorization
The Schur factorization of a square matrix A ∈ Cm×m is of the form

A = QTQ∗

where Q is unitary and T is upper-triangular.

Note: A and T are similar ⇒ eigenvalues of A appear on the diagonal of T .

Theorem: Every square matrix has a Schur factorization.

Proof: Induction on m. Case m = 1 is trivial. So suppose m ≥ 2.

(1) Let x ∈ Cm be any eigenvector of A with eigenvalue λ. Normalize x and
set it to be the first column of a unitary matrix U ∈ Cm×m. From the slide
Algebriac multiplicity ≥ Geometric multiplicity, we have

U∗AU =

(
λ b
0 C

)
with b> ∈ Cm−1 and C ∈ Cm−1×m−1.

(2) By induction hypothesis, since C ∈ Cm−1×m−1, it has a Schur
factorization, C = VTV ∗ with upper-triangular matrix T ∈ Cm−1×m−1 and
unitary V .

(3) Then, the matrix Q defined below is unitary

Q = U

(
1 0
0 V

)
⇒ Q∗AQ =

(
1 0
0 V ∗

)(
λ b
0 C

)(
1 0
0 V

)
=

(
λ bV
0 T

)
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Consequences of Schur factorization

Theorem: Every hermitian matrix is unitary diagonalizable, and so all its
eigenvalues are real.

Proof: Let A be hermitian, i.e., A = A∗. Then, by Schur factorization,

A = QTQ∗ = (QTQ∗)∗ = A∗ ⇒ QTQ∗ = QT∗Q∗.

Hence, T = T∗ which implies T must be diagonal. Furthermore, on the
diagonal, it holds that Tii = Tii , which implies the diagonal entries of T are
real numbers.

We say that a square matrix A is normal if AA∗ = A∗A.

Theorem: A square matrix is unitary diagonalizable if and only if it is normal.

Proof: (⇒) If A = QΛQ∗, then A∗ = QΛ∗Q∗ and

AA∗ = QΛΛ∗Q∗ = QΛ∗ΛQ∗ = A∗A.

(⇐) Let A = UTU∗ be its Schur factorization. As A is normal

UTT∗U∗ = AA∗ = A∗A = UT∗TU.

This implies TT∗ = T∗T , i.e., the upper triangular matrix T is also normal.
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Consequences of Schur factorization II

If

T =


t11 t12 · · · t1m

t22 · · · t2m

. . .
...

tmm


then, the (1,1) entry of T∗T and TT∗ are respectively

|t11|2 and
m∑
i=1

|t1i |2,

and TT∗ = T∗T implies |t1i | = 0 for 2 ≤ i ≤ m, i.e., the first row of T is
zero except for the (1,1)-entry.

Next, the (2,2)-entry of T∗T and TT∗ are respectively

|t12|2 + |t22|2 = |t22|2 and
m∑
i=2

|t2i |2.

Again, TT∗ = T∗T implies |t2i | = 0 for 3 ≤ i ≤ m.

Continue this way, all upper off diagonal entries of T are zero, and so T is a
diagonal matrix.
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Class exercise

1. Show that the matrix I − vv∗ is unitary if and only if ‖v‖2
2 = 2 or v = 0.

2. Show that these two matrices are not similar

A =

(
2 1
1 2

)
, B =

(
1 2
2 1

)

3. Show that the following matrix is singular, but is diagonalizable

A =

 2 −1 0
−1 2 0
0 0 0


4. Show that the following matrix is nonsingular, but is not diagonalizable

A =

2 1 0
0 2 0
0 0 3


5. Find the Schur factorization of the matrices in Q3 and Q4.
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Eigenvalue revealing methods

Methods for finding eigenvalues of A ∈ Cm×m:

1. Solving the characteristic polynomial pA.
I unfeasible for large size matrices.
I (rounding) errors in coefficients ⇒ inaccurate calculations.

2. Iterative process to find the largest eigenvalue, e.g., the Power iteration.

Idea: the sequence

x , Ax , A2x , A3x , · · ·

will converge (under certain conditions) to an eigenvector associated with
the largest eigenvalue of A in magnitude.

I A similar method (inverse power iteration) computes the smallest eigenvalue of
A in magnitude.

I Depends strongly on well-separated eigenvalues, e.g., |λ2|/|λ1| � 1.
I Convergence can be rather slow otherwise.

3. Factorise A so that its eigenvalues appear in one of the factors:
I Diagonalization for non-defective A = XΛX−1. Eigenvalues listed in diagonal

matrix Λ.
I Unitary diagonalizability for non-defective A = QΛQ∗.
I Schur factorization for any A = QTQ∗. Eigenvalues appear on diagonal of the

upper triangular matrix T .
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Difficulty with characteristic polynomial

A deep result in Galois theory:

Theorem: For any m ≥ 5, there is a polynomial p(z) of degree m with rational
coefficients that has a real root p(r) = 0 with the property that r cannot be
written using any expression involving rational numbers, addition, subtraction,
multiplication, division, and kth roots.

Meaning? There is no analogue of the quadratic formula for polynomials of
degree ≥ 5.

Which means? There is no compute program that would product the exact
roots of an arbitrary polynomial in a finite number of steps.

Hence, any eigenvalue solver must be iterative, i.e., generate a sequence of
numbers that converges (rapidly) towards eigenvalues.
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Power iteration
Designed to compute the dominant eigenvalue of a matrix A ∈ Cm×m and an
associated eigenvector.

Assumptions:

I There is a single eigenvalue of maximum modulus. I.e., we can label the
eigenvalues in terms of their magnitude:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λm|.

I There is a set of m LI eigenvectors. I.e., there is a basis {u1, . . . , um} of
Cm such that

Auj = λjuj for 1 ≤ j ≤ m.

Procedure: Pick an arbitrary initial vector x0 ∈ Cm. Generate sequences

I zk = Axk ,

I xk+1 = zk
‖zk‖2

,

I rk+1 = x∗k+1Axk+1.

Theorem: If the initial vector x0 has an expansion of the form
x0 = a1u1 + · · ·+ amum with a1 6= 0, then as k →∞, xk+1 aligns along with
direction of u1, and

rk → λ1 as k →∞.
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Power iteration II
Proof: (1) From the definition, we see that

xk =
Akx0

‖Akx0‖2
for k ≥ 1.

Then, by the expansion of x0,

Akx0 = a1λ
k
1

(
u1 +

m∑
i=2

ai

a1

( λi
λ1

)k
ui

)
=: a1λ

k
1 (u1 + εk ) for k ≥ 1.

(2) Since |λ1| > |λj | for j ≥ 2,
λk
j

λk
1

converges to zero, and so the vector

εk → 0 as k →∞. Therefore,

xk =
Akx0

‖Akx0‖2
=

a1λ
k
1 (u1 + εk )

‖a1λk1 (u1 + εk )‖2
= sign(a1λ

k
1 )

u1 + εk

‖u1 + εk‖2
,

i.e., xk aligns more and more with the direction of u1 as k →∞.

(3) Next,

rk = x∗k Axk =
(u1 + εk )∗(λ1u1 + Aεk )

‖u1 + εk‖2
2

→ λ1.

99 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Power iteration III

Theorem: Let A ∈ Cm×m be diagonalizable with eigenvalues

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λm|

and normalized eigenvectors {u1, . . . , um}. Let x0 = a1u1 + · · ·+ amum be any
vector with a1 6= 0. Then, there is a constant c > 0 such that

‖yk − u1‖2 ≤ c

∣∣∣∣λ2

λ1

∣∣∣∣k for yk =
xk‖Akx0‖2

a1λk1
.

Meaning: If |λ2| is close to |λ1|, convergence of sequence yk to eigenvector u1

is slow.

Proof: Short computation

‖yk − u1‖2 =

∥∥∥∥∥
m∑
i=2

aiλ
k
i

a1λk1
ui

∥∥∥∥∥
2

≤
( m∑

i=2

[
ai

a1

]2 [ λi
λ1

]2k )1/2
≤
∣∣∣∣λ2

λ1

∣∣∣∣k ( m∑
i=2

[
ai

a1

]2 )1/2
=: c

∣∣∣∣λ2

λ1

∣∣∣∣k
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Inverse power iteration
Theorem: If λ is an eigenvalue of A and if A is invertible, then 1

λ
is an

eigenvalue of A−1.

Exercise: Prove this.

If the eigenvalues of A can be arranged as

|λ1| ≥ |λ2| ≥ · · · ≥ |λm−1| > |λm| > 0.

Then, 0 is not an eigenvalue of A, and A−1 has eigenvalues 1
λj

arranged as

|λ−1
m | > |λ

−1
m−1| ≥ · · · ≥ |λ

−1
1 |.

Then, we can apply the power iteration to A−1 to approximate the smallest
eigenvalue of A in magnitude!

Practical implementation: Bad idea to invert A and then define zk = A−1xk−1

and normalise xk = zk
‖zk‖2

in order to generate the sequence {xk}k∈N!

A better idea (at least for large matrices) is to factorise A (e.g. QR or SVD)
and then solve

Azk+1 = xk ,

then normalise xk+1 :=
zk+1
‖zk+1‖2

.
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Shifted inverse iteration

Given a diagonalizable matrix A ∈ Cm×m:

I Power iteration → approximate largest eigenvalue of A in magnitude.

I Inverse power iteration → approximate smallest eigenvalue of A in
magitude.

What about those in between?

Suppose µ ∈ C is not an eigenvalue of A. Then, B := A− µI is invertible and
the eigenvalues of B are {λ1 − µ, λ2 − µ, . . . , λm − µ}.

Suppose λJ is an eigenvalue “closest” to µ, i.e.,

|λJ − µ| < |λi − µ| for i 6= J,

then we can use inverse iteration on (A− µI ) [equivalently power iteration on
(A− µI )−1] to find an approximation of λJ − µ.

This is the shifted inverse iteration that approximates the eigenvalue of A
closest to the shift µ ∈ C.

Practical implementation: Factorise A− µI and then solve

(A− µI )zk+1 = xk , xk+1 :=
zk+1

‖zk+1‖2
.
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Gershgorin circle theorem I

How do we choose the shift µ ∈ C in the shifted inverse iteration?

Theorem: Let A ∈ Cm×m. For i ∈ {1, . . . ,m}, let Ri =
∑

j 6=i |aij |. Then,
every eigenvalue of A lies within at least one of the so-called Gershgorin discs
D(aii ,Ri ), where

D(aii ,Ri ) = {z ∈ C : |z − aii | ≤ Ri}.

Heuristically: If off-diagonal entries of A have small norms, then the
eigenvalues of A cannot be too “far from” the main diagonal entries of A.

103 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Gershgorin circle theorem II

Theorem: Let A ∈ Cm×m. For i ∈ {1, . . . ,m}, let Ri =
∑

j 6=i |aij |. Then,
every eigenvalue of A lies within at least one of the so-called Gershgorin discs
D(aii ,Ri ), where

D(aii ,Ri ) = {z ∈ C : |z − aii | ≤ Ri}.

Proof: (1) Let λ be an eigenvalue of A, and choose eigenvector x normalized
so that ‖x‖∞ = 1. Let i ∈ {1, . . . ,m} be the index for which |xi | = 1.

(2) Since Ax = λx , we have

λxi =
m∑
j=1

aijxj ⇒ (λ− aii )xi =
∑
j 6=i

aijxj .

(3) Take absolute values, and use |xj | ≤ 1 = |xi | to get

|λ− aii | ≤

∣∣∣∣∣∣
∑
j 6=i

aijxj

∣∣∣∣∣∣ ≤
∑
j 6=i

|aij | = Ri .
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Gershgorin’s circle theorem III
Note: it is possible that one disc can contain more than one eigenvalue.
Example

A =


10 −1 0 1
0.2 8 0.2 0.2
1 1 2 1
−1 −1 −1 −11


Gershgorin’s theorem says each eigenvalue of A are contained in the following
four discs:

D(10, 2), D(8, 0.6), D(2, 3), D(−11, 3)

The eigenvalues are 9.8218, 8.1478, 1.8995, -10.86.
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Class exercise

1. Let A ∈ Cm×m be diagonalizable with eigenvalues

|λ1| > |λ2| ≥ · · · ≥ |λm|,

where |λ2|/|λ1| is close to 1. Write down the algorithm (i.e., {yk}k∈N)
for the shifted power iteration for A with shift µ, and deduce the
convergence rate of the shifted power iteration. What values of µ should
you choose to improve the slow convergence of the power iteration?

2. The Rayleigh quotient of a non-zero vector x ∈ Cm and a matrix
A ∈ Cm×m is

r(A, x) =
x∗Ax

x∗x
.

I Show that if x is an eigenvector of A, then r(A, x) is the corresponding
eigenvalue.

I Show that the partial derivative of r with respect to xj is

∂r(A, x)

∂xj
=

2

x∗x
(Ax − r(A, x)x)j .

I Deduce that eigenvectors of A satisfies ∇x r(A, x) = 0.
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Two phase eigenvalue computation I

Most general purpose eigenvalue algorithms used today employs the Schur
factorization A = QTQ∗.

We apply similarity transformations X 7→ Q∗j XQj to A with unitary matrices,

so that the sequence (Bi )i≥1 defined as

Bi = Q∗i Bi−1Qi , B1 = Q∗1 AQ1

eventually converges to an upper triangular matrix T as i →∞.

The basic idea of the two phase eigenvalue computation is:

I Phase 1: Transform A into upper Hessenberg form, i.e., all entries below
first subdiagonal are zero [aij = 0 for i > j + 1]. This can be done in a
finite number of steps.

I Phase 2: Generate a sequence of upper Hessenberg matrices that
converges to an upper triangular matrix. This is an iterative process.

If A is hermitian, then we get tridiagonal matrices instead.
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Two phase eigenvalue computation II

I Phase 1: Transform A into upper Hessenberg form, i.e., all entries below
first subdiagonal are zero [aij = 0 for i > j + 1]. This can be done in a
finite number of steps.

I Phase 2: Generate a sequence of upper Hessenberg matrices that
converges to an upper triangular matrix. This is an iterative process.

If A is hermitian, then we get tridiagonal matrices instead.

Schematically:
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Phase 1 – Reduction to upper Hessenberg form

Recall the Householder reflections that creates zeros below the first entry

So, one idea is to repeatedly use (appropriate) Householder reflections to
introduce zeros below the main diagonal.

This turns out to be a bad idea! Schemtically, the first Householder reflector
Q∗1 multiplied on the left of A will change all rows of A.
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Reduction to upper Hessenberg form II
Schemtically, the first Householder reflector Q∗1 multiplied on the left of A will
change all rows of A.

To complete the similarity transformation, we have to multiply on the right by
Q1:

Therefore, all the zeros created before are now lost!
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Reduction to upper Hessenberg form III
A better idea is to be less ambitious and aim for a Hessenberg form. Let Q∗1
be a Householder reflection that leaves the first row unchanged. Then, Q∗1
mutiplied on the left of A introduce zeros in row 3 and onwards of the first
column.

When multiplying Q∗1 A with Q1 on the right, the first column is unchanged
(by design), so the zeros we created are preserved.

The second Householder reflector Q∗2 would leave the first and second rows
unchanged.

This process terminates after a total of m − 2 steps, leading to

Q∗m−2 · · ·Q∗1︸ ︷︷ ︸
Q∗

AQ1 · · ·Qm−2︸ ︷︷ ︸
Q

= H,

where H is upper Hessenberg.
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Reduction to upper Hessenberg form IV

Going back to the slide Finding the unitary matrices. We want Q∗1 to leave
the first row unchanged. Meaning

Q∗1 =

(
1 0
0 F

)
where F ∈ C(m−1)×(m−1) is unitary.

The procedure is:

I Set x = (a21, . . . , am1)> ∈ Cm−1 as the first column of A without the
first entry a11.

I Construct vector3

v1 = sign(a21)‖x‖e1 + x ,

where e1 = (1, 0, . . . , 0)> ∈ Cm−1.

I Construct Householder reflector

F1 = I −
2v1v∗1
‖v1‖2

∈ C(m−1)×(m−1)

and set F = F1.

3typo in previous versions, the sign
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Reduction to upper Hessenberg form V

In the second step, we want Q∗2 to leave the first and second rows unchanged.
Meaning

Q∗2 =

(
I2×2 0

0 F2

)
where F2 ∈ C(m−2)×(m−2) is unitary.

The procedure is:

I Set x = (a32, . . . , am2)> ∈ Cm−2 as the second column of Q∗1 AQ1

without the first and second entries.

I Construct vector4

v2 = sign(a32)‖x‖e1 + x ,

where e1 = (1, 0, . . . , 0)> ∈ Cm−2.

I Construct Householder reflector

F2 = I −
2v2v∗2
‖v2‖2

∈ C(m−2)×(m−2).

and so on ...

4typo on previous versions, the sign
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Phase 2 – Iterative algorithms

After transforming A into upper Hessenberg form (or tridiagonal form if A is
hermitian), we now consider methods to approximate eigenvalues and
eigenvectors.

The first is the Rayleigh quotient iteration derived from the shifted inverse
iteration. Applied to hermitian matrices.

The second is an algorithm based on QR factorization. Applied to Hessenberg
matrices.

Both are able to compute all eigenvalues and eigenvectors of the matrix.
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Rayleigh quotient iteration
For fixed matrix A ∈ Cm×m, the Rayleigh quotient of a vector x ∈ Cm is

r(x) =
x∗Ax

‖x‖2
2

.

Related problem: Given x ∈ Cm, find a scalar α ∈ C “acting most like an
eigenvalue” for x , in the sense that

‖Ax − αx‖2 ≤ ‖Ax − βx‖2 for all β ∈ C.

Viewing x as a matrix in Cm×1, the solution to the least squares problem

xα = Ax

is (recall the normal equation)

α = (x∗x)−1x∗(Ax) =
x∗Ax

x∗x
.

I.e., the Rayleigh quotient is the solution to the least squares problem.

In Class exercise we have shown

I if x is an eigenvector of A, then r(x) is the corresponding eigenvalue.

Therefore, for given arbitrary x ∈ Cm, the scalar r(x) is a natural eigenvalue
estimate.
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Rayleigh quotient iteration II
So far, the Rayleigh quotient gives

approx. eigenvector x −→ approx. eigenvalue r(x).

Is there an algorithm that gives the reverse?

Yes! The shifted inverse iteration: For given µ ∈ C and initial vector x ∈ Cm,
we generate a sequence that approximates the eigenvector associated to the
eigenvalue of A closest to µ. I.e.,

approx. eigenvalue µ −→ approx. eigenvector x .

The Rayleigh quotient iteration is simply to combine these two methods:

1. Initialise with vector x0 ∈ Cm with ‖x0‖2 = 1.

2. Compute Rayleigh quotient r0 = x∗0 Ax0.

3. for k = 1, 2, · · ·

I Solve (A− rI )w = xk−1 for w (Inverse iteration).

I Set xk = w/‖w‖2 (normalize).

I Set rk = x∗k Axk (Rayleigh quotient).

Heuristically, in step k, we use the Inverse iteration with µ = r (previous
Rayleigh quotient) to output an approximate eigenvector xk , and then use this
to compute a better approximate of the eigenvalue.
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Rayleigh quotient iteration III
Why is this method so spectacular?

Theorem: The Rayleigh quotient iteration generates a sequence of (rk , xk )k∈N
such that when it converges to an eigenpair (λJ , vJ) of A, the convergence is
cubic, i.e.,

|rk − λJ | = O(|rk−1 − λJ |3), ‖xk − (±vJ)‖2 = O(‖xk−1 − (±vJ)‖3
2),

where the ± signs are not necessarily the same on the two sides.

This means that the error at the k-th step is roughly the error at the
(k − 1)-th step raised to the third power.

Example: Consider

A =

2 1 1
1 3 1
1 1 4

 .

Set x0 = (1, 1, 1)>/
√

3. When the Rayleigh quotient iteration is applied to A,
we get the following first three iterations

r0 = 5, r1 = 5.2131 . . . , r2 = 5.214319743184 . . . .

The actual value of the eigenvalue corresponding to the eigenvector closest to
x0 is λ = 5.214319743377.
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Rayleigh quotient iteration IV

Proof: (1) Suppose (λ, v) is an eigenpair of A. Using a Taylor expansion

r(x) = r(v) +∇r(v)∗(x − v) + 1
2

(x − v)∗∇2(r(x))(x − v) +O(‖x − v‖3
2)

= r(v) + 1
2

(x − v)∗∇2(r(x))(x − v) +O(‖x − v‖3
2)

since in Class exercise ∇r(v) = 0 for an eigenvector v . Hence, for λ := r(v),

|r(x)− λ| = O(‖x − v‖2
2).

(2) Therefore, if ‖xk − (±vJ)‖2 = O(ε), the Rayleigh quotient yields an
estimate for the approximate eigenvalue rk with |rk − λJ | = O(ε2).

(3) For the Power iteration (see slide Power iteration III), there is an estimate

‖xk − vJ‖2 = O
( ∣∣∣∣λ2

λ1

∣∣∣∣k ),
where λ1 and λ2 are the largest and 2nd largest eigenvalue of A. So for the
shifted inverse iteration applied to A− rk I , the eigenvalues of (A− rk I )

−1 are

1

λ1 − rk
,

1

λ2 − rk
, · · · ,

1

λm − rk
.
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Rayleigh quotient iteration V

(4) If λJ is the closest eigenvalue to rk and λK is the 2nd closest, then we get
the estimate for an iteration of the shifted inverse iteration:

‖xk+1 − (±vJ)‖2 = O
( ∣∣∣ λJ−rk
λK−rk

∣∣∣k+1 )
= O

( ∣∣∣ λJ−rk
λK−rk

∣∣∣k ∣∣∣ λJ−rk
λK−rk

∣∣∣ )
(5) Since we assumed the Rayleigh quotient iteration is convergent, this means∣∣∣ λJ−rk

λK−rk

∣∣∣ =
∣∣∣ λJ−rk
λK−λJ+λJ−rk

∣∣∣ = O
( ∣∣∣ λJ−rk
λK−λJ

∣∣∣ ) = O(|λJ − rk |).

as λJ 6= λK . Then, (see previous slide)

‖xk+1 − (±vJ)‖2 = O
(
‖xk − (±vJ)‖2|λJ − rk |

)
= O(‖xk − (±vJ)‖3

2),

and

|rk+1 − λJ | = O
(
‖xk+1 − (±vJ)‖2

2

)
= O

(
‖xk − (±vJ)‖2

2|λJ − rk |2
)

= O
(
|λJ − rk |3

)
.

A more detailed proof can be found in the book of J.W. Demmel, Applied
Numerical Linear Algebra, Section 5.3.2
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Class exercise

1. Let A ∈ Cm×m be given, not necessarily hermitian. Show that a number
z ∈ C is a Rayleigh quotient of A if and only if it is a diagonal entry of
Q∗AQ for some unitary matrix Q.

2. Use the Rayleigh quotient iteration to compute an eigenpair for the matrix

A =

5 1 1
1 6 1
1 1 7


with x0 = (1, 0, 0)>.
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QR algorithm

The basic idea: Starting from the original matrix A0 := A, we generate a
sequence of matrices (Ak )k∈N with the QR decomposition. Suppose at step k
we have

QkRk = Ak ,

where Qk is unitary and Rk is upper triangular. We define

Ak+1 = RkQk

(just swapping the order of multiplication). Then,

Ak+1 = RkQk = Q∗k Qk (RkQk ) = Q∗k AkQk .

I.e., Ak and Ak+1 are similar, and so they have the same eigenvalues.

Under certain conditions, the sequence (Ak )k∈N conveges to the Schur form of
A, i.e., the upper triangular matrix U in the Schur factorization of
A = Q∗UQ. The eigenvalues are listed on the main diagonal of U.

In practice, matrix A is brought into upper Hessenberg form first, and then the
QR algorithm is applied.
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Simultaneous iteration

We will relate the QR algorithm to another method called simultaneous
iteration. Recalling that previous methods (Power iteration, Inverse iteration,
etc.) can only compute 1 eigenvalue at a time.

Is there a way to compute more eigenvalues simultaneously?

If A ∈ Cm×m has m LI eigenvectors {v1, . . . , vm}, the Power iteration starts
with an initial vector x0 that can be written as a linear combination

x0 = a1v1 + · · ·+ amvm.

Eigenvectors not orthogonal to x0 will have a chance to be found by the Power
iteration. E.g., in the original we had to assume that a1 6= 0 in order to find v1.

Therefore, we should try applying the Power iteration to several different
starting vectors, each orthogonal to each other, in order to find different
eigenvalues.

122 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Simultaneous iteration II

The idea is as follows: For n ≤ m, given a set of n LI vectors {x(0)
1 , . . . , x

(0)
n },

we consider the iteration

Akx
(0)
1 , Akx

(0)
2 , . . . , Akx

(0)
n .

In matrix notation, we define X (0) ∈ Cm×n to be the matrix

X (0) =

 | |
x

(0)
1 · · · x

(0)
n

| |


and X (k) to be the result after k applications of A:

X (k) = AkX (0) =

 | |
x

(k)
1 · · · x

(k)
n

| |


This can be viewed as the Power iteration applied to all the vectors

{x(0)
1 , . . . , x

(0)
n } at once.

We expect as k →∞, the columns of X (k) converges to scalar copies of v1,
the unit eigenvector corresponding to the largest eigenvalue of A in magnitude.
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Simultaneous iteration III

So far, there is no new information! as the n eigenvectors can possibly be in
the same direction.

However, in the original Power iteration there is a step of normalization. For
the multi-vector version, the analogue is to obtain an orthonormal set of
eigenvector estimates during each iteration.

This forces the eigenvector approximations to be orthogonal at all times, and
is done by computing the QR factorization of X (k).

Heuristically: if x
(k)
1 converges to v1, then as x

(k)
2 is orthogonal to x

(k)
1 , it

should converge to v2, the eigenvector corresponding to the second largest

eigenvalue in magnitude. Then, x
(k)
3 being orthogonal to {x(k)

1 , x
(k)
2 } should

converge to v3, etc....

Recall the reduced QR factorization of a matrix A ∈ Cm×n is

A = Q̂R̂

where R̂ ∈ Cn×n is upper triangular with non-zero diagonal, and Q̂ ∈ Cm×n

with orthonormal columns.
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Simultaneous iteration IV

We now describe the Simultaneous iteration method:

1. Pick a starting LI set {x(0)
1 , . . . , x

(0)
n } with n ≤ m.

2. Build matrix X (0) with columns x
(0)
1 , . . . , x

(0)
n .

3. Obtain reduced QR factorization Q̂(0)R̂(0) = X (0).

For k = 1, 2, . . .
I Set W (k) = AQ̂(k−1).

I Obtain reduced QR factorization Q̂(k)R̂(k) = W (k)

Under suitable conditions, the columns of Q̂(k) will converge to
±v1,±v2, . . . ,±vn, the eigenvectors corresponding to the n largest eigenvalues
of A in magnitude.

An informal explanation: The columns {q(0)
1 , . . . , q

(0)
n } of Q̂(0) is an

orthonormalization of the columns of X (0). Then, W (1) is the action of the
matrix A on these orthonormal columns, and the reduced QR factorization
yields the next set of approximate eigenvectors as columns of Q̂(1).
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Simultaneous iteration ⇔ QR algorithm

It turns out that the QR algorithm is equivalent to the simultaneous iteration
with n = m. In this case we use full QR factorizations instead, and with initial
orthonormal matrix Q(0) = Im×m.

The Simultaneous iteration reads:

I Q(0) = Im×m,

I W (k) = AQ(k−1),

I Q(k)R(k) = W (k),

and we set A(k) = (Q(k))>AQ(k).

The QR algorithm reads:

I A(0) = A,

I Q(k)R(k) = A(k−1),

I A(k) = R(k)Q(k),

and we set Q(k) = Q(1) · · ·Q(k).

Introducing an additional matrix

R(k) = R(k)R(k−1) · · ·R(1) = R(k)R(k−1).
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Simultaneous iteration ⇔ QR algorithm II

Theorem: The two processes are equivalent. They both generate identical
sequences of matrices R(k), Q(k) and A(k). Moreover, it holds that the k-th
power of A has the QR factorization

Ak = Q(k)R(k),

and the k-th iteration has the formula

A(k) = (Q(k))>AQ(k)

Proof by induction: Case k = 0. By design Q(0) = I , and by definition

A0 = I ⇒ R(0) = (Q(0))>A0 = I ,

and

A(0) = (Q(0))>AQ(0) = A.
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Simultaneous iteration ⇔ QR algorithm III

Theorem: The two processes are equivalent. They both generate identical
sequences of matrices R(k), Q(k) and A(k). Moreover, it holds that the k-th
power of A has the QR factorization

Ak = Q(k)R(k),

and the k-th iteration has the formula

A(k) = (Q(k))>AQ(k)

Consider k ≥ 1: For Simultaneous iteration, the formula for A(k) is by
definition.

Meanwhile, by induction and the formula Q(k)R(k) = AQ(k−1), we have

Ak = AAk−1 = AQ(k−1)R(k−1) = Q(k)R(k)R(k−1) = Q(k)R(k−1).
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Simultaneous iteration ⇔ QR algorithm IV

Theorem: The two processes are equivalent. They both generate identical
sequences of matrices R(k), Q(k) and A(k). Moreover, it holds that the k-th
power of A has the QR factorization

Ak = Q(k)R(k),

and the k-th iteration has the formula

A(k) = (Q(k))>AQ(k)

Consider k ≥ 1: For QR algorithm, using that R(k) = (Q(k))>A(k−1):

A(k) = R(k)Q(k) = (Q(k))>A(k−1)Q(k) = (Q(k))>
(
(Q(k−1))>A(k−2)Q(k−1)

)
Q(k)

= · · · = Q(k)AQ(k).

Meanwhile, by induction hypothesis, i.e., Ak−1 = Q(k−1)R(k−1) and

A(k−1) = (Q(k−1))>AQ(k−1), it holds

Ak = AQ(k−1)R(k−1) = Q(k−1)A(k−1)R(k) = Q(k−1)Q(k)R(k)R(k−1) = Q(k)R(k).
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Convergence of the QR algorithm

The QR algorithm takes an initial matrix A (real and symmetric) and outputs
a sequence {A(k)}k∈N along with QR-type factors {Q(k),R(k)}k∈N.

By previous theorem, we have the formula

Ak = Q(k)R(k), A(k) = (Q(k))>AQ(k),

where Q(k) = Q(1) · · ·Q(k), R(k) = R(k) · · ·R(1).

Theorem: Let the QR algorithm be applied to a real symmetric matrix A
whose eigenvalues satisfy |λ1| > · · · > |λm|, and whose corresponding
eigenvector matrix Q has all nonzero leading principal minors. Then,

A(k) → diag(λ1, . . . , λm) =: Λ as k →∞,

and Q(k) (adjusting the signs of its columns as necessary) converges to Q.

Recall: the k-th leading principal minor of a matrix A ∈ Cm×m is the
determinant of the upper-left k × k submatrix.

Note: A invertible ; all principal minors nonzero, e.g. A =

(
0 1
1 0

)
is

invertible, but its first principal minor is {0}.

130 / 144



MMAT 5320
Computational

Mathematics - Part 1
Numerical Linear

Algebra

Andrew Lam

Topics

Review of Linear
Algebra

SVD

QR factorization

Eigenvalue problems

Eigenvalue algorithms

Convergence of the QR algorithm II

Theorem: Let the QR algorithm be applied to a real symmetric matrix A
whose eigenvalues satisfy |λ1| > · · · > |λm|, and whose corresponding
eigenvector matrix Q has all nonzero leading principal minors. Then,

A(k) → diag(λ1, . . . , λm) =: Λ as k →∞,

and Q(k) (adjusting the signs of its columns as necessary) converges to Q.

Proof ingredients:

I The eigenvalue decomposition of a real symmetric matrix A is
A = QΛQ>, with orthogonal matrix Q (i.e., Q> = Q−1) and diagonal Λ;

I Uniqueness of QR factorization: If A ∈ Rm×m have LI columns, and
A = Q1R1 = Q2R2 are two QR factorizations, then Q1 = Q2 and
R1 = R2 (Exercise).

I If an invertible matrix A has all nonzero leading principal minors, then it
admits an LU factorization, i.e., A = LU where U is upper triangular and
L is lower triangular with 1s on the main diagonal (aka unit lower
triangular).
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Convergence of the QR algorithm III
Proof: (1) Let Q> = LU be the LU factorization of Q>. Then, for any k ∈ N,

Ak = QΛkQ> = QΛkLU.

Hence,

QΛkLΛ−k = AkU−1Λ−k = Q(k)R(k)U−1Λ−k .

(2) The matrix ΛkLΛ−k satisfies

(ΛkLΛ−k )ij =


lij (λj/λi )

k i > j ,

1 i = j ,

0 i < j .

Since |λi | > |λj | if j < i , we see

ΛkLΛ−k → Im×m, Q(k)R(k)U−1Λ−k → Q

as k →∞.

(3) By uniqueness of QR factorization,

Q(k) → Q, R(k)U−1Λ−k → Im×m as k →∞.

Then,

A(k) := (Q(k))>AQ(k) = (Q(k))>QΛQ>Q(k)→ Q>QΛQQ> = Λ as k →∞.
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QR algorithm with shifts

A simple example where the QR algorithm “fails” :

A =

(
0 1
1 0

)
.

Eigenvalues are 1 and −1. The QR algorithm applied to this matrix gives

Q(k) = A, R(k) = I =⇒ A(k) = A for all k ∈ N.

The QR algorithm stagnates and there is no convergence, obvious from the
Theorem as we have

I |λ1| = |λ2| where λ1 = 1 and λ2 = −1.

I First principal minor {0} is zero.

To fix things, we introduce the QR algorithm with shifts, and call the previous
algorithm the QR algorithm without shifts / unshifted QR algorithm.
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QR algorithm with shifts II

Assume again A ∈ Rm×m is symmetric.

The unshifted QR algorithm is the simultaneous iteration applied to the
identity matrix Im×m, and the first column evolves according to the Power
iteration.

A dual observation: The unshifted QR algorithm is also equivalent to a
simultaneous inverse iteration applied to a “flipped” identity matrix P

P =


1

1
1

· · ·
1



To be more precise. We recall that the k-th power of A has the QR
factorization

Ak = Q(k)R(k), where Q(k) = Q(1) · · ·Q(k), R(k) = R(k) · · ·R(1).

Inverting this formula and using that A−1 is symmetric:

A−k = (R(k))−1(Q(k))> = Q(k)(R(k))−> = (A−k )>.
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QR algorithm with shifts III

Using P2 = Im×m, we have

A−kP = Q(k)(R(k))−>P =
(
Q(k)P

)(
P(R(k))−>P

)
Observe:

I The factor (Q(k)P
)

is orthogonal, i.e.,

(Q(k)P
)
(Q(k)P

)>
= Im×m.

I The factor
(
P(R(k))−>P

)
is upper triangular. Applying P on the right

flips the matrix left-to-right, and applying P on the left flips the matrix
top-to-bottom.

So we have a QR factorization of A−kP. But we can interpret A−kP as the
result after k applications of A−1 to the initial matrix P.

I.e., we are applying simultaneous iteration with matrix A−1 to initial matrix
P.

Equivalently, we are applying simultaneous inverse iteration with matrix A to
initial matrix P.
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QR algorithm with shifts IV
Since the QR algorithm can be viewed as a simultaneous inverse iteration, we
can use shifts to accelerate the performance.

The unshifted QR algorithm reads:

I A(0) = A,

I Q(k)R(k) = A(k−1),

I A(k) = R(k)Q(k),

We simply introduce a shift µ(k) as follows:

I A(0) = A,

I Q(k)R(k) = A(k−1) − µ(k)Im×m,

I A(k) = R(k)Q(k) + µ(k)Im×m,

What changed?

I We still have

A(k) = R(k)Q(k) + µ(k)Im×m = (Q(k))>(A(k−1) − µ(k)Im×m)Q(k) + µ(k)Im×m

= (Q(k))>A(k−1)Q(k) = · · · by induction · · · = (Q(k))>AQ(k).

I But, we now have (by induction)

(A− µ(k)Im×m)(A− µ(k−1)Im×m) · · · (A− µ(1)Im×m) = Q(k)R(k).
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QR algorithm with shifts V
The shifted QR algorithm is

I A(0) = A,

I Q(k)R(k) = A(k−1) − µ(k)Im×m,

I A(k) = R(k)Q(k) + µ(k)Im×m,

where by an induction proof

A(k) = (Q(k))>AQ(k),
k∏

j=1

(A− µ(j)Im×m) = Q(k)R(k).

What are good choices for µ(j)? Rayleigh quotient r(x) = x>Ax
‖x‖2

which is the

best approximation to an eigenvalue for the vector x .

One good choice is the Rayleigh quotient

µ(k) =
(q

(k)
m )>Aq

(k)
m

‖q(k)
m ‖2

= (q
(k)
m )>Aq

(k)
m ,

where q
(k)
m is the last column of Q(k). Another formula for µ(k) is

µ(k) = (q
(k)
m )>Aq

(k)
m = e>m (Q(k))>AQ(k)em = e>m A(k)em = (A(k))mm,

i.e., the (m,m)-th entry of A(k). The resulting algorithm is called Rayleigh
quotient shifted QR algorithm.
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Choice of shifts - Explanation
Suppose A ∈ Rm×m has the form

A =

(
A b
b> c

)
with A ∈ R(m−1)×(m−1), b ∈ Rm−1 and c ∈ R. If entries of b are close to
zero, then the standard basis vector em is nearly an eigenvector of A with c
acting nearly as the eigenvalue.

Do one step of QR iteration and find orthogonal Q and upper triangular R
such that

QR = A− cIm×m.

Symmetry of A implies

A− cIm×m = R>Q> =⇒ Q = (A− cIm×m)−1R>.

Looking at the last column, since R> is lower triangular, we see that (with
rmm as the (m,m)-th entry of R)

qm = rmm(A− cIm×m)−1em.

This is one step of shifted inverse iteration applied to rmmem!

So if we choose c as the Rayleigh quotient of qm, i.e., c = q>mAqm, and do
another step of the shifted QR iteration, we obtain a new orthogonal matrix Q̃
whose last column is an even better approximation to the eigenvector than qm.
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Computing SVD

Recall for A ∈ Cm×n (m ≥ n), the (full) SVD of A is A = UΣV ∗, where

I U ∈ Cm×m, V ∈ Cn×n are unitary

I Σ ∈ Cm×n contains the singular values of A in decreasing order
σ1 ≥ σ2 ≥ · · · ≥ σn on its diagonal.

Relation between singular values and eigenvalues?

(σi (A))2 = λi (A
∗A) for i = 1, . . . , n.

Meaning? We can calculate the SVD of A using the following algorithm:

1. Form the matrix A∗A.

2. Compute the eigenvalue decomposition A∗A = VΛV ∗.

3. Let Σ ∈ Cm×n be the nonnegative diagonal square root of Λ.

4. Solve UΣ = AV for unitary U (e.g. via QR factorization).

Justification for step (3): If A = UΣV ∗, then

A∗A = VΣ∗U∗UΣV ∗ = VΣ∗ΣV ∗ =⇒ Λ = Σ∗Σ.
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Computing SVD II
Unfortunately, the above algorithm is unstable, in the sense that small
perturbations (e.g. due to rounding) of the matrix A can yield large errors in
singular values.

Let us consider an alternative idea for square matrices A ∈ Cm×m, by building
the 2m × 2m hermitian matrix

H =

(
0 A∗

A 0

)
.

If A = UΣV ∗, then AV = UΣ and A∗U = VΣ∗ = VΣ (since the entries of Σ
are nonnegative real numbers). This implies

H

(
V V
U −U

)
=

(
0 A∗

A 0

)(
V V
U −U

)
=

(
V V
U −U

)(
Σ 0
0 −Σ

)

This is an eigenvalue decomposition for H! I.e., singular values of A can be
extracted from eigenvalues of H, and the matrices U and V can be extracted
from the eigenvectors of H.

New algorithm (more stable than the first one) is:

1. Form the hermitian matrix H.

2. Reduce H into a tridiagonal form (see slide Two phase eigenvalue
computation) - Phase 1.

3. Apply Rayleigh quotient iteration to get eigenvalues and eigenvectors of
H - Phase 2.
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Class exercise

1. Apply the unshifted QR algorithm to the following matrix

A =

3 1 0
1 4 2
0 2 1



2. Apply the QR algorithm with shift to the following matrix

B =

 2 −1 0
−1 2 −1
0 −1 2


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Summary of Part 1

Singular value decomposition

1. The SVD of a matrix A = UΣV ∗ exists for any matrix A ∈ Cm×n.
I Find eigenvalues σ2

1 ≥ σ
2
2 ≥ · · · ≥ σ

2
n to A∗A.

I Find orthonormal set of eigenvectors {v1, . . . , vn} and build matrix V with
these as columns.

I Set ui = 1
σi

Avi and (add arbitrary orthonormal vectors) to build matrix U.
I Set Σ as the diagonal matrix with entries σ1, . . . , σn.

2. SVD can be written as a sum of rank-one matrices

A =
r∑

i=1

σiuiv
∗
i , where r = rank(A).

3. For large square matrices A, practical implementations of SVD can be
done by

I Reducing

H =

(
0 A∗

A 0

)
∈ C2m×2m

.

to tridiagonal form.
I Apply Rayleigh quotient iteration to get eigenvalues and eigenvectors of H.
I Extract U, V and Σ from the eigenvalue decomposition of H.
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Summary of Part 1 - continued

QR factorization

1. The QR factorization of a matrix A = QR exists for any matrix
A ∈ Cm×n.

I Apply the Gram–Schmidt orthonormalization process to the columns of A
yields the reduced QR factorization.

I Apply Householder reflections to obtain the full QR factorization.

2. Both methods rely heavily on the notion of orthogonal projections.

3. A square matrix P is a projector if P2 = P, and it is orthogonal if and
only if P is hermitian.

4. For any matrix B ∈ Cm×n, the orthogonal projector onto range(B) is
P = BB∗.

Least squares problem

1. The least squares problem is to find the best vector x ∈ Cm such that for
A ∈ Cm×n of full rank (m ≥ n) and b ∈ Cn,

‖b − Ax‖2 ≤ ‖b − Ay‖2 for all y ∈ Cm.

2. The solution is given by the normal equation x = (A∗A)−1A∗b.

3. When A is full rank, use reduced QR factorization on A to compute x .

4. If A is rank-deficient, then use reduced SVD on A.
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Summary of Part 1 – continued
Eigenvalue revealing factorizations

1. Matrices A,B ∈ Cm×m are similar if there is an invertible X ∈ Cm×m

such that B = X−1AX .

2. Similar matrices share the same eigenvalues and their multiplicity.

3. A ∈ Cm×m is non-defective if and only if it admits an eigenvalue
decomposition A = XΛX−1 with X invertible (columns are eigenvectors)
and Λ diagonal (with eigenvalues as entries).

4. The Schur factorization of A ∈ Cm×m is A = QTQ∗ with Q unitary and
T upper triangular. Eigenvalues of A appear on the main diagonal of T .

5. Every square matrix has a Schur factorization.

Eigenvalue algorithms - Two step approach

1. (a) Transform A ∈ Cm×m into upper Hessenberg form Ã (done in a finite no. of
steps),

(b) Generate a sequence of upper Hessenberg matrices Bi = Q∗i Bi−1Qi with

B1 = Q∗1 ÃQ1 which converge to an upper triangular matrix T (iterative
process)

2. Need to modify the Householder reflections in a suitable way for step 1!

3. For step 2, the QR algorithm is used to obtain all eigenvalues and
eigenvectors.

4. QR algorithm is equivalent to the simultaneous iteration (aka applying
Power iteration to multiple initial vectors simultaneously).

5. Performance accelerated by using the QR algorithm with shifts.
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