THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5010 Linear Analysis (Fall 2019) Suggested Solution of Homework 3: p.125: 1, 3

1. Show that the following are continuous functionals,

(a)
$$
\phi \mathbf{x} := \sum_{n=1}^{\infty} \frac{1}{n} a_n
$$
 on ℓ^2 ;
(3 marks)

(b)
$$
\phi \mathbf{x} := \sum_{n=0}^{\infty} e^{inw} a_n
$$
, and $\phi \mathbf{x} := \sum_{n=0}^{\infty} \sin(nw) a_n$ on ℓ^1
(*w* is a fixed real number); (3 marks)

(c)
$$
\delta_1 \mathbf{x} := a_1 \text{ on } \ell^1, \ell^2, \ell^\infty.
$$
 (2 marks)

Solution. For a functional, we mean a linear map from the normed space to its scalar field, that is usually real numbers $\mathbb R$ or complex numbers $\mathbb C$. Here we only show the continuity of these maps. The linearity can be checked directly.

(a) We say that $\boldsymbol{x} = (a_0, a_1, \ldots, a_n, \ldots)$ is an element of ℓ^2 if

$$
\sum_{n=0}^{\infty} |a_n|^2 < \infty
$$

We put $\|\boldsymbol{x}\|_2 := \sqrt{\sum_{n=0}^{\infty} |a_n|^2}$, which is the norm on ℓ^2 . Assuming the linearity, we only need to show that there exists some constant $C > 0$ such that

$$
|\phi \boldsymbol{x}| \leq C \|\boldsymbol{x}\|_2 \quad \text{ for every } \boldsymbol{x} \in \ell^2
$$

Let $\bm{x} = (a_0, a_1, \ldots, a_n, \ldots) \in \ell^2$.

$$
|\phi \mathbf{x}| = \left| \sum_{n=1}^{\infty} \frac{1}{n} a_n \right|
$$

\n
$$
\leq \lim_{N \to \infty} \sum_{n=1}^{N} \left| \frac{1}{n} a_n \right|
$$

\n
$$
\leq \lim_{N \to \infty} \sqrt{\sum_{n=1}^{N} \left(\frac{1}{n} \right)^2} \sqrt{\sum_{n=1}^{N} |a_n|^2}
$$
 (Cauchy-Schwarz inequality)
\n
$$
\leq \sqrt{\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^2} ||\mathbf{x}||_2,
$$

where $C = \sqrt{\sum_{n=1}^{\infty} (\frac{1}{n})}$ $\frac{1}{n}$)² is a finite number.

(b) For an element $\boldsymbol{x} = (a_0, a_1, \ldots, a_n, \ldots)$ in ℓ^1 . Its norm is given by

$$
\|\boldsymbol{x}\|_1 = \sum_{n=0}^{\infty} |a_n|
$$

Notice that when w is a real number, *inw* is an imaginary number for each $n \in \mathbb{N}$. Thus, $|e^{inw}| = e^{\text{Re}(inw)} = e^0 = 1$. Now, we have

$$
|\phi \mathbf{x}| = \left| \sum_{n=0}^{\infty} e^{i n w} a_n \right|
$$

\n
$$
\leq \sum_{n=0}^{\infty} |e^{i n w} a_n|
$$

\n
$$
= \sum_{n=0}^{\infty} |a_n| = ||\mathbf{x}||_1
$$

Similar for $\phi \mathbf{x} := \sum_{n=0}^{\infty} \sin(nw) a_n$ on ℓ^1 .

(c) For $\mathbf{x} = (a_0, a_1, \ldots, a_n, \ldots)$, we only need to observe that

$$
|a_1| \le ||\mathbf{x}||_1 = \sum_{n=0}^{\infty} |a_n|
$$

$$
|a_1| \le ||\mathbf{x}||_2 = \sqrt{\sum_{n=0}^{\infty} |a_n|^2}
$$

$$
|a_1| \le ||\mathbf{x}||_{\infty} = \sup_{n \ge 0} |a_n|
$$

3. The right-shift operator is defined by $R\mathbf{x} := (0, a_0, a_1, \ldots)$, where $\mathbf{x} := (a_0, a_1, \ldots)$. It is an operator that satisfies $||Rx|| = ||x||$ both as $\ell^{\infty} \to \ell^{\infty}$ and $\ell^{1} \to \ell^{1}$; it is 1-1 and its image is closed. Note that $LR = I \neq RL$. Show that it is also continuous as $R: \ell^1 \to \ell$ (2 marks)

Solution. Let $R: \ell^1 \to \ell^\infty$ be the right-shift operator. To see that R is continuous, we may show that

$$
\|R\boldsymbol{x}\|_{\infty}\leq \|\boldsymbol{x}\|_1
$$

For $\mathbf{x} = (a_0, a_1, \ldots),$

$$
(R\boldsymbol{x})(k) = \begin{cases} 0, & \text{if } k = 0; \\ a_{k-1}, & \text{if } k \ge 1. \end{cases}
$$

Hence, $||Rx||_{\infty} = \sup_{k \geq 0} |(Rx)(k)| = \sup_{k \geq 0} |a_k|.$ For each $k \geq 0$, $|a_k| \leq \sum_{n=0}^{\infty} |a_n| = ||x||_1$, therefore $||Rx||_{\infty} \leq ||x||_1$.