
2019 Fall MMAT 5010 Linear Analysis

Solution 1

p.100: 1, 7

1. Prove that ‖ · ‖1 and ‖ · ‖∞ are norms. Which axiom does ‖ · ‖p fail when p < 1?

Solution. Consider the vector space KN . Let x = (x1, . . . , xN),y = (y1, . . . , yN) ∈
KN and α ∈ K.

We first show that ‖x‖1 :=
∑N

i=1 |xi| is a norm on KN .

(i) Clearly ‖x‖1 ≥ 0. Moreover, ‖x‖1 = 0 if and only if xi = 0 for every 1 ≤ i ≤ N ,
i.e. x = 0.

(ii) ‖αx‖1 =
∑N

i=1 |αxi| = |α|
∑N

i=1 |xi| = |α| ‖x‖1.
(iii) ‖x + y‖1 =

∑N
i=1 |xi + yi| ≤

∑N
i=1(|xi|+ |yi|) =

∑N
i=1 |xi|+

∑N
i=1 |yi| = ‖x‖1 +

‖y‖1

Hence, ‖ · ‖1 is a norm on KN .

Next we show that ‖x‖∞ := max1≤i≤N |xi| is a norm on KN .

(i) Clearly ‖x‖∞ ≥ 0. Moreover, ‖x‖∞ = 0 if and only if xi = 0 for every
1 ≤ i ≤ N , i.e. x = 0.

(ii) ‖αx‖∞ = max1≤i≤N |αxi| = |α|max1≤i≤N |xi| = |α| ‖x‖∞, because |α| ≥ 0.

(iii) ‖x + y‖∞ = max1≤i≤N(|xi + yi|) ≤ max1≤i≤N(|xi| + |yi|) ≤ max1≤i≤N |xi| +
max1≤i≤N |yi| = ‖x‖∞ + ‖y‖∞.

Hence, ‖ · ‖∞ is a norm on KN .

We now show that ‖·‖ fails the triangle inequality, hence is not a norm, when p < 1.
For example, consider x = (1/2, 0),y = (0, 1/2) ∈ R2. Then

‖x + y‖p = p

√(
1

2

)p

+

(
1

2

)p

= 2
1
p
−1

while

‖x‖p + ‖y‖p =
1

2
+

1

2
= 1

When p < 1, we have 1
p
− 1 > 0 and hence ‖x + y‖p = 2

1
p
−1 > 1 = ‖x‖p + ‖y‖p.

The triangle inequality fails.

7. The norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ are all equivalent on RN since (prove!)

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤ N‖x‖∞.

But they are not equivalent for sequences or functions! Find sequences of functions
that converge in L1[0, 1] but not in L∞[0, 1], or vice-versa. Can sequences converge
in `1 but not in `∞?

Solution.
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(a) Let x = (x1, . . . , xN) ∈ RN . For each fixed 1 ≤ i ≤ N , from the inequality

|xi|2 ≤
N∑
j=1

|xj|2,

and taking square root, we have ‖x‖∞ ≤ ‖x‖2. Note also(
N∑
j=1

|xj|

)2

=
N∑
j=1

|xj|2 + 2
∑
i<j

|xixj| ≥
N∑
j=1

|xj|2,

it is easy to see that ‖x‖2 ≤ ‖x‖1. Finally, note that |xj| ≤ ‖x‖∞ for each
1 ≤ j ≤ N . Summing up when j goes from 1 to N gives ‖x‖1 ≤ N‖x‖∞.

(b) Recall that L1[0, 1] := {f : A→ C :
∫ 1

0
|f(x)| dx <∞} with norm defined by

‖f‖L1 :=

∫ 1

0

|f(x)| dx.

while L∞[0, 1] := {f : [0, 1] → C : f is measurable AND ∃c |f(x)| ≤ c a.e. x}
with norm defined by

‖f‖L∞ := sup
x a.e.
|f(x)|

Consider the sequence (fn) of functions on [0, 1], defined by fn = χ[0, 1
n
], i.e.

fn(x) =

{
1, if x ∈ [0, 1

n
];

0, otherwise.

Then, we have

‖fn‖L1 =

∫ 1
n

0

dx =
1

n
→ 0 as n→∞.

This means that fn converges to 0 in L1[0, 1]. However, (fn) is not a Cauchy
sequence in L∞[0, 1], and hence not a convergent sequence: for n > m, we have

‖fn − fm‖L∞ = sup
x a.e.

∣∣∣χ( 1
n
, 1
m
](x)
∣∣∣ = 1.

Finally, we note that for every function f on [0, 1],

‖f‖L1 =

∫ 1

0

|f(x)| dx ≤
∫ 1

0

‖f‖L∞ dx = ‖f‖L∞ .

If (fn) is a sequence in L∞[0, 1] and converges to the limit f in L∞-norm, then
fn converges to f in L1-norm.

(c) Note that for every y = (y1, y2, y3, . . .) ∈ `1,

‖y‖`∞ = sup
i∈N
|yi| ≤

∞∑
j=1

|yj| = ‖y‖`1 .

In particular, y ∈ `∞. Suppose a sequence (xn) converges to x in `1. Then,

‖xn − x‖`∞ ≤ ‖xn − x‖`1 → 0 as n→∞.

That is, (xn) converges to the same limit x in `∞.
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p. 106: 3

3. When X, Y are Banach spaces over the same field, so is X × Y (Proposition 4.7).

Solution. Recall that X × Y is a normed space with norm given by

‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y .

It suffices to show that if X and Y are complete, then so is X×Y . Let {(xn, yn)}∞n=1

be a Cauchy sequence in X × Y . Note that

‖(xn, yn)− (xm, ym)‖X×Y = ‖xn − xm‖X + ‖yn − ym‖Y ≥ ‖xn − xm‖X .

Since LHS converges to 0 as n,m → ∞, we have ‖xn − xm‖X → 0. It shows that
the sequence {xn}∞n=1 is a Cauchy sequence in the Banach space X. It therefore
converges to some point x ∈ X. By similar reasoning, the sequence {yn} also
converges to some y ∈ Y . Consequently,

‖(xn, yn)− (x, y)‖X×Y = ‖xn − x‖X + ‖yn − y‖Y → 0 as n→∞,

This says that the sequence {(xn, yn)}∞n=1 converges to (x, y) in X×Y . Thus, X×Y
is complete.


