Solution 1

p.100: 1, 7

1. Prove that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are norms. Which axiom does $\|\cdot\|_p$ fail when $p < 1$?

Solution. Consider the vector space \mathbb{K}^N . Let $\mathbf{x} = (x_1, \ldots, x_N), \mathbf{y} = (y_1, \ldots, y_N) \in$ \mathbb{K}^N and $\alpha \in \mathbb{K}$.

We first show that $\|\mathbf{x}\|_1 := \sum_{i=1}^N |x_i|$ is a norm on \mathbb{K}^N .

- (i) Clearly $\|\mathbf{x}\|_1 \geq 0$. Moreover, $\|\mathbf{x}\|_1 = 0$ if and only if $x_i = 0$ for every $1 \leq i \leq N$, i.e. $\mathbf{x} = 0$.
- (ii) $\|\alpha \mathbf{x}\|_1 = \sum_{i=1}^N |\alpha x_i| = |\alpha| \sum_{i=1}^N |x_i| = |\alpha| \|\mathbf{x}\|_1.$
- (iii) $\|\mathbf{x} + \mathbf{y}\|_1 = \sum_{i=1}^N |x_i + y_i| \le \sum_{i=1}^N (|x_i| + |y_i|) = \sum_{i=1}^N |x_i| + \sum_{i=1}^N |y_i| = \|\mathbf{x}\|_1 +$ $\|\mathbf{y}\|_1$

Hence, $\|\cdot\|_1$ is a norm on \mathbb{K}^N .

Next we show that $\|\mathbf{x}\|_{\infty} := \max_{1 \leq i \leq N} |x_i|$ is a norm on \mathbb{K}^N .

- (i) Clearly $\|\mathbf{x}\|_{\infty} \geq 0$. Moreover, $\|\mathbf{x}\|_{\infty} = 0$ if and only if $x_i = 0$ for every $1 \le i \le N$, i.e. $x = 0$.
- (ii) $\|\alpha \mathbf{x}\|_{\infty} = \max_{1 \leq i \leq N} |\alpha x_i| = |\alpha| \max_{1 \leq i \leq N} |x_i| = |\alpha| \|\mathbf{x}\|_{\infty}$, because $|\alpha| \geq 0$.
- (iii) $\|\mathbf{x} + \mathbf{y}\|_{\infty} = \max_{1 \leq i \leq N} (|x_i + y_i|) \leq \max_{1 \leq i \leq N} (|x_i| + |y_i|) \leq \max_{1 \leq i \leq N} |x_i| +$ $\max_{1 \leq i \leq N} |y_i| = ||\mathbf{x}||_{\infty} + ||\mathbf{y}||_{\infty}.$

Hence, $\|\cdot\|_{\infty}$ is a norm on \mathbb{K}^{N} .

We now show that $\|\cdot\|$ fails the triangle inequality, hence is not a norm, when $p < 1$. For example, consider $\mathbf{x} = (1/2, 0), \mathbf{y} = (0, 1/2) \in \mathbb{R}^2$. Then

$$
\|\mathbf{x} + \mathbf{y}\|_{p} = \sqrt[p]{\left(\frac{1}{2}\right)^{p} + \left(\frac{1}{2}\right)^{p}} = 2^{\frac{1}{p} - 1}
$$

while

$$
||x||_p + ||y||_p = \frac{1}{2} + \frac{1}{2} = 1
$$

When $p < 1$, we have $\frac{1}{p} - 1 > 0$ and hence $\|\mathbf{x} + \mathbf{y}\|_p = 2^{\frac{1}{p}-1} > 1 = \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$. The triangle inequality fails.

7. The norms $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are all equivalent on \mathbb{R}^N since (prove!)

$$
\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le N \|\mathbf{x}\|_{\infty}.
$$

But they are not equivalent for sequences or functions! Find sequences of functions that converge in $L^1[0,1]$ but not in $L^{\infty}[0,1]$, or vice-versa. Can sequences converge in ℓ^1 but not in ℓ^{∞} ?

Solution.

(a) Let $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^N$. For each fixed $1 \le i \le N$, from the inequality

$$
|x_i|^2 \le \sum_{j=1}^N |x_j|^2,
$$

and taking square root, we have $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2$. Note also

$$
\left(\sum_{j=1}^{N} |x_j|\right)^2 = \sum_{j=1}^{N} |x_j|^2 + 2\sum_{i < j} |x_i x_j| \ge \sum_{j=1}^{N} |x_j|^2,
$$

it is easy to see that $||\mathbf{x}||_2 \le ||\mathbf{x}||_1$. Finally, note that $|x_j| \le ||\mathbf{x}||_{\infty}$ for each $1 \leq j \leq N$. Summing up when j goes from 1 to N gives $\|\mathbf{x}\|_1 \leq N \|\mathbf{x}\|_{\infty}$.

(b) Recall that
$$
L^1[0,1] := \{f : A \to \mathbb{C} : \int_0^1 |f(x)| dx < \infty\}
$$
 with norm defined by

$$
||f||_{L^1} := \int_0^1 |f(x)| \, dx.
$$

while $L^{\infty}[0,1] := \{f : [0,1] \to \mathbb{C} : f \text{ is measurable AND } \exists c | f(x)| \leq c \text{ a.e. } x\}$ with norm defined by

$$
||f||_{L^{\infty}} := \sup_{x \text{ a.e.}} |f(x)|
$$

Consider the sequence (f_n) of functions on [0, 1], defined by $f_n = \chi_{[0, \frac{1}{n}]}$, i.e.

$$
f_n(x) = \begin{cases} 1, & \text{if } x \in [0, \frac{1}{n}]; \\ 0, & \text{otherwise.} \end{cases}
$$

Then, we have

$$
||f_n||_{L^1} = \int_0^{\frac{1}{n}} dx = \frac{1}{n} \to 0 \text{ as } n \to \infty.
$$

This means that f_n converges to 0 in $L^1[0,1]$. However, (f_n) is not a Cauchy sequence in $L^{\infty}[0,1]$, and hence not a convergent sequence: for $n > m$, we have

$$
||f_n - f_m||_{L^{\infty}} = \sup_{x \text{ a.e.}} \left| \chi_{(\frac{1}{n}, \frac{1}{m}]}(x) \right| = 1.
$$

Finally, we note that for every function f on $[0, 1]$,

$$
||f||_{L^{1}} = \int_{0}^{1} |f(x)| dx \le \int_{0}^{1} ||f||_{L^{\infty}} dx = ||f||_{L^{\infty}}.
$$

If (f_n) is a sequence in $L^{\infty}[0,1]$ and converges to the limit f in L^{∞} -norm, then f_n converges to f in L^1 -norm.

(c) Note that for every $\mathbf{y} = (y_1, y_2, y_3, \ldots) \in \ell^1$,

$$
\|\mathbf{y}\|_{\ell^{\infty}} = \sup_{i \in \mathbb{N}} |y_i| \leq \sum_{j=1}^{\infty} |y_j| = \|\mathbf{y}\|_{\ell^1}.
$$

In particular, $y \in \ell^{\infty}$. Suppose a sequence (x_n) converges to x in ℓ^1 . Then,

$$
\|\mathbf{x_n} - \mathbf{x}\|_{\ell^\infty} \le \|\mathbf{x_n} - \mathbf{x}\|_{\ell^1} \to 0 \text{ as } n \to \infty.
$$

That is, (\mathbf{x}_n) converges to the same limit **x** in ℓ^{∞} .

3. When X, Y are Banach spaces over the same field, so is $X \times Y$ (Proposition 4.7).

Solution. Recall that $X \times Y$ is a normed space with norm given by

$$
||(x,y)||_{X\times Y} := ||x||_X + ||y||_Y.
$$

It suffices to show that if X and Y are complete, then so is $X \times Y$. Let $\{(x_n, y_n)\}_{n=1}^{\infty}$ be a Cauchy sequence in $X \times Y$. Note that

$$
||(x_n, y_n) - (x_m, y_m)||_{X \times Y} = ||x_n - x_m||_X + ||y_n - y_m||_Y \ge ||x_n - x_m||_X.
$$

Since LHS converges to 0 as $n, m \to \infty$, we have $||x_n - x_m||_X \to 0$. It shows that the sequence ${x_n}_{n=1}^{\infty}$ is a Cauchy sequence in the Banach space X. It therefore converges to some point $x \in X$. By similar reasoning, the sequence $\{y_n\}$ also converges to some $y \in Y$. Consequently,

$$
||(x_n, y_n) - (x, y)||_{X \times Y} = ||x_n - x||_X + ||y_n - y||_Y \to 0 \text{ as } n \to \infty,
$$

This says that the sequence $\{(x_n, y_n)\}_{n=1}^{\infty}$ converges to (x, y) in $X \times Y$. Thus, $X \times Y$ is complete.