Solution 5

p. 177: 1, 9, 15

1. If $T, S: X \to Y$ are linear maps on inner product spaces such that $\langle y, Tx \rangle = \langle y, Sx \rangle$ for all $x \in X, y \in Y$, then T = S. Example 10.7(3) is false for real spaces: Find a non-zero 2×2 real matrix T such that $\langle \mathbf{x}, T\mathbf{x} \rangle = 0$ for all $\mathbf{x} \in \mathbb{R}^2$.

Solution. By linearity of inner product, we have

$$\langle y, (T-S)x \rangle = 0$$
 for all $x \in X, y \in Y$.

By taking y = (T - S)x, we have

$$||(T-S)x||^2 = \langle (T-S)x, (T-S)x \rangle = 0 \quad \text{for all } x \in X.$$

Thus T - S = 0, that is T = S.

To see that Example 10.7(3) is false for real spaces, consider the non-zero matrix

$$T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Then for all $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$,

$$\langle \mathbf{x}, T\mathbf{x} \rangle = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} -x_2 & x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= -x_2 x_1 + x_1 x_2$$
$$= 0.$$

9. The 1-norm and ∞ -norm defined on \mathbb{R}^2 do not come from inner product. Find two vectors that do not satisfy the parallelogram law.

Solution. Let $\mathbf{x} = (1, 0), \mathbf{y} = (0, 1)$. Then

$$2\|\mathbf{x}\|_{1}^{2} + 2\|\mathbf{y}\|_{1}^{2} = 2(1+0)^{2} + 2(0+1)^{2} = 4,$$

while

$$\|\mathbf{x} + \mathbf{y}\|_1^2 + \|\mathbf{x} - \mathbf{y}\|_1^2 = (1+1)^2 + (1+1)^2 = 8.$$

On the other hand,

$$2\|\mathbf{x}\|_{\infty}^2 + 2\|\mathbf{y}\|_{\infty}^2 = 2(1)^2 + 2(1)^2 = 4,$$

while

$$\|\mathbf{x} + \mathbf{y}\|_{\infty}^{2} + \|\mathbf{x} - \mathbf{y}\|_{\infty}^{2} = (1)^{2} + (1)^{2} = 2.$$

15. Let $d := d(x, [y]) = \inf_{\lambda} ||x + \lambda y||$, where y is a unit vector; show that

- (a) $d = ||x + \lambda_0 y||$ for some λ_0 ,
- (b) $|\langle x, y \rangle|^2 = ||x||^2 d^2$, and
- (c) $y \perp (x + \lambda_0 y)$. (Rather than $y \perp (x \lambda_0 y)$.)

Solution. (a) Write $\lambda = a + bi$ and let $f(a,b) = ||x + (a+bi)y||^2$. Then

$$f(a,b) = \langle x + (a+bi)y, x + (a+bi)y \rangle$$

= $\langle x, x \rangle + (a+bi)\langle x, y \rangle + (a-bi)\langle y, x \rangle + (a^2+b^2)\langle y, y \rangle$
= $||x||^2 + (a+bi)\langle x, y \rangle + (a-bi)\langle y, x \rangle + (a^2+b^2)$

since ||y|| = 1. Note that f is a differentiable real-valued function. Now

$$\frac{\partial f}{\partial a} = \langle x, y \rangle + \langle y, x \rangle + 2a$$

while

$$\frac{\partial f}{\partial b} = i\langle x, y \rangle - i\langle y, x \rangle + 2b.$$

Thus f attains its minimum at (a_0, b_0) where

$$a_0 = -\frac{\langle x, y \rangle + \langle y, x \rangle}{2}, \quad b_0 = -\frac{i \langle x, y \rangle - i \langle y, x \rangle}{2}.$$

Therefore, for $\lambda_0 := a_0 + b_0 i = -\langle y, x \rangle$, $||x + \lambda_0 y|| = \inf_{\lambda} ||x + \lambda y|| = d$.

(b) By direct computation,

$$d^{2} = \|x + \lambda_{0}y\|^{2} = \langle x + \lambda_{0}y, x + \lambda_{0}y \rangle$$

$$= \langle x, x \rangle + (-\langle y, x \rangle)\langle x, y \rangle + \overline{(-\langle y, x \rangle)}\langle y, x \rangle + |-\langle y, x \rangle|^{2}\langle y, y \rangle$$

$$= \langle x, x \rangle - \langle y, x \rangle \overline{\langle y, x \rangle} - \overline{\langle y, x \rangle}\langle y, x \rangle + |\langle y, x \rangle|^{2}$$

$$= \|x\|^{2} - |\langle y, x \rangle|^{2}$$

$$= \|x\|^{2} - |\langle x, y \rangle|^{2}.$$

(c) Since

$$\langle y, x + \lambda_0 y \rangle = \langle y, x \rangle + \lambda_0 \langle y, y \rangle$$

= $\langle y, x \rangle - \langle y, x \rangle \langle y, y \rangle$
= 0,

we have $y \perp (x + \lambda_0 y)$.