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Chapter 0:

Review on probability
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§0.1: Probability

Perform an experiment:

An outcome: a particular state ω

Sample space: the set of all outcomes, Ω

An event: a subset of Ω, e.g .,A ⊆ Ω

5/323



Examples:

1. Toss a coin.

ω1 = H , ω2 = T

Ω = {H ,T} = {ω1, ω2}
all possible events: A = ∅,Ω, {H}, {T}
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2. Toss 3 coins.

ω1 = (H ,H ,H), ω2 = ..., · · · , ω8 = ...

Ω = {(H ,H ,H), (H ,H ,T ), (H ,T ,H), (T ,H ,H),

(H ,T ,T ), (T ,H ,T ), (T ,T ,H), (T ,T ,T )}

Want an event A
def
= “exactly 2 heads occur”.

Then,

A = {(H ,H ,T ), (H ,T ,H), (T ,H ,H)}
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Probability measure P : a function that assigns
real values in [0, 1] to events, satisfying

(i) P(Ω) = 1

(ii) 0 ≤ P(A) ≤ 1,∀A
(iii) P(

n⋃
i=1

Ai) =
n∑

i=1

P(Ai),∀{Ai}ni=1 which is disjoint

(n finite or infinite)
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Probability space (Ω,F ,P):

(i) F is an event space, i.e. a collection of events
one is interested in, satisfying

(a) Ω ∈ F
(b) If A ∈ F then Ac ∈ F
(c) If Ai ∈ F , i = 1, 2, . . . , then

∞⋃
i=1

Ai ∈ F

F is a σ-field over Ω in measure theoretical
term.

(ii) P : F → [0, 1] is a probability measure.
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Examples:

1. Given Ω, the largest σ-field is the set of all
subsets of Ω.

2. Given Ω, the smallest σ-field is F = {Φ,Ω}.
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Conditional probability: A,B are two events, the
probability that B happens given that A occurs is

P(B |A) =
P(A ∩ B)

P(A)

Note:

• A,B are independent if

P(B |A) = P(B), i.e. P(A ∩ B) = P(A)P(B).

• Let A be a fixed event,

PA(·) def
= P(·|A)

is called the conditional probability measure.
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Theorem. Let Ω =
n⋃

i=1

Ai where A1, . . . ,An are

disjoint events. Then, for any event B

B
A1

A2 . . . An

Ω

(i) P(B) =
n∑

i=1

P(B |Ai)P(Ai)

(ii) P(Ai |B) = P(Ai∩B)
P(B) = P(B|Ai )P(Ai )

n∑
i=1

P(B|Ai )P(Ai )

(Bayes’ formula)
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Note:

In many practical applications, we are given
P(B |Ai) and P(Ai), and we want to find P(Ai |B),
i.e. to find the probability of the “causes”
Ai(i = 1, 2, . . . , n) subject to the outcome B .

B
A1

A2 . . . An

Ω
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Example: P(B) = P(B |A)P(A) + P(B |AC )P(AC )
(B is caused by either A or Ac)

A B Ω

Proof:B = (B ∩ A) ∪ (B ∩ AC )

P(B) = P(B ∩ A) + P(B ∩ AC )

= P(B |A)P(A) + P(B |AC )P(AC ).
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One more example:

Suppose that we have 3 cards that are identical
in form, except that both sides of the first card
are colored red, both sides of the second card
are colored black, and one side of the third card
is colored red and the other side black. The 3
cards are mixed up in a hat, and 1 card is
randomly selected and put down on the ground.

If the upper side of the chosen card is colored
red, what is the probability that the other side is
colored black?
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Sol.: Denote

RR
def
= the event that the chosen card is red-red

BB
def
= the event that the chosen card is black-black

RB
def
= the event that the chosen card is red-black

R
def
= the event that the upper side of the chosen card is red

Then

P(RB|R) =
P(RB ∩ R)

P(R)

=
P(R|RB)P(RB)

P(R|RR)P(RR) + P(R|BB)P(BB) + P(R|RB)P(RB)

=
1
2 · 1

3

1 · 1
3 + 0 · 1

3 + 1
2 · 1

3

=
1

3
.
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§0.2 Random variables and distributions

Example: Toss a coin n-times.

Ω = {ω = (ω1, ω2, . . . , ωn) : ωi = H or T}
] of Ω = 2n

P({ω}) =
1

2n

Let X denote the number of heads,

then X takes values in {0, 1, 2, . . . , n},
Let k = 0, 1, . . . , n, then X = k means

the event that we get k number of heads,

P(X = k) =

(
n
k

)

2n
.
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Random variable: A random variable (r.v.) X on
(Ω,F ,P) is to assign an outcome with a real
number

X : Ω→ R
Ω 3 ω 7→ X (ω) ∈ R

Note: Let RX = the set of all possible values of X
on Ω, then RX is either “discrete” or “continuous”:
Case 1: Rx is a discrete set. In this case, X is called
a discrete r.v.
Case 2: Rx is an interval of R or itself. In this case,
X is called a continuous r.v.
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Discrete random variable: Assume

X (Ω) = {k}Nk=0 (N finite or infinite)

Then the values

pk = P(X = k), (k = 0, 1, . . . ,N)

is called the probability density function (p.d.f.).

Note: {X = k} def
= {ω ∈ Ω : X (ω) = k} ∈ F
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Examples (Important!)

1. Binomial distribution

We perform n independent trials. At each trial,
the prob of success is p,
and the prob of failure is 1− p.

Let X denote the number of successes in n
trials. X has the p.d.f.

P(X = k) =

(
n

k

)
pk(1− p)n−k , 0 ≤ k ≤ n.

def
= B(n, p)
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2. Poisson distribution:

P(X = k) = e−λ
λk

k!
, k = 0, 1, 2, . . .

For instance, X counts the number of arrivals in
a unit time with rate of arrivals given by λ > 0.

Theorem: For each k = 0, 1, · · ·

lim
n→∞,np=λ

(
n

k

)
pk(1− p)n−k = e−λ

λk

k!

Note: Therefore, the Poisson distribution can
be used to approximate the Binomial distribution
when p is small and n is large compared to k .
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3. Geometric distribution:

P(X = k) = p(1− p)k−1, k = 1, 2, . . .

is the prob that the first occurrence of success
requires k independent trials, each with success
probability p.

X denotes the number of trials for the first
success.
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Continuous random variable:

If

P(a ≤ X ≤ b) =

∫ b

a

f (x)dx ,

then f is called a density function of X .

Note:
the event “a ≤ X ≤ b”

def
= {ω ∈ Ω : a ≤ X (ω) ≤ b}
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Examples (Important!)

1. Uniform distribution:

f (t) =





1
b−a , a ≤ t ≤ b

0, otherwise
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2. Exponential distribution:

f (t) =

{
λe−λt , t ≥ 0

0, t < 0
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3. Normal distribution:

f (t) =
1√

2πσ2
e−

(t−µ)2

2σ2
def
= N(µ, σ2)

N(0, 1): standard normal density.
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Exercise: Assume X ,Y are two independent
continuous (or discrete) r.v. with densities f , g (or
(pk), (qk)).

Find the density function for the random variable
Z = X + Y .
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§0.3 Expectation and variance

The expectation (or mean) of X :

µ = E (X ) =
∑

k

kpk or

∫ ∞

−∞
tf (t)dt

The 2nd moment of X:

E (X 2) =
∑

k

k2pk , or

∫ ∞

−∞
t2f (t)dt

The variance of X:

σ2 def
= Var(X ) = E (X − µ)2 = E (X 2)− µ2

(a measurement of how spread the distribution is)
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Conditional expectation:
Discrete case: Suppose (X ,Y ) has a joint
density

p(xi , yi)
def
= P(X = xi ,Y = yi)

E (Y |X = xi) =
∑

j

yjP(Y = yj |X = xi)

=
∑

j

yj
p(xi , yj)

p(xi)
, p(xi) =

∑

j

p(xi , yj)

Note:

a. P(Y = yj |X = xi) is the conditioned density
function of Y given X = xi .

b. E (Y |X = xi) is a function of xi , and thus
regarded as a r.v. on the σ-field generated
by X , denoted by E (Y |X ).
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Continuous case: Let f (x , y) be such that

P(X ≤ x ,Y ≤ y) =

∫ x

−∞

∫ y

−∞
f (u, v) dudv .

Then,

E (Y |X = x) =

∫

RY

y
f (x , y)

f (x)
dy ,

f (x) =

∫

RY

f (x , y)dy .

Here E (Y |X ) can be understood to be a r.v. on
the σ-field generated by X .
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§0.4 Sequence of random variables

Repeat a random experiment independently. We
obtain a sequence of random variables which are
independent and identically distributed (i.i.d)

{Xn}∞n=0.

Two basic theorems are:

• Law of Large Number

• Central Limit Theorem

(Ref: Ross p.389)
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However, in many cases {Xn}∞n=0 may not be
independent. There exists dependence in a certain
way.

In general, we call

• {Xn}∞n=0 a discrete time stochastic process, and

• {Xt}t≥0 a continuous time stochastic process.

We will mainly consider the

“Markov” processes

(to be defined) in the discrete time and continuous
time.
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1 Definitions, basic properties, the transition matrix

Markov chains were introduced in 1906 by Andrei Andreyevich Markov (1856–1922)
and were named in his honor.

1.1 An example and some interesting questions

Example 1.1. A frog hops about on 7 lily pads. The numbers next to arrows show the
probabilities with which, at the next jump, he jumps to a neighbouring lily pad (and
when out-going probabilities sum to less than 1 he stays where he is with the remaining
probability).

1

43

7

6

1

2 5

1

1

1
2 1

2

1
2

1
2

1
2

1
2

1
2

1
4

1
4

P =




0 1 0 0 0 0 0

0 1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0 0

0 0 1
4

1
2

1
4 0 0

0 0 0 0 0 1
2

1
2

0 0 0 1 0 0 0

0 0 0 0 0 0 1




There are 7 ‘states’ (lily pads). In matrix P the element p57 (= 1/2) is the probability
that, when starting in state 5, the next jump takes the frog to state 7. We would like
to know where do we go, how long does it take to get there, and what happens in the
long run? Specifically:

(a) Starting in state 1, what is the probability that we are still in state 1 after 3

steps? (p
(3)
11 = 1/4) after 5 steps? (p

(5)
11 = 3/16) or after 1000 steps? (≈ 1/5 as

limn→∞ p
(n)
11 = 1/5)

(b) Starting in state 4, what is the probability that we ever reach state 7? (1/3)

(c) Starting in state 4, how long on average does it take to reach either 3 or 7? (11/3)

(d) Starting in state 2, what is the long-run proportion of time spent in state 3? (2/5)

Markov chains models/methods are useful in answering questions such as: How long
does it take to shuffle deck of cards? How likely is a queue to overflow its buffer? How
long does it take for a knight making random moves on a chessboard to return to his
initial square (answer 168, if starting in a corner, 42 if starting near the centre). What
do the hyperlinks between web pages say about their relative popularities?

1

There are 7 ’states’ (lily pads). In the matrix P the
element P57 (= 1/2) is the prob that, when starting
in state 5, the next jump takes the frog t state 7.
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Some questions we may want to know:

1. Starting in state 1, what is the prob that we are
still in state 1 after 3 steps? after 5 steps? or
after 1000 steps?

2. Starting in state 4, what is the prob that we
ever reach state 7?

3. Starting in state 4, how long on average does it
take to reach either 3 or 7?

4. Starting in state 2, what is the long-run
proportion of time spent in state 3?

We can answer those by the end of this course

——End of Chapter 0——
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Chapter 1:

Markov Chain
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§1.1: Definition & Examples

Example:

• Consider the weather (0=Sunny, 1=Rainy,
2=Cloundy) of days in Hong Kong.
• Let X0 be a r.v. describing the weather of the

0th day, then

X0 = 0, 1, or 2,

i.e. X0 takes values in

S := {0, 1, 2}.
• Similarly, for n ≥ 0 let Xn be a r.v. describing

the weather of the nth day, then Xn = 0, 1, or 2,
i.e. Xn takes values in the same state space S .
• In the end we get a chain {Xn}n≥0.
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Definitions:

• Let S be a finite or countably infinite set of
integers.

For instance, S = {0, 1, 2, . . . ,N}, or
S = {0, 1, 2, . . . }, or S = {. . . ,−1, 0, 1, . . . }.
We call each element of S a state and S the
state space.

• Let {Xn}∞n=0 be a sequence of r.v. taking values
in S , defined on a common probability space
(Ω,F ,P).
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Notation for the future:

• For random variables, we use

X ,Y ,Z , · · ·

• For states (which are values of random variables),
we use

x , y , z , · · · ∈ S

or
xi , yi , zi , · · · ∈ S ,

or
i , j , k , · · · ∈ S .
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Def: {Xn}∞n=0 is a Markov chain if

P(Xn+1 = xn+1|X0 = x0, . . . ,Xn−1 = xn−1,Xn = xn)

= P(Xn+1 = xn+1|Xn = xn). (∗)

Note:

• (∗) is called the Markov property which says that given the
present state, the past states have no influence on the future!

• P(Xn+1 = y |Xn = x) is called the transition probability. If
it is independent of n, we denote

P(x , y) = P(Xn+1 = y |Xn = x) = P(X1 = y |X0 = x)

which is the transition probability from state x to state y . In

such case, {Xn}∞n=0 is called a time-homogeneous Markov

chain.
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It is clear that

(i) P(x , y) ≥ 0.

(ii)
∑
y∈S

P(x , y) = 1.

Proof:

(i) P(x , y) = P(Xn+1 = y |Xn = x) ≥ 0.

(ii)
∑
y∈S

P(x , y) =
∑
y∈S

P(Xn+1 = y |Xn = x) = 1.
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e.g. for S = {0, 1, 2, . . . ,N} (N finite or ∞), we
may express all the transition probabilities

P(x , y), x , y ∈ S

as a matrix form:

P = [P(x , y)] (or [P(i , j)])

=




P(0, 0) P(0, 1) · · · P(0,N)
P(1, 0) P(1, 1) · · · P(1,N)

...
... . . . ...

P(N , 0) P(N , 1) · · · P(N ,N)




which is called the Markov matrix (or transition
matrix) (Note: each row vector is a probability vector).

41/323



Example 1. Toss a possibly biased coin repeatedly
with prob p for H and 1− p for T .

Q.: Set up the model as a Markov chain.
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Example 2. Consider a machine that at the start
of the day is broken down or in operation. Assume

(i) if it is broken down, the prob that it will be
repaired and in operation on the next day is p,
(0 < p < 1).

(ii) if it is in operation, the prob that it will be
broken down on the next day is q, (0 < q < 1).

Q: Set up the model as a Markov chain. Further,

(a) Find the transition prob.

(b) Find the prob that the machine is broken down on the nth

day.

(c) In the long term, what is the prob that the machine is
broken down on a day.
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Example 3 (Random walk):

Let {ξi}∞i=1 be i.i.d. r.v. taking values in

S = {· · · ,−1, 0, 1, · · · }
and having a pdf f , i.e. for each i

P(ξi = k) = f (k), k = 0,±1,±2, · · ·
Let Xn = X0 + ξ1 + · · ·+ ξn, where X0 is the initial
position independent of {ξi}∞i=1. Then,

P(x , y) = P(Xn+1 = y |Xn = x)

= P(ξn+1 = y − x |Xn = x)

= P(ξn+1 = y − x)

= f (y − x).
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A simple random walk:

Consider a move to left or right with prob p, 1− p
resp, i.e. ξi = +1 or − 1 with prob p, 1− p resp.

How does the chain behave as n→∞ ?
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Example 4 (Gambler’s ruin chain)

A gambler starts out with a certain amount and
bets against the house.

(i) Each time he wins or loses $1 with prob p and
q = 1− p resp.

(ii) If he reaches $0, he is ruined and his amount
remain $0. (he quits playing)

Q.: Set up the model as a Markov chain.
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Let Xn denote the amount he has at the n-th stage.
S = {0, 1, 2, · · · }.
• For x = 0,
P(0, 0) = 1,
P(0, y) = 0, y = 1, 2, · · ·

Def: A state a ∈ S is absorbing if P(a, a) = 1,
i.e. P(a, y) = 0,∀ y 6= a.

∴ 0 is an absorbing state.

• For x > 0,

P(x , y) =





p y = x + 1

1− p y = x − 1

0 otherwise
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P =




1 0 0 · · · · · ·
1− p 0 p · · · · · ·

0 1− p 0 p · · ·
· · · · · · . . . . . . . . .
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A modification of the model: Add a rule

(iii) If he reaches $N, he quits playing.

Then,

S = {0, 1, · · · ,N}.
0 and N are absorbing,

P(x , y) =





p y = x + 1

1− p y = x − 1

0 otherwise

for 1 ≤ x ≤ N−1.
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P =




1 0 0 · · · · · · · · ·
1− p 0 p · · · · · · · · ·

0 1− p 0 p · · · · · ·
· · · · · · . . . . . . . . . · · ·
· · · · · · · · · 1− p 0 p · · ·
· · · · · · · · · · · · · · · 0 1
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Alternative view to the above modified “gambler’s
ruin chain”: Two gamblers start a series of $1 bets
against each other.

(i) The total amount is $N .

(ii) p = prob of the 1st gambler wining
q = 1− p = prob of the 2nd gambler winning.

(iii) The game is over when one of them losses all.

Xn
def
= $ of the 1st gambler at the nth stage

Q:

• What is the expected value?

• Wo has higher prob of winning?

• How long does the game last?
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Remark: The more general form of the chains in
examples 3 & 4:

P(x , y) =





px y = x − 1

qx y = x + 1

rx y = x

0 otherwise

which corresponds to the “birth & death” chain.
Here

px , qx , rx ≥ 0,

px + qx + rx = 1.
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Example 5 (Queueing chain)

Consider a check out counter at a supermarket.

(i) Let ξn denote the number of arrivals in the nth

period (say, one minute). Then {ξn}∞n=1 is i.i.d.
r.v. having pdf f (usually Poisson distribution).

(ii) Suppose that if there are any customers waiting
for service at the beginning of any given period,
then exactly one customer will be served during
that period.

Q.: Set up the model as a Markov chain.
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• n = 0 :

X0
def
= the number of persons on the line initially.

• n ≥ 1 :

Xn
def
= the number of persons on the line present at
the end of the nth period.

• Then,

Xn+1 =

{
0 + ξn+1 if Xn = 0

Xn + ξn+1 − 1 if Xn ≥ 1
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• For x = 0,

P(0, y) = P(Xn+1 = y |Xn = 0)

= P(ξn+1 = y |Xn = 0)

= P(ξn+1 = y)

= f (y).

• For x ≥ 1,

P(x , y) = P(Xn+1 = y |Xn = x)

= P(ξn+1 = y − x + 1|Xn = x)

= P(ξn+1 = y − x + 1)

= f (y − x + 1).
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For instance, f is Poisson:

f (k) = P(ξn = k) = e−λ
λk

k!
, k = 0, 1, 2, · · ·

Then

P = e−λ




1 λ λ2

2!
λ3

3! · · ·
1 λ λ2

2!
λ3

3! · · ·
0 1 λ λ2

2! · · ·
· · · . . . . . . . . . · · ·
0 · · · · · · · · · · · ·
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Example 6 (Branching chain, population growth)

Each individual generates ξ offspring in the next
generation independently.

- -
-

••-
- - -

Oth
generation

- t.tn.  . .

H M
1st generation

- oo- •

*•-at
-

#
fold generation

- •-•-•at - -
3rd generation

1
( 1 1

1 1 1
1

1 1 J
1

Xn
def
= the total NO in the nth generation.

P(x , y) = P(ξ1 + ξ2 + · · ·+ ξx = y)

Question concerns the extinction or growth of the population!
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§1.2 Computations with transition probabilities

Setup:

• {Xn}∞n=0: a time-homogeneous Markov chain

• S = {0, 1, 2, . . . ,N}: state space
(N : finite or ∞)

• P = [P(x , y)] = [P(Xn+1 = y |Xn = x)]:
transition prob matrix
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Question 1: Given pdf of X0, can one compute
pdf of Xn for any n ≥ 1?

Let the pdf of X0 be

π
(0)
k

def
= P(X0 = k), k = 0, 1, · · · ,N ,

or equivalently we write in the prob row-vector form

π(0) = [π
(0)
0 , π

(0)
1 , · · · , π(0)

N ].
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• n = 1 : P(X1 = k), k ∈ S? or π(1) = [π
(1)
0 , · · · , π(1)

N ]?

P(X1 = k) =
∑

i∈S
P(X1 = k ,X0 = i)

=
∑

i∈S
P(X1 = k |X0 = i)P(X0 = i)

= [P(X0 = 0),P(X0 = 1), . . . ,P(X0 = N)]




P(0, k)
P(1, k)

...
P(N, k)




Write them for k = 0, 1, · · · ,N in matrix:
[P(X1 = 0),P(X1 = 1), . . . ,P(X1 = N)]

=[P(X0 = 0),P(X0 = 1), . . . ,P(X0 = N)]




P(0, 0) P(0, 1) · · · P(0,N)
P(1, 0) P(1, 1) · · · P(1,N)

...
...

. . .
...

P(N, 0) P(N, 1) · · · P(N,N)




i.e.
π(1) = π(0)P
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• In general, for n ≥ 1, setting the pdf of Xn as a
probability row-vector in the form

π(n) = [P(Xn = 0),P(Xn = 1), · · · ,P(Xn = N)],

Then,

π(n) = π(n−1)P .
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• Then, by iteration,

π(n) = π(n−1)P

= π(n−2)P · P
= · · ·
= π(0) P · P · . . . · P︸ ︷︷ ︸

n terms

= π(0)Pn

where
Pn = P · P · . . . · P︸ ︷︷ ︸

product of n terms

Theorem: π(n) = π(0)Pn, n = 1, 2, · · ·
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Remark: How to compute the matrix product

Pn := P · P · · · ·P︸ ︷︷ ︸
n terms

, n = 2, 3, · · ·

Indeed, for x , y ∈ S ,

P2(x , y) =
∑

x1∈S

P(x , x1)P(x1, y)

P3(x , y) =
∑

x1

∑

x2

P(x , x1)P(x1, x2)P(x2, y)

· · ·
Pn(x , y) =

∑

x1

∑

x2

· · ·
∑

xn−1

P(x , x1)P(x1, x2) · · ·P(xn−1, y).

Proof: Left for an exercise. Argument: use induction in n

and the formula Pn = Pn−1 · P .
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Proposition:

(i) P(Xn = y) =
∑
x
π(0)(x)Pn(x , y).

(ii) P(Xn = y |X0 = x) = Pn(x , y).

Proof: (i) is a direct consequence of the formula π(n) = π(0)Pn.
To show (ii),

P(Xn = y |X0 = x)

= P(Xn = y ,Xn−1 ∈ S , · · · ,X1 ∈ S |X0 = x)

=
∑
x1∈S

· · ·
∑

xn−1∈S

P(Xn = y ,Xn−1 = xn−1, · · · ,X1 = x1|X0 = x)(tutorial)

=
∑

x1,··· ,xn−1∈S

P(Xn = y ,Xn−1 = xn−1, · · · ,X1 = x1,X0 = x)

P(X0 = x)

=
∑

x1,··· ,xn−1∈S

P(X0 = x)P(x0, x1) · · ·P(xn−1, y)

P(X0 = x)
(proof later)

=
∑

x1,··· ,xn−1∈S

P(x , x1) · · ·P(xn−1, y) = Pn(x , y).
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Claim:

P(X0 = x0,X1 = x1, · · · ,Xn = xn)

= P(X0 = x0)P(x0, x1) · · ·P(xn−1, xn).

Proof of claim:

P(X0 = x0,X1 = x1, · · ·︸ ︷︷ ︸
A

,Xn = xn︸ ︷︷ ︸
B

)

= P(Xn = xn|X0 = x0, · · · ,Xn−1 = xn−1)

·P(X0 = x0, · · · ,Xn−1 = xn−1)

= P(Xn = xn|Xn−1 = xn−1)P(X0 = x0,X1 = x1, · · · ,Xn−1 = xn−1)

= P(xn−1, xn)P(X0 = x0,X1 = x1, · · · ,Xn−1 = xn−1)

= · · ·
= P(xn−1, xn)P(xn−2, xn−1) · · ·P(x0, x1)P(X0 = x0).
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Remark: (ii) also immediately implies (i). In fact,

P(Xn = y)
by def

=
∑

x

P(Xn = y |X0 = x)P(X0 = x)

by (ii)
=
∑

x

Pn(x , y)π(0)(x).
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Definition:

Pm(x , y), (m = 0, 1, · · · )

is called the m-step transition function, which
gives the prob of going from state x to state y in m
steps. Here we set

P0(x , y) = δxy =

{
1, if x = y

0, otherwise.

Correspondingly, Pm is called the m-step
transition matrix.
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Proposition:

P(Xn+m = y |Xn = x) = Pm(x , y).

Proof
P(Xn+m = y|Xn = x)

= P(Xn+m = y, Xn+m−1 ∈ S, · · · , Xn+1 ∈ S|Xn = x)

=
∑

xn+m−1

· · ·
∑
xn+1

P(Xn+m = y, Xn+m−1 = xn+m−1, · · · , Xn+1 = xn+1|Xn = x)

=
∑

xn+1,··· ,xn+m−1

P(Xn+m = y, · · · , Xn+1 = xn+1|X0 ∈ S, · · · , Xn−1 ∈ S, Xn = x) (∗)

=
∑

xn+1,··· ,xn+m−1

P(x, xn+1) · · · P(xn+m−1, y) (see below)

= Pm(x, y). (by def of Pm)

Each term in the sum (∗) is equal to

P(Xn+m = y, · · · , Xn+1 = xn+1|X0 = x0, · · · , Xn−1 = xn−1, Xn = x)

= P(Xn+m = y, Xn+m−1, · · · , X0 = x0)/P(Xn = x, Xn−1 = xn−1, · · · , X0 = x0)

=
P(X0 = x0)P(x0, x1) · · · P(x, xn+1)P(xn+1, xn+2) · · · P(Xn+m−1, y)

P(X0 = x0)P(x0, x1) · · · P(xn−1, x)

= P(x, xn+1) · · · P(xn+m−1, y).
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Remark: To compute

P(Xn = y |X0 = x)

= P(X1+n = y |X1 = x)

= P(X2+n = y |X2 = x)

= · · ·
= P(Xm+n = y |Xm = x), m = 0, 1, 2, · · ·

is equivalent to compute Pn(x , y), that is to find
Pn.
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For n large, one can reduce P to a diagonal matrix
(if possible)

P = QDQ−1

where D =



λ0 · · · 0
... . . . ...
0 · · · λN


, and Q is the matrix for

change basis consisting of eigenvectors. Then

Pn =
[
QDQ−1

]n
= QDnQ−1 = Q



λn0 · · · 0
... . . . ...
0 · · · λnN


Q−1.

Hence Pn can be calculated in such situation.

Exercise: Do this for the two-state Markov matrix.
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Question 2: How to compute the conditional
prob that the chain visits y in finite time given
that it starts from x?

We set it as ρxy , then

ρxy = P(∃ n ≥ 1 such that Xn = y |X0 = x).

nil
?

Ya ...7 7
d no 3

R ?

n=O n=2
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We are interested in a state x such that

ρxx = 1, or ρxx < 1.

? n=1

7

J
x

? n=2

t :
=3
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Def (Hitting Time):
Let A ⊆ S . The hitting time TA of A is defined
by

TA
def
= min{n ≥ 1 : Xn ∈ A}.

Rks:
• TA = the first positive time the chain hits A.
TA is a r.v. Range of TA = {1, 2, 3, · · · } ∪ {∞}.
Convention: TA =∞ if Xn /∈ A for all n ≥ 1.
For m = 1, 2, · · ·

{TA = m} = {X1 /∈ A, · · · ,Xm−1 /∈ A,Xm ∈ A}.

• Convention:

Ty
def
= T{y} = min{n ≥ 1 : Xn = y}, y ∈ S ,

i.e. the first positive time the chain visits y .
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A convenient notion:

Px(·) def
= P( · |X0 = x)

i.e. the probabilities of various events defined in
terms of the Markov chain starting at x ∈ S .

For instance,

Px(A) = P(A|X0 = x)

is the prob of A given that the chain starts at x .
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Prop (i) Px(Ty = 1) = P(x , y).

Proof:
∵ {Ty = 1} = {X1 = y}
∴

Px(Ty = 1)

= P(X1 = y |X0 = x)

= P(x , y).
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Prop (ii)

Px(Ty = n+1) =
∑

z 6=y

P(x , z)Pz(Ty = n), n ≥ 1.

Proof: Note
{Ty = n + 1} =

⋃
z:z 6=y

{X1 = z ,X2 6= y , · · · ,Xn 6= y ,Xn+1 = y}.

∴
Px(Ty = n + 1)

=
∑
z 6=y

Px(X1 = z ,X2 6= y , · · · ,Xn 6= y ,Xn+1 = y)

=
∑
z 6=y

Px(X1 = z)Px(X2 6= y , · · · ,Xn 6= y ,Xn+1 = y |X1 = z)

=
∑
z 6=y

P(X1 = z |X0 = x)︸ ︷︷ ︸
=P(x,z)

P(X2 6= y , · · · ,Xn 6= y ,Xn+1 = y |X0 = x ,X1 = z)︸ ︷︷ ︸
=Pz (Ty =n) why?
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Recall an Exercise:

P(Xn+1 ∈ B1, · · · ,Xn+m ∈ Bm|X0 ∈ A0, · · · ,Xn−1 ∈ An−1,Xn = x)

= Px(X1 ∈ B1,X2 ∈ B2, · · · ,Xm ∈ Bm).

See the tutorial for the proof.

Rk: It is essentially due to the Markovian property (i.e., given

“the present” state, “the past” has no influence on “the future”).

So, the prob on the LHS is understood to be the prob in the

situation when the chain initially starts at x .

∴ P(X2 6= y , · · · ,Xn 6= y ,Xn+1 = y |X0 = x ,X1 = z)

= Pz(X1 6= y ,X2 6= y , · · · ,Xn−1 6= y ,Xn = y)

= Pz(Ty = n).
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Prop (iii)

Pn(x , y) =
n∑

m=1

Px(Ty = m)Pn−m(y , y).

Proof: Note: Pn(x , y) = P(Xn = y |X0 = x) = Px(Xn = y)

{Xn = y} =
n⋃

m=1

{Ty = m,Xn = y} (disjoint union)

∴ Pn(x , y) = Px(Xn = y)

=
n∑

m=1

Px(Ty = m,Xn = y)

=
n∑

m=1

Px(Ty = m)Px(Xn = y |Ty = m)

=
n∑

m=1

Px(Ty = m)P(Xn = y |X0 = x ,X1 6= y , · · · ,Xm−1 6= y ,Xm = y)

=
n∑

m=1

Px(Ty = m)Pn−m(y , y).
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Sum:

Proposition:

(i) Px(Ty = 1) = P(x , y).

(ii) Px(Ty = n + 1) =
∑
z 6=y

P(x , z)Pz(Ty = n), n ≥ 1.

(iii) Pn(x , y) =
n∑

m=1
Px(Ty = m)Pn−m(y , y).
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Corollary: If a ∈ S is absorbing , i.e. P(a, a) =
1, then for any n ≥ 1,Pn(x , a) = Px(Ta ≤ n).

Proof:

Pn(x , a) =
n∑

m=1

Px(Ta = m) Pn−m(a, a)︸ ︷︷ ︸
=1 (to be shown later)

=
n∑

m=1

Px(Ta = m)

= Px(∪nm=1{Ta = m})
= Px(Ta ≤ n).

80/323



It remains to show: For any n ≥ 0,Pn(a, a) = 1.
Indeed:

• n = 0, 1 is obvious.
• n ≥ 2:

Pn(a, a) =
∑

x1,··· ,xn−1

P(a, x1)P(x1, x2) · · ·P(xn−1, a)

=
∑

x2,··· ,xn−1

P(a, x2) · · ·P(xn−1, a)

= · · ·
=
∑

xn−1

P(a, xn−1)P(xn−1, a)

= P(a, a)

= 1.
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Recall: ρxy = Px(Ty <∞) is the prob that the
chain starting at x will visit y at some positive time.

In particular,

ρyy = Py(Ty <∞)

is the prob that the chain starting at y will ever
return to y .
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Def.:

• A state y is called recurrent if ρyy = 1, and
transient if ρyy < 1.

• A chain is called a recurrent (transient) chain if
all states are recurrent (transient).

Rk: An absorbing state is recurrent.
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Example:

P =

1 2 3 4





1 1
2

1
2 0 0

2 1
3

2
3 0 0

3 0 1
2

1
4

1
4

4 0 0 1
2

1
2

.

Q: Find the matrix [ρxy ] from P = [P(x , y)].

2/3 1/4 Yz

%
.

" 2ft,Pak '*LP
Yz Yz
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2/3 1/4 Yz

%
.

" 2ft,Pak '*LP
Yz Yz

Observe:

(i) 0 = ρ13 = ρ14, 0 = ρ23 = ρ24.

(ii) 1 = ρ11 = ρ22, ∴ 1, 2 are recurrent.

(iii) ρ33 < 1, ρ44 < 1, ∴ 3, 4 are transient.

P =

1 2 3 4





1 1 ∗ 0 0

2 ∗ 1 0 0

3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗

.
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Recalling ρxy = Px(Ty <∞), we have

ρxy = P(x , y) +
∑

z :z 6=y

P(x , z)ρzy

(Exercise)

Argument: Start at x .

• If Ty = 1, i.e. visit y at n = 1, prob is P(x , y).

• If it does not visit y at n = 1, then it will first
visit z(z 6= y) and then start from such z to
visit y at some positive time.
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2/3 1/4 Yz

%
.

" 2ft,Pak '*LP
Yz Yz

{
ρ33 =���

��:00 · ρ13 +
��

��
�*0

1
2 · ρ23 + 1

4 + 1
4 · ρ43

ρ43 =���
��:00 · ρ13 +���

��:00 · ρ23 + 1
2 + 1

2 · ρ43

∴ ρ43 = 1, ρ33 =
1

2
Similarly,

ρ34 =���
�:0

0 · ρ14 +
�
�
��>

0
1

2
· ρ24 +

1

4
· ρ34 +

1

4
, ∴ ρ34 =

1

3
,

ρ44 =���
�:0

0 · ρ14 +���
�:0

0 · ρ24 +
1

2
· ρ34 +

1

2
∴ ρ44 =

2

3
.
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[ρij ] =

1 2 3 4





1 1 1 0 0

2 1 1 0 0

3 1 1 1
2

1
3

4 1 1 1 2
3

.

Note: There is a matrix argument for finding [ρxy ].
See Lawler p.23-27.
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Question 3. Times of visit to a state.

{Xn}∞n=0: a time-homogeneous Markov chain

S = {0, · · · ,N} (N : finite or ∞): state space

X0 = x ∈ S

N(y)
def
= no of times that Xn(n ≥ 1) visits y .

Note:

• N(y) =
∞∑
n=1

1y (Xn), where 1y (Xn) =

{
1, Xn = y

0, Xn 6= y

• N(y) ∈ {0, 1, 2, 3, · · · } ∪ {∞}.
{N(y) = 0} = “y is not visited”

{N(y) = k} = “y is visited exactly k times”

{N(y) =∞} = “y is visited infinitely times”
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Some Facts:

• {N(y) ≥ 1}︸ ︷︷ ︸
“y is visited at least one time”

= {Ty <∞}︸ ︷︷ ︸
“y is visited at a positive finite time”

.

∴ Px(N(y) ≥ 1) = Px(Ty <∞) = ρxy .

• {N(y) = 0} = {N(y) ≥ 1}c .

∴ Px(N(y) = 0) = 1− ρxy .
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Claim: For m ≥ 1, Px(N(y) ≥ m) = ρxyρ
m−1
yy .

Case m = 2. To show: Px(N(y) ≥ 2) = ρxyρyy .
Note:

{N(y) ≥ 2} = ∪k≥1 ∪n≥1 {chain starting at x first visits y at k ≥ 1

and next visit y again after n units of time}.
For each k ≥ 1 and n ≥ 1, prob = Px(Ty = k)Py (Ty = n).
Therefore,

Px(N(y) ≥ 2) =
∞∑

n=1

∞∑

k=1

Px(Ty = k)Py (Ty = n)

=
∞∑

n=1

Px(Ty <∞)Py (Ty = n)

= ρxyPy (Ty <∞)

= ρxyρyy .

Use the same idea to show Px(N(y) ≥ m) = ρxyρ
m−1
yy for m ≥ 2.
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A further fact:

{N(y) = m} = {N(y) ≥ m}\{N(y) ≥ m + 1}

MY ) > in

Niy ) 3Mt 1

• • • • • >

my M mtn

∴ Px(N(y) = m) = ρxyρ
m−1
yy − ρxyρ(m+1)−1

yy

= ρxyρ
m−1
yy (1− ρyy).
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Sum:

Proposition:

(i) Px(N(y) ≥ 1) = Px(Ty <∞) = ρxy ,

Px(N(y) = 0) = 1− ρxy .

(ii) For m ≥ 1,

Px(N(y) ≥ m) = ρxyρ
m−1
yy ,

Px(N(y) = m) = ρxyρ
m−1
yy (1− ρyy).
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Proposition: Ex(N(y)) =
∞∑
n=1

Pn(x , y).

l.h.s.=the expected no of visit to y from x.

Warning: The value can be ∞!

Proof:

Ex(N(y)) = Ex(
∞∑

n=1

1y (Xn))

=
∞∑

n=1

Ex(1y (Xn))

=
∞∑

n=1

Px(Xn = y)

=
∞∑

n=1

P(Xn = y |X0 = x) =
∞∑

n=1

Pn(x , y).
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Theorem (i): y is transient iff Py(N(y) =∞) = 0.

Proof: Note

Px(N(y) =∞) = lim
m→∞

Px(N(y) > m)

= lim
m→∞

ρxyρ
m−1
yy

=

{
0 if ρyy < 1
ρxy if ρyy = 1

(∗)

∴ y transient

⇐⇒ ρyy < 1

(∗)⇐⇒ Py(N(y) =∞) = 0.
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Theorem (ii): If y is transient then

Ex(N(y)) =
ρxy

1− ρyy
<∞, x ∈ S .

Proof: For a transient state y ,

Ex(N(y)) =
∞∑

m=0

mPx(N(y) = m)

=
∞∑

m=1

mρxyρ
m−1
yy (1− ρyy ) (ρyy < 1)

= ρxy (1− ρyy ) · 1

(1− ρyy )2

=
ρxy

1− ρyy
<∞.
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Theorem (iii):
y is recurrent,
iff Py(N(y) =∞) = 1,
iff Ey(N(y)) =∞.

Proof: y recurrent

⇐⇒ ρyy = 1
(∗)⇐⇒ Py(N(y) =∞) = 1

(∗∗)⇐⇒ Ey(N(y)) =∞.

To show (∗∗):

“=⇒”: ∵ Py(N(y) =∞) = 1
∴ Ey(N(y)) =∞.

“⇐=”: If Ey(N(y)) =∞ then y must be recurrent
by Theorem (ii).
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Remark: If y is recurrent, then for x ∈ S ,

Ex(N(y)) =





0 if ρxy = 0

∞ if ρxy > 0.

WHY? It is heuristically obvious.

Left for an exercise.
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Corollary: If S is finite, then the chain must have
at least one recurrent state.

Proof: Otherwise, all states are transient. Then,
for any x&y ,

∞∑

n=1

Pn(x , y) = Ex(N(y)) =
ρxy

1− ρyy
<∞.

∴ lim
n→∞

Pn(x , y) = 0. Then

0 =
∑

y∈S
lim
n→∞

Pn(x , y)

= lim
n→∞

∑

y∈S
Pn(x , y) (S : finite)

= lim
n→∞

Px(Xn ∈ S) = lim
n→∞

1 = 1.
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Question 4. Decomposition of state space.

Def: x leads to y (denoted by x → y) if

ρxy > 0.

Fact 1: x → y (i.e. ρxy > 0) iff

Pn(x , y) > 0 for some n > 1.

Proof: Note:
• ρxy = Px(Ty <∞) = Px({∃m ≥ 1 s.t. Xm = y}).
• Pn(x , y) = P(Xn = y |X0 = x) = Px(Xn = y).
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x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy

m

garniturereturn R Y returnwaymust
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Fact 2:
x → y
y → z

}
=⇒ x → z .

Proof: Note

x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy

m

garniturereturn R Y returnwaymust

Pn+m(x , z) =
∑

i∈S P
n(x , i)Pm(i , z) > Pn(x , y)Pm(y , z) > 0.
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Fact 3:

x recurrent (ρxx = 1)
x → y

}
=⇒





(i) y → x
(ii) y recurrent
(iii) ρyx = ρxy = 1

Proof (Heuristic):

x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy

m

garniturereturn R Y returnwaymust

x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy

m

garniturereturn R Y returnwaymust
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Def.:

(i) C ⊆ S is closed if

ρxy = 0, ∀ x ∈ C , ∀ y /∈ C ,

i.e. no state in C leads to any state out C .

(ii) A closed set C is irreducible if

x → y (i.e. ρxy > 0), ∀ x ∈ C ,∀ y ∈ C ,

namely, any two in C can communicate with
each other.

(iii) {Xn}∞n=0 is an irreducible MC if its state space
S is irreducible.
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Remark (a): One can claim that

C is closed, i.e. ρxy = 0,∀x ∈ C ,∀y /∈ C (1)

⇐⇒ Pn(x , y) = 0,∀x ∈ C ,∀y /∈ C ,∀n > 1 (2)

⇐⇒ P(x , y) = 0,∀n ∈ C ,∀y /∈ C . (3)

• Direct to see: (1)⇐⇒ (2) =⇒ (3).

• To show (3) =⇒ (2): For x ∈ C & y /∈ C ,

P2(x , y) =
∑

x1∈S

P(x , x1)P(x1, y)

=
∑

x1∈C

P(x , x1)���
��:0

P(x1, y) +
∑

x1 /∈C
���

��:0
P(x , x1) P(x1, y)

= 0.

Induction =⇒ Pn(x , y) = 0, ∀n > 1.
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Remark (b): If

C is closed, x ∈ C , P(x , y) > 0

then
y ∈ C .

Remark (c): If C ⊂ S is closed, then

{Xn}∞n=0

can also be regarded as a Markov Chain with the
state space C .
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Theorem: If C is an irreducible closed set, then
either

all states in C are recurrent

or

all states in C are transient.

In particular, if C is a finite irreducible closed set,
then all states in C must be recurrent.

Proof: Two cases in general:
(i) C does NOT contain any recurrent state. In the case, all

states in C are transient.
(ii) C contains at least one recurrent state. As C is

irreducible, all states in C are recurrent.

The particular case follows from the fact that any finite closed

set must contain at least one recurrent state.
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Set

SR = {recurrent states},
ST = {transient states}.

Then,
S = SR ∪ ST .

• ← •

Sr S
,

•X->•

Sr

*
9

E.
• • #PI C 2 okxo S

,÷I ⇐

Ck •#•

∴ SR is closed!

A further question: Is SR irreducible? namely, can any

two recurrent states communicate to each other?
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Observe: Assume SR 6= φ, for instance, ∃ x0 ∈ SR .
Define

Cx0
= {x ∈ SR : x0 → x}.

Then, Cx0
must be closed & irreducible.

Proof:

(1) “Cx0 closed” ⇐⇒ “If x ∈ Cx0 & x → y ∈ S then y ∈ Cx0”
(Indeed, y ∈ SR ,∴ x0 → x → y ∈ SR)

(2) “Cx0 irreducible” ⇐⇒ “ If x , y ∈ Cx0 then x → y”.

Indeed,
x0 → x ∈ SR

x0 → y ∈ SR

}
=⇒ x → x0 → y .
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Theorem: Assume SR 6= φ. Then

SR =
k⋃

i=1

Ci (k : finite or infinite),

where Ci , 1 6 i 6 k are disjoint irreducible closed
sets of recurrent states.

Proof: It suffices to show: If C1&C2 are two irreducible &
closed sets, then either C1 = C2 or C1 ∩ C2 = φ.

Assuming C1 ∩ C2 6= φ, we need to show C1 = C2. In fact, let

y ∈ C1 be arbitrary, we want: y ∈ C2

(∴ C1 ⊆ C2 ⊆ C1).Indeed, ∃x ∈ C1 ∩ C2, then C2 3 x → y .

∴ y ∈ C2.
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C
, Cz Ch

× × ×

• . • ×
× x ×

x ×
- - - : . . .

"

.

y

re a a

x

×

x .

"

S¥

111/323



Corollary: If C is an irreducible & closed set, then

either C ⊆ SR or C ⊆ ST .

In particular, if C is a finite, irreducible & closed
set, then

C ⊆ SR .
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In terms of the (disjoint) decomposition

S = SR ∪ ST =
(
∪ki=1Ci

)
∪ ST ,

we may rewrite P as the canonical form:

P =

C1 C2 · · · Ck ST

C1 ∗ 0 · · · 0 0

C2 0 ∗ . . . 0 0

...
... . . . ∗ 0 0

Ck 0 0 0 ∗ 0

ST ∗ ∗ ∗ ∗ ∗

,

where ∗ denotes the sub-matrix with possible 6= 0
entries.
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Example:

P =




1 0 0 0 0 0

1
4

1
2

1
4 0 0 0

0 1
5

2
5

1
5 0 1

5

0 0 0 1
6

1
3

1
2

0 0 0 1
2 0 1

2

0 0 0 1
4 0 3

4




Q.: Determine S = SR ∪ ST =
(
∪ki=1Ci

)
∪ ST .
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• 1→ 1 ∴ C1 = {1}.
• 4→ 5→ 6→ 4 (irreducible), and 4, 5, 6 do not
lead to any other state (closed). ∴ C2 = {4, 5, 6}.
• 2→ 1, 3→ 4, ∴ ST = {2, 3}.

I → I c

'

. 9=43

4 → 5 → 6-74 .

'

. a = { 4.5.63

PrA⇐→s→Fa

TV2=>3
U o
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We then reformulate P in the canonical form of

P =

a = 1 b = 4 c = 5 d = 6 e = 2 f = 3







a = 1 1 0 0 0 0 0

b = 4 0 1
6

1
3

1
2

0 0

c = 5 0 1
2

0 1
2

0 0

d = 6 0 1
4

0 3
4

0 0

e = 2 1
4

0 0 0 1
2

1
4

f = 3 0 1
5

0 1
5

1
5

2
5

.
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Final Issue: Assume that C is an irreducible &
closed set of recurrent states. Then,

Tc
def
= min{n > 1 : Xn ∈ C}

denotes the hitting time of C .

We can also consider

ρC (x)
def
= Px(TC <∞)

is the prob that the chain starting at x hits C in
finite time (or is absorbed by the set C ).
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NOTE: Once the chain hits C , it remains in C
forever. (Why?)

∴ ρC (·) is called the absorption prob.

It is clear to see:

ρC (x) =

{
1 if x ∈ C ,

0 if x is recurrent but /∈ C .

Q.: How to compute ρC (x), x ∈ ST?
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Indeed, assume ST is finite, then for x ∈ ST ,

ρC (x) =
∑

y∈C
P(x , y) +

∑

y∈ST
P(x , y)ρC (y). (∗)

Assume dT
def
= # of ST is finite

# of unknowns = dT : ρC (x), x ∈ ST
# of equations = dT
∴ it is possible to find out ρC (x), x ∈ ST by solving
the linear system of dT equations.

Theorem. Let ST be finite. Then (∗) admits
a unique solution.

Proof. Omitted. 119/323



Example: Find ρC2
(e)︸ ︷︷ ︸

def
=x

, ρC2
(f )︸ ︷︷ ︸

def
=y

?

'

A

⑤⑤f¥¥⑤7
"

*'¥4Is
④

"5

Ur42
45

la
5 a

4 • I

3 • GO Be

2 •

• • GO

1 •
OB•BI •

• • • • • • >

O 1 2 3 4 5 Me





x = ρC2 (e) = [0 + 0 + 0]︸ ︷︷ ︸∑
j∈C2={b,c,d} P(e,j)

+ [
1

2
x +

1

4
y ]

︸ ︷︷ ︸∑
j∈ST ={e,f } P(e,j)ρC2

(j)

y = ρC2 (f ) = [
1

5
+ 0 +

1

5
]

︸ ︷︷ ︸∑
j∈C2={b,c,d} P(f ,j)

+ [
1

5
x +

2

5
y ]

︸ ︷︷ ︸∑
j∈ST ={e,f } P(f ,j)ρC2

(j)

∴ x =
2

5
, y =

4

5
.
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Similarly, let ρC1
(e) = x and ρC1

(f ) = y ,

'

A

⑤⑤f¥¥⑤7
"

*'¥4Is
④

"5

Ur42
45

la
5 a

4 • I

3 • GO Be

2 •

• • GO

1 •
OB•BI •

• • • • • • >

O 1 2 3 4 5 Me

then




x = [
1

4
] + [

1

2
x +

1

4
y ]

y = [0] + [
1

5
x +

2

5
y ]

=⇒ x =
3

5
, y =

1

5
.
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Remark (i):
∑
i

ρCi
(x) ≡ 1, x ∈ ST (finite).

Indeed,∑
i

ρCi
(x) =

∑
i

Px(TCi
<∞) = Px(TSR <∞) = 1.

Heuristically, it is obvious:

• We totally have finite transient states.

• Each transient state is visited only finite times.

• Surely the chain from x hits a recurrent state in
finite time, so the prob = 1.
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Remark (ii): ρxy = ρC (x), x ∈ ST , y ∈ C .

Apply it to the previous example:

'

A

⑤⑤f¥¥⑤7
"

*'¥4Is
④

"5

Ur42
45

la
5 a

4 • I

3 • GO Be

2 •

• • GO

1 •
OB•BI •

• • • • • • >

O 1 2 3 4 5 Me

2

5
= ρC2={b,c ,d}(e) = ρeb = ρec = ρed ,

4

5
= ρC2={b,c ,d}(f ) = ρfb = ρfc = ρfd .
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§1.3 More examples

Examples 1: Birth & Death Chain.

• Setting:

{Xn}∞n=0, S = {0, 1, · · · , d} (d : finite or ∞)

P(x , y) =





qx if y = x − 1
rx if y = x
px if y = x + 1
0 otherwise

where qx + γx + ρx = 1.

Pn

• km. >

A- 1 @ set 1

rn

q0 = 0; pd = 0, if d is finite.
Note: the transition probs are functions of states!
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O 1 2 3 ... d- A d

0
-

r
. po

*
1 of

,
K Pn

P ==
.

2 G
.

K R

: '

\

,

\
\

,

"
'

,

d- I qd
. ,

Vdt Pd
- i

d
.

ofd rd
-

K K B K

r.at#FtfEP.. .

← ← ← ←

8
, q .

f ,
k

,

O 1 2 3 ... d- A d

0
-

r
. po

*
1 of

,
K Pn

P ==
.

2 G
.

K R

: '

\

,

\
\

,

"
'

,

d- I qd
. ,

Vdt Pd
- i

d
.

ofd rd
-

K K B K

r.at#FtfEP.. .

← ← ← ←

8
, q .

f ,
k

,
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A general question: Given a, b ∈ S with a < b,
compute

u(x)
def
= Px(Ta < Tb), a < x < b,

v(x)
def
= Px(Ta > Tb), a < x < b.

the

• km. >

A- 1 @ set 1

rn

• • ••
...

• • • >

a n b

{Ta < Tb} = Before the chain hits b, it hits a, (i.e.,
the chain hits a earlier than b)

{Ta > Tb} = Before the chain hits a, it hits b, (i.e.,
the chain hits b earlier than a)
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Claim:

(i) u(a) = 1, u(b) = 0.

(ii) u(x) = qxu(x − 1) + rxu(x) + pxu(x + 1) for
a < x < b.

(iii) u(x) =

b−1∑
y=x

γy

b−1∑
y=a

γy

for a < x < b.

(iv) v(x) = 1− u(x) =

x−1∑
y=a

γy

b−1∑
y=a

γy

for a < x < b,

where γx are defined by

γx
def

=

{
1 if x = 0
q1···qx
p1···px if 1 ≤ x ≤ d − 1.
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Proof:

(i) is obvious.

(ii) follows by

Px(A) =Px(A,X1 = x − 1) + Px(A,X1 = x)

+ Px(A,X1 = x + 1)

=Px(X1 = x − 1)Px(A|X1 = x − 1)

+ Px(X1 = x)Px(A|X1 = x)

+ Px(X1 = x + 1)Px(A|X1 = x + 1)

=P(X1 = x − 1|X0 = x)P(A|X0 = x ,X1 = x − 1)

+ P(X1 = x |X0 = x)P(A|X0 = x ,X1 = x)

+ P(X1 = x + 1|X0 = x)P(A|X0 = x ,X1 = x + 1)

=qxPx−1(A) + rxPx(A) + pxPx+1(A).
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Proof of (iii):

u(x) = qxu(x − 1) + (1− px − qx)u(x) + pxu(x + 1)
(px + qx)u(x) = qxu(x − 1) + pxu(x + 1)

u(x + 1)− u(x) =
qx
px

[u(x)− u(x − 1)] (a < x < b)

=
qx · qx−1

px · px−1
[u(x − 1)− u(x − 2)]

= · · ·

=

(
qx
px

)(
qx−1

px−1

)
· · ·
(
qa+1

pa+1

)
[u(a + 1)− u(a)]

=
γx
γa

[u(a + 1)− u(a)].

Note:
b−1∑
x=1

(·)⇒ u(b)− u(a)︸ ︷︷ ︸
=−1

=

b−1∑
x=a

γx

γa
[u(a + 1)− u(a)]

∴ u(x + 1)− u(x) = − γx
b−1∑
x=a

γx

(a 6 x < b)
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Further, change x to y ,
b−1∑
y=x
⇒

u(b)︸︷︷︸
=0

−u(x) = −

b−1∑
y=x

γy

b−1∑
y=a

γy

, ∴ u(x) =
b−1∑

y=x

γy/
b−1∑

y=a

γy .

Reminder:

• u(x)
def
= Px(Ta < Tb), a < x < b.

• γx def

=

{
1 if x = 0
q1···qx
p1···px if 1 ≤ x ≤ d − 1.
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Sum:

a < x c b

" " " " "
a

•

He :# b. n ; >

H¥.EE?=EiirrtEiry
faster

RHIH= First ¥ir,:

Birth faster

Px( Ta < Tb︸ ︷︷ ︸
“Death faster”

) =
b−1∑

y=x

γy/
b−1∑

y=a

γy ,

Px( Ta > Tb︸ ︷︷ ︸
“Birth faster”

) =
x−1∑

y=a

γy/

b−1∑

y=a

γy .
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e.g.: Set:

• A gambler bets $1 each time.

• The prob of winning or losing each bet is 9/19
and 10/19, resp.

• The gambler will quit as soon as his net winning
is $25 or his net loss is $10.

Q.:

(i) Find the prob he quits and wins.

(ii) Find his expected loss.
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Sol.: Let

Xn
def
= the capital of the gambler at time

n = 0, 1, 2, · · ·
For simplicity, we choose

X0 = 10, S = {0, 1, · · · , 35}.
{Xn}∞n=0 forms a birth & death chain on S with

Pn

man• • >

A- 1 @ set 1

rn

• • ••
...

• • • >

a n b

y
1

Or• 8=0%9.9119
'

•A• ⇒

A=O 1 x.InNtt3435=6
(
ocnc

35 )

γy =

(
q

p

)y

=

(
10

9

)y

, 0 6 y 6 34.
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(i) Find the prob he quits and wins: To find

P10(T35 < T0︸ ︷︷ ︸
“Birth faster”

) =

9∑
y=0

γy

34∑
y=0

γy

=

9∑
y=0

(10
9 )y

34∑
y=0

(10
9 )y

=
(10

9 )10 − 1

(10
9 )35 − 1

= 0.047.

(ii) Find his expected loss:

a < x c b

" " " " "
THE:# b. , ; >

Pxt¥.EE?=EiirrtEiry
faster

R.tk#l=Fiamkkr
,:

Birth faster

gain loss

( +25 ) ( -10 )

0.047 I - 0.047

The expected loss is

(1− 0.047)(−10) + (0.047)(25) = −8.36.
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• We are further interested in the below situation:

Assume that S = {0, 1, 2, · · · } is infinite, and the
birth & death chain is irreducible, namely,

px > 0,∀ x > 0, and qx > 0,∀ x > 1.

Q.: When such chain is recurrent or transient?

(NOT obvious for an irreducible chain with infinite
states!)

Proposition: The chain is recurrent iff

∞∑

k=0

γk =∞.
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Pf.: Since the chain is irreducible, we only need to
consider one state, namely, 0. Observe that

ρ00 = P0(T0 <∞) = r0 + p0P1(T0 <∞), (∗)
where

ρ10 = P1(T0 <∞) = lim
n→∞

P1(T0 < Tn)

= lim
n→∞

[
1− 1

n−1∑
k=0

γk

]
. (∗∗)

Therefore,
0 is recurrent, i.e. ρ00 = 1
(∗)&r0+p0=1⇐⇒ ρ10 = P1(T0 <∞) = 1
(∗∗)⇐⇒

∞∑
k=0

γk =∞.
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Remark: For instance, let

px ≡ p > 0, qx ≡ q > 0, 0 < ρ + q 6 1.

Then,
∞∑

k=0

γk =
∞∑

k=0

(
q

p

)k

.

• If p > q, then
∞∑
k=0

γk is finite. The chain is

transient .

• If p = q or p < q, then
∞∑
k=0

γk =∞. The chain

recurrent.
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Example 2. Branching chain.

Each particle generates ξ particles independently in
the next generation.

:• . .  - - - - - .  - - .t.q.ge#-
"

" at

I

p. . q ;r' '
.
b 7

A0 to Elon ) 1

to .
- .  - .  . .  - .  - .  -

•f.
to .  .

.  .too.
.

. .

ta .  .Khoo -
- . .a.

 

•A.
.

the
.

.

Xn
def
= the total no of particles in the nth generation

P(0, 0) = 1.

P(x , y) = P(ξ1 + ξ2 + · · ·+ ξx = y), x > 1.
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Q.: Determine

ρ
def
= the prob that the descendants of a given

particle eventually become extinct.

We call ρ to be the extinction prob of the chain.
Then,

ρ = ρ10 = P1(T0 <∞).
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1st Obervation: Suppose ξ has the pdf

pk = P(ξ = k), k = 0, 1, 2, · · ·

Then,

P(1, k) = P(ξ1 = k) = pk , k = 0, 1, 2, · · ·

From this we see:

• If p0 = 0, then each individual cannot change to
zero, so population never extinct, i.e. ρ = 0.

• If p0 = 1, then it extincts for sure, i.e., ρ = 1.

To avoid two trivial cases, we always assume

0 < p0 < 1.
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2nd Obervation: Assuming there are x particles,
the prob for them to extinct is

ρx0 = ρx .

(Pf.: Use independence!)
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3rd Obervation: Let

µ
def
= E (ξ) =

∞∑

k=0

kpk =
∞∑

k=1

kpk .

Then, E (Xn+1|Xn = k) = E (ξ1 + · · ·+ ξk) = kµ,

E (Xn) =
∞∑

k=0

E (Xn|Xn−1 = k)P(Xn−1 = k)

=
∞∑

k=0

(kµ)P(xn−1 = k)

= µE (Xn−1)

= · · ·
= µnE (X0).
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Claim: If µ < 1, then population will extinct for
sure, i.e., ρ = 1.
Proof:

P1(T0 > n) 6 P1(Xn > 1) (∵{T0>n}⊆{Xn>1})

=
∞∑

k=1

P1(Xn = k) 6
∞∑

k=1

kP1(Xn = k)

=
∞∑

k=0

kP1(Xn = k)

= E (Xn) = µnE (X0)
n→∞−−−→ 0 (∵ µ < 1)

Therefore

ρ︸︷︷︸
extinction prob

= ρ10 = P1(T0 <∞) = lim
n→∞

P1(T0 6 n)

= lim
n→∞

[1− P1(T0 > n)] = 1.
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What about µ > 1?

ρ = ρ10 = P1(T0 <∞)

= P(1, 0) +
∞∑

k=1

P(1, k)ρk0

= p0 +
∞∑

k=1

pkρ
k =

∞∑

k=0

pkρ
k ,

i.e., ρ solves the equation t = Φ(t) with

Φ(t)
def
=

∞∑

k=0

pkt
k ,

which is called the moment generating function
of the pdf (pk)k≥0 of ξ.
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Observe:

• Φ′(t) > 0, Φ′′(t) > 0, (∴ Φ(t) ↑ & concave
upward).

• Φ(0) = p0 ∈ (0, 1), Φ(1) =
∞∑
k=0

pk = 1.

• Φ′(1) =
∞∑
k=1

kpk = E (ξ) = µ.

Then, we have three cases:
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Case (i): µ < 1.

Ya

get
1 • •

p.y=oItt%
o

•

go
>

t

slope of TQAI on ioik 1

:t.im
"

y • . . .  - . .

y= # t '

Po •

• . >
0 1 t

∴ ρ = 1 (extinct for sure, as proved before)
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Case (ii): µ = 1.

Ya

get
1 • •

p.y=oItt%
o

•

go
>

t

slope of TQAI on ioik 1

:t.im
"

y • . . .  - . .
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Po •

• . >
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∴ ρ = 1 (extinct for sure!)
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Case (iii): µ > 1.
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A0 to Elon ) 1

to .
- .  - .  . .  - .  - .  -

•f.
to .  .
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•A.
.

the
.

.

Φ(t) = t at t = t0 ∈ (0, 1) or t = 1.

Claim: In this case, P1(T0 6 n) 6 t0 for all
n = 1, 2, · · · (proved later).

∴ ρ = ρ10 = P1(T0 <∞)

= lim
n→∞

P1(T0 6 n) 6 t0

∴ ρ = t0 is the only solution.
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Proof of Claim: Use induction. Set

an
def
= P1(T0 6 n).

n = 0: a0 = P1(T0 6 0) = 0 < t0.

Assuming an 6 t0(n > 0), consider

an+1 = P1(T0 6 n + 1)

= P(1, 0)︸ ︷︷ ︸
=p0

+
∞∑

k=1

P(1, k)︸ ︷︷ ︸
pk

Pk(T0 6 n)︸ ︷︷ ︸
=[P1(T06n)]k=akn

=
∞∑

k=0

pka
k
n

= Φ(an) 6 Φ(t0) = t0 (Φ is nondecreasing).
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e.g.: Every man has 3 kids with prob 1/2 being boy
and 1/2 being girl. Find the prob that the male live
eventually extinct.

Sol.: p0 = P(ξ = 0) = 1
8 , p1 = P(ξ = 1) = 3

8 ,
p2 = P(ξ = 2) = 3

8 , p3 = P(ξ = 3) = 1
8 .

E (ξ) = 0 · 1

8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

3

2
> 1

Φ(t) =
1

8
+

3

8
t +

3

8
t2 +

1

8
t3

let Φ(t) = t, i.e. t =
1

8
+

3

8
t +

3

8
t2 +

1

8
t3

Solutions: t = 1,
√

5− 2. Then

ρ =
√

5− 2

is the extinct prob. 150/323



Example 3. Queuing chain.
Setting:
• In a queue, let ξn denote the no of arrivals in the

n-th unit time. {ξn}∞n=1 are i.i.d.r.v. with pdf:

f (k) = pk , k = 0, 1, 2, · · ·

• The service of a customer is exactly one in a
unit time.

Let Xn denote the no of customers in the queue.

P(x , y) = f (y − (x − 1)︸ ︷︷ ︸
no of arrivals

), x > 1,

P(0, y) = f (y).

Note: P(1, y) = P(0, y).
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Q.: Assuming that the chain is irreducible, check if
the chain is recurrent or transient, i.e. letting

ρ = ρ00 = P0(T0 <∞),

decide

if ρ = 1 or ρ < 1.

Note. If
p0 > 0 & p0 + p1 < 1,

then the chain is irreducible. (Ex. 37 on Page 46).
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Let

Φ(t)
def
= p0 + p1t + p2t

2 + · · ·

=
∞∑

k=0

pkt
k

=
∞∑

k=0

f (k)tk

be the moment generating function of f .

Claim: ρ = ρ00 solves Φ(t) = t.
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Pf.:

• Note

ρ00 = P(0, 0) +
∞∑

k=1

P(0, k)ρk0,

ρ10 = P(1, 0) +
∞∑

k=1

P(1, k)ρk0,

P(1, k) = P(0, k), ∀k ≥ 0.

Therefore,
ρ10 = ρ00 = ρ.
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• To show: ρx ,x−1 = ρ10 = ρ for all x > 1.

In fact, we observe that
for the chain starting at x > 1 (∴ x − 1 ≥ 1),
the event Tx−1 = n means

n = min{m > 0 : x+(ξ1−1)+ · · · (ξm−1) = x−1},

i.e.

n = min{m > 0 : 1 + (ξ1 − 1) + · · · (ξm − 1) = 0}.

Therefore, Px(Tx−1 = n) = P1(T0 = n), ∀n ≥ 1.

∴ ρx ,x−1 = ρ10 = ρ.
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• To show:

ρx ,0 = ρx ,x−1 · ρx−1,0, ∀ x > 2. (∗)
(Ex. 39, P46). If so, then

ρx ,0 = ρρx−1,0 = · · · = ρx ,

(also true for x = 1), and hence

ρ = ρ00 = P(0, 0) +
∞∑

k=1

P(0, k)ρk0

= p0 +
∞∑

k=1

pkρ
k

= Φ(ρ).
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Proof of (∗): Let x ≥ 2. Note that for m ≥ 2,

Px(T0 = m) =
m−1∑

`=1

Px(Tx−1 = `)Px−1(T0 = m − `).

Then,

ρx,0 = Px(T0 <∞) =
∞∑
m=1

Px(T0 = m)

=
∞∑
m=2

Px(T0 = m) (Note: Px(T0 = 1) = 0 for x ≥ 2)

=
∞∑
m=2

m−1∑
`=1

Px(Tx−1 = `)Px−1(T0 = m − `)

=
∞∑
`=1

∞∑
m=`+1

Px(Tx−1 = `)Px−1(T0 = m − `) (see later)

=
∞∑
`=1

Px(Tx−1 = `)ρx−1,0

= ρx,x−1ρx−1,0.
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Note:
∞∑

m=2

m−1∑

`=1

=
∞∑

`=1

∞∑

m=`+1

.

'

a
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Sum: Let µ = E (ξ). Then

• If µ 6 1, then Φ(ρ) = ρ has the only solution
ρ = 1. The chain is recurrent.

• If µ > 1, then Φ(ρ) = ρ has two solutions 1 and
t0 ∈ (0, 1). As in the previous example, one has
to take ρ = t0. The chain is transient.
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Chapter 2:

Stationary Distribution
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§2.1 Stationary Distribution

Motivation: Recall the two state MC with

P =

[
1− p p
q 1− q

]
, 0 < p, q < 1.

We have shown (Chapter 1):

lim
n→∞

P(Xn = 0) = q/(p + q)
def
= a,

lim
n→∞

P(Xn = 1) = p/(p + q) = 1− a.

Denote π = [a, 1− a] (limit distribution), i.e.

π = lim
n→∞

[P(Xn = 0),P(Xn = 1)]︸ ︷︷ ︸
pdf of Xn

= lim
n→∞

π0P
n, (∗)

where π0 = [P(X0 = 0),P(X0 = 1)] is the initial distribution.

Note: Here π is independent of π0.
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We discuss two issues related to π:

• It is direct to verify

πP = π,

i.e. [
q

p + q
,

p

p + q
]

[
1− p p
q 1− q

]
= [

q

p + q
,

p

p + q
].

Hence by induction,

πPn = π, n = 1, 2, · · ·
It means that if the chain starts with X0 with pdf π,
then at any time n = 1, 2, · · · , Xn has the same
distribution as π.

Note: (∗) also directly implies

π = lim
n→∞

(π0P
n−1)P = πP .
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• One can also show:

lim
n→∞

Pn =

[
a 1− a
a 1− a

]
=

[
π
π

]
.

Two ways:

(i) Diasonalize P . See Tutorial or Exercise.

(ii) Find

lim
n→∞

Pn(x , y) = lim
n→∞

P(Xn = y |X0 = x)

= lim
n→∞

Px(Xn = y).

As proved before, for x = 0 or 1

lim
n→∞

Px(Xn = 0) = a i.e. the 1st column is a,

lim
n→∞

Px(Xn = 1) = 1− a i.e. the 2nd column is 1− a.
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Observe: The fact that

πP = π = 1·π
means that π is the left 1-eigenvector of P .

Thus, we may also find the limit distribution π
directly by solving

[u, v ]

[
1− p p
q 1− q

]
= [u, v ],

i.e.

[u, v ]

[
−p p
q −q

]
= [0, 0], i .e.,

[
−p q
p −q

] [
u
v

]
=

[
0
0

]
.

(∵ u > 0, v > 0, u+v = 1 ∴ u =
q

p + q
, v =

p

p + q
)
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General Situaion :

If
π = lim

n→∞
π0P

n exists

for some initial distribution π0,

then π satisfies

π =
(

lim
n→∞

π0P
n−1
)
P = πP ,

i.e.,
π = πP ,

or equivalently,

π(y) =
∑

x∈S
π(x)P(x , y), ∀ y ∈ S .
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Definition: We say that a probability row-vector π
is a stationary distribution for P if

π = πP ,

i.e. the pdf π is a left 1-eigenvector of P .

Two basic questions:

(i) Existence (∃): Does every P have a SD?

(ii) Uniqueness (!): Is the SD unique?
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Two notes:

(1) If π = πP has a unique solut’n then the limit
lim
n→∞

π0P
n (if it exists) is independent of π0.

(2) If lim
n→∞

Pn=




π

π

...
π




then for any initial distri π0,

lim
n→∞

π0P
n = π,

i.e. the limit exists and is independent of π0.

This also suggests a way of finding the SD of P .
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Proposition: Let P be a Markov matrix with finite
state space S . Assume:

(i) The left 1-eigenvector (which must exist) can be
chosen to have all nonegative entries;

(ii) 1 is a simple eigenvalue;

(iii) other eigenvalues |λi | < 1.

Then P has a
::::::::
unique

::::
SD π, i.e. πP = π, and

lim
n→∞

Pn =




π

π
...
π


 .
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Pf.: (Sketch only) (See Lawler P11-15)

P = QDQ−1, D =

[
1 O

O M

]
, Mn → 0

Q: columns are right eigenvectors; 1st row is




1
...
1




Q−1: rows are left eigenvectors; 1st row is a prob
vector, denoted by π

∴ lim
n→∞

Pn = lim
n→∞

QDnQ−1 = Q

[
1 O

O O

]
Q−1 =



π
...
π
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Remarks:

(1) If
:
1
:::
is

:::::::
NOT

::
a
::::::::
simple

:::::::::::::
eigenvalue, then π

::::
may

::::
not be unique: e.g.

P =

[
P1 0
0 P2

]

π1 is the SD of P1

π2 is the SD of P2

}
⇒ [λπ1, (1− λ)π2] is the SD of P

(2) Without (iii), the limit lim
n→∞

Pn
:::::
may

:::::
not exist

(but π still may exist): e.g.

P =

[
0 1
1 0

]
, π = [

1

2
,

1

2
],

BUT eigenvalues: ±1.
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(3) Two further Facts for finite S (without proof):

Fact a. If for some n ≥ 1, Pn has all entries strictly
positive, then three conditions are satisfied,
therefore, P has a unique SD π, and

lim
n→∞

Pn =



π
...
π


 .

Fact b. If P is
::::::::::::
irreducible, then P still has a unique

SD.

(But lim
n→∞

Pn may not exist, e.g., P=


0 1

1 0


 )
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Computation Technique for finite S :

Case 1:
::
P

:::
is

:::::::::::::
irreducible.

πP = π, i.e., PTπT = πT , i.e. (PT − I )πT = 0.

PT − I
row operation−−−−−−−→




∗ ∗ · · · ∗
0 ∗ · · · ∗
0 0 . . . ...
0 0 0 ∗


 ,

Upper diagonal form.

Fact b above assures that the solution exists
uniquely. (Note: Find π as a

:::::
prob

:::::::::::::
row-vector)
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Case 2.
::
P

:::
is

::::::::::::
reducible.

For instance, let S = C1 ∪ C2 ∪ ST .
Reordering S accordingly, write

P =



P1 0 0
0 P2 0
S1 S2 Q


 , Pn =



Pn

1 0 0
0 Pn

2 0
S1n S2n Q

n




i = 1, 2 : lim
n→∞

Pn
i =



πi
...
πi


, πi : SD of Pi ,

lim
n→∞

Qn = 0,

(Chap1: For y ∈ ST , lim
n→∞

Pn(x , y) = 0, ∀x ∈ S).

In fact, all eigenvalues of Q have moduli < 1.
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∴ lim
n→∞

Pn =






π1
...
π1


 0 0

0



π2
...
π2


0

A1 A2 0




,

A1 = lim
n→∞

S1n, A2 = lim
n→∞

S2n:

A1(x , y) = prob from x ∈ ST to y ∈ C1 ::
in

:::
the

:::::
long

::::
run,

A2(x , y) = prob from x ∈ ST to y ∈ C2 ::
in

:::
the

:::::
long

::::
run.

Q.: How to find A1, A2?
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Solution: Assume

ST = {x1, x2, · · · , x`}.

First find

ρCi
(x), x ∈ ST , i = 1, 2,

(absorption prob of Ci , i.e. prob to enter Ci).

Then, distribute according to πi , e.g.

A1 =




ρC1
(x1)π1

ρC1
(x2)π1

...
ρC1

(x`)π1


 , A2 =




ρC2
(x1)π2

ρC2
(x2)π2

...
ρC2

(x`)π2


 .
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Example 1. (Gambler’s ruin chain) Let

P =

0 1 2 3 4





0 1 0 0 0 0
1 1

2 0 1
2 0 0

2 0 1
2 0 1

2 0
3 0 0 1

2 0 1
2

4 0 0 0 0 1

.

Show that

lim
n→∞

Pn =

0 1 2 3 4






0 1 0 0 0 0

1 3
4

0 0 0 1
4

2 1
2

0 0 0 1
4

3 1
4

0 0 0 3
4

4 0 0 0 0 1

.
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Solution: From P , one can check that

C1 = {0}, C2 = {4}, ST = {1, 2, 3},

and
S = C1 ∪ C2 ∪ ST .

After reordering,

P =

0 4 1 2 3





0 1 0 0 0 0
4 0 1 0 0 0
1 1

2 0 0 1
2 0

2 0 0 1
2 0 1

2

3 0 1
2 0 1

2 0

.
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Set P =




1 0
0 1 0
S Q


. Then, Pn =




1 0
0 1 0
Sn Qn


, and

lim
n→∞

Sn = A, lim
n→∞

Qn = 0,

lim
n→∞

Pn =




1 0
0 1 0
A 0


 .

Need to find A = A3×2:

Note that for i ∈ ST = {1, 2, 3}, j ∈ C1 ∪ C2 = {0, 4},
A(i , j) = prob that the chain starting at i eventually visits j

= Pi(Tj <∞) = ρij ,

ρij = P(i , j) +
∑

k∈STP(i , k)ρkj .
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Put in matrix form

A = S + QA ∴ A = (I − Q)−1S .

Here,

S3×2 =




1
2 0
0 0
0 1

2


 , Q3×3 =




0 1
2 0

1
2 0 1

2

0 1
2 0


 , ∴ (I−Q)−1 =




3
2 1 1

2

1 2 1
1
2 1 3

2


 .

∴ A = (I − Q)−1S =




3
4

1
4

1
2

1
2

1
4

3
4


 .
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0 4 1 2 3

0 1 0 0 0 0

4 0 1 0 0 0

1 3
4

1
4

0 0 0

2 1
2

1
2

0 0 0

3 1
4

3
4

0 0 0

reorder−−−→

0 1 2 3 4

0 1 0 0 0 0

1 3
4

0 0 0 1
4

2 1
2

0 0 0 1
2

3 1
4

0 0 0 3
4

4 0 0 0 0 1

=limn→∞ Pn.

Remark: Such computation also gives us a way to
find

ρ10 =
3

4
, ρ20 =

1

2
, ρ30 =

1

4
,

ρ14 =
1

4
, ρ24 =

1

2
, ρ34 =

3

4
.
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Exercise: (Tutorial)

Modify the above to the MC with

P =




1
3

2
3

1
2

1
2

0 0

0 1 0
1
2 0
0 0
0 0

0
0
1
2

0 1
2 0

1
2 0 1

2

0 1
2 0




and find lim
n→∞

Pn.
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Example 2. Consider the random walk on

S = {0, 1, 2, · · · } (no longer finite!)

with

P =




q p
q 0 p
q 0 p

. . . . . . . . .


 , p, q > 0, p + q = 1.

Q.: Find the SD.

Note:

• This is an
::::::::::::
irreducible BD chain.

• The chain is recurrent iff
∞∑
k=0

( q
p )k=∞, iff q ≥ p.
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Solution: Let π be the SD. Set

xk = π(k), k = 0, 1, · · ·
From π = πP , i.e.,

[x0, x1, · · · ] = [x0, x1, · · · ]




q p
q 0 p
q 0 p

. . . . . . . . .




we get {
x0 = qx0 + qx1, i.e. px0 = qx1,

k ≥ 1 : xk = qxk+1 + pxk−1.

∴ qxk+1− pxk = qxk − pxk−1 = · · · = qx1− px0 = 0

∴ xk = (
p

q
)xk−1 = · · · = (

p

q
)kx0, k = 0, 1, 2, · · ·
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(i) p < q (recurrent):

1 =
∞∑

k=0

xk =
∞∑

k=0

(
p

q
)kx0 =

x0

1− p
q

(0 <
p

q
< 1)

∴ x0 =
q − p

q
> 0

SD: π =
q − p

q
[1,

p

q
, (
p

q
)2, · · · ].

(ii) p = q (recurrent):
∞∑
k=0

(
p

q
)k=∞. π does not exist.

(iii) p > q (transient): π does NOT exist.
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Exercise: Modify it to the general irreducible birth
& death chain on S = {0, 1, · · · } with

P =




r0 p0

q1 r1 p1

q2 r2 p2
. . . . . . . . .


 row sum = 1,

all pi > 0, all qi > 0.

Q.: Find the SD π.
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Example 3. Queueing model:

• In a telephone exchange, ξn denotes no of new
calls coming in starting at time n > 1. {ξn}∞n=1

is i.i.d. and has a Poisson distribution with rate
λ > 0:

pk = e−λ
λk

k!
, k = 0, 1, 2, · · ·

• Suppose that each call has prob q
def
= 1− p to

finish in one unit time.

Xn
def
= no of calls in progress at time n.

Q.: Find the transition prob and the SD.
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Solution: To find

P(x , y) = P(Xn+1 = y |Xn = x),

we consider

Xn+1 = ξn+1 + Yn+1

with Yn+1
def
= no of calls at time n that remain at time n + 1.

Fact:

P(Yn+1 = z |Xn = x) =

(
x
z

)
pz(1− p)x−z ,

0 6 z 6 k .

Note: p =non-finish prob, q = 1− p =finish prob.
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∴ P(x , y) = P(Xn+1 = y |Xn = x)

=

x∧y∑

z=0

P(Xn+1 = y ,Yn+1 = z |Xn = x)

=

x∧y∑

z=0

P(ξn+1 = y − z ,Yn+1 = z |Xn = x)

=

x∧y∑

z=0

P(ξn+1=y−z)P(Yn+1=z |Xn=x)

=

x∧y∑

z=0

e−λ
λy−z

(y − z)!

(
x
z

)
pz(1− p)x−z .

To find SD, we will verify that if X0 is Poisson then
Xn (n > 1) satisfy the same Poisson distribution.
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Lemma 1. If Xn is Poisson with rate t, then Yn+1

is Poisson with rate pt.

Pf.:

P(Yn+1 = y) = ∑∞
x=yP(Yn+1 = y ,Xn = x)

=
∞∑

x=y

P(Xn = x)P(Yn+1 = y |Xn = x)

=
∞∑

x=y

e−t
tx

x!

(
x
y

)
py (1− p)x−y

=
(pt)ye−t

y !

∞∑

x=y

[t(1− p)]x−y

(x − y)!

=
(pt)ye−t

y !
et(1−p)

= e−pt
(pt)y

y !
, y = 0, 1, 2, · · ·
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Lemma 2. If X , Y are
::::::::::::::
independent Poisson with

rates t1 and t2 resp, then Z = X + Y is Poisson
with rate t1 + t2.

Pf.:

P(Z = z) = P(X + Y = z)

= ∑z
x=0P(X + Y = z ,X = x)

= ∑z
x=0P(X = x ,Y = z − x)

= ∑z
x=0P(X = x)P(Y = z − x)

=
z∑

x=0

e−t1
tx1
x!
e−t2

tz−x2

(z − x)!

=
e−(t1+t2)

z!

z∑

x=0

(
z
x

)
tx1 t

z−x
2

=
e−(t1+t2)

z!
(t1 + t2)z , z = 0, 1, · · ·
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Two lemmas above give:

• Assume X0 is Poisson with rate t (TBD).

• X1 = ξ1 + Y1 is Poisson with rate

λ + pt = t. (∴ t
def
=

λ

1− p
=
λ

q
)

• X2 = ξ2 + Y2 is Poisson with rate λ + pt = t.

• · · ·
• Xn = ξn + Yn is Poisson with rate λ + pt = t.

∴ The chain has a SD (Poisson, rate= λ/q):

π(x) = e−λ/q
(λ/q)x

x!
, x = 0, 1, · · · .
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Exercise: Check the textbook (Page 55-56) to

(i) Derive an explicit formular Pn(x , y).

(ii) Show directly that

lim
n→∞

Pn(x , y) = π(y), ∀ x , y > 0.

(Hence, π that we have found is the unique
SD)
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Sketch: • The key is to find Pn:

X0 : t

X1 : λ + tp

X2 : λ + (λ + pt)p = tp2 + λ(1 + p2)

X3 : λ + [tp2 + λ(1 + p2)]p = tp3 + λ(1 + p2 + p3)

... ...

Xn : tpn + λ(1 + p + · · ·+ pn)

= tpn + λ
1− pn

1− p
:= tn

then
∞∑

x=0

e−t
tx

x!
Pn(x , y) = Px(Xn = y) = e−tn

tyn
y !
.
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Rewrite it as

∞∑

x=0

Pn(x , y)

x!
tx = e−λ

1−pn

1−p et(1−pn)

[
tpn + λ1−pn

1−p

]y

y !
,

Apply Taylor expansion and binormial expansion on the right,
do the product, and compare coefficient of tx for each x , then

Pn(x , y) = e−λ
1−pn

1−p

min(x ,y)∑

z=0

(
x
z

)
pnz(1− pn)x−z

[
λ1−pn

1−p

]y−z

(y − z)!
.

Let n→∞, note pn → 0 as 0 ≤ p < 1, in
∑

, except for the
term of z = 0, all other terms tend to zero, then

lim
n→∞

Pn(x , y) = e−
λ

1−p

( λ
1−p )y

y !
= π(y).
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§2.2 Average number of visits

Given {Xn}∞n=0, S (finite or infinite),

Nn(y)
def
= no of visits to y in n-steps,

i.e. during times m = 1, 2, · · · , n.

We are interested in the limits of
Nn(y)

n
,

Ex(Nn(y))

n
as n→∞.

Note:

• Nn(y)
n

: proportion of the first n units of time that the
chain visits y , or average no of visits to y per unit time.

• Ex (Nn(y))
n

: expected proportion for a chain starting at x ,
or frequency that the chain visits y from x .
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It is direct to see

Nn(y) =
n∑

m=1

1y(Xm),

Ex(Nn(y)) =
n∑

m=1

Pm(x , y).
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Case: y is transient.

Recall: Px(N(y) <∞) = 1.

lim
n→∞

Nn(y) = N(y) <∞ with prob 1,

lim
n→∞

Ex(Nn(y)) = Ex(N(y)) =
ρxy

1− ρyy
<∞.

So,

lim
n→∞

Nn(y)

n
= 0 with prob 1,

lim
n→∞

Ex(Nn(y))

n
= 0.

Hence, we only consider y as a recurrent state.
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Let y be recurrent. Denote

my
def
= Ey(Ty) : the mean return time to y for

a chain starting at y .

Recall
Ty

def
= min{n > 1 : Xn = y}.
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Theorem: Suppose

{Xn}∞n=0 is irreducible and recurrent.

Then

lim
n→∞

Nn(y)

n
=

1

my
with prob 1,

lim
n→∞

Ex(Nn(y))

n
=

1

my
, ∀ x ∈ S .

Remarks:

(1) Heuristically, the limit is the frequency and my is the
waiting time. They are reciprocal to each other.

(2)
:
If
::::

the
::::::
chain

::
is
::::::

NOT
:::::::::::
irreducible, the statement of Theorem

can be modified slightly; see the textbook Pages 58-59.
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Pf.: Let the chain start from y . Introduce new r.v.:

T r
y = min{n > 1 : Nn(y) = r}, r = 1, 2, · · ·

i.e. the min ptv-time of the r th visit to y . Note:

• Nn(y) = r : By time n, the chain visits y for r times.
(Warning: time 0 not counted).
• T r

y : the min positive time up to which the chain visits y
for exactly r times.

state

:• ••• • • •

• • • • • >

0 MPI mz m
,

... Mr
time

1y(X ; )={
1 i=mi .mn "imr
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Set

W 1 def
= T 1

y = Ty (i.e. hitting time of y)

W r def
= T r

y − T r−1
y , r = 2, 3, · · ·

(i.e., waiting time between the (r − 1)th visit to y

and the r th visit to y)

Then

T r
y = W 1

y + · · ·+ W r
y , r = 1, 2, · · ·

Note: {W r
y }∞r=1 is i.i.d.

(it is intuitively obvious due to the Markov property; see the

textbook (page 59) for the rigorous proof)
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Apply the SLLN, we have

lim
r→∞

T r

r
= lim

r→∞
W 1

y +···+Wr
y

r = Ey(Ty) with prob 1

= my .

Next, let r = Nn(y), i.e. by time n, the chain visits
y for r -times, and the (r + 1)th visit to y will be
after n, hence

T r
y 6 n < T r+1

y ,

so that

T r
y

r
6

n

Nn(y)
=

n

r
<

T r+1
y

r
→ my as r →∞.

This implies that lim
n→∞

n
Nn(y) = my with prob 1.
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Moreover, we observe

lim
n→∞

Ex

(
Nn(y)

n

)
= Ex

(
lim
n→∞

Nn(y)

n

)
(why? DCT)

= Ex

(
1

my

)

=
1

my
.

Added: Theorem (Dominated convergence theorem). Let (ξn) be a
sequence of rv’s and ξ be a rv s.t. for each ω ∈ Ω, ξn(ω)→ ξ(ω) as
n→∞, and there is a rv η such that |ξn| ≤ η and E (η) <∞. Then

E |ξn − ξ| → 0 as n→∞.

Particularly,
E (ξn)→ E (ξ) as n→∞.
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Remark: The statement of the theorem can be slightly
modified in case when the chain is not irreducible. In-
deed, for a general MC, as long as y is recurrent,

Nn(y)

n
=

n∑

m=1

1y(Xm)

n
→ 1{Ty<∞}

my
as n→∞ with prob 1,

Ex(
Nn(y)

n
) =

n∑

m=1

Pm(x , y)

n
→ ρxy

my
as n→∞,

where 1{Ty<∞} is a rv meaning that 1{Ty<∞} = 1 if
Ty <∞, and 1{Ty<∞} = 0 if Ty =∞.
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§2.3 Waiting time & stationary distribution

Def.:

• A state x is called positive recurrent if it is
recurrent and mx = Ex(Tx) <∞.

• x is called null recurrent if it is recurrent and
mx = Ex(Tx) =∞.

Note:
• For a null recurrent sate x ,

lim
n→∞

Nn(x)

n
= 0 with prob 1, lim

n→∞

Ex(Nn(x))

n
= 0.

• A positive recurrent state means it comes back
::
in

:::::
finite

:::::::
waiting

:::::
time; a null recurrent means it comes back

::::
very

:::::
rarely.
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THREE Theorems and THREE Corollaries
are COMING soon.....

no worry
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Theorem 1. If x is
:::::::::
positive recurrent and x → y ,

then y is also
:::::::::
positive recurrent.

Pf.: ∵ x → y
∴ Pn1(x , y) > 0 for some n1 > 1
∵ x recurrent, x → y
∴ y → x , then Pn2(y , x) > 0 for some n2 > 1.
Hence

Pn2+m+n1(y , y) > Pn2(y , x)Pm(x , x)Pn1(x , y).

Sum over m = 1, 2, · · · , n, and divide by n:

Ey (Nn2+n+n1(y))− Ey (Nn2+n1(y))

n
> Pn2(y , x)

Ex(Nn(x))

n
Pn1(x , y).

Take limit n→∞:

1

my
> Pn2(y , x)

1

mx
Pn1(x , y) > 0.

∴ my <∞, i.e. y is positive recurrent.
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Theorem 2. An
::::::::::::
irreducible MC having a

::::::
finite

number of states must be
:::::::::
positive

::::::::::::
recurrent.

Pf.: We know that all states are recurrent (∵ finite
state + irreducible).

Assuming that the theorem is false, all states are
null recurrent. Note

1 =
∑

y∈S
Pm(x , y) (row sum is 1).

Sum over m = 1, · · · , n and divide by n:

1 =
∑

y∈S

Ex(Nn(y))

n
.
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Take limit:

1 = lim
n→∞

∑

y∈S

Ex(Nn(y))

n

=
∑

y∈S
lim
n→∞

Ex(Nn(y))

n
(S is finite)

=
∑

y∈S
0

= 0, contradiction!
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Theorem 3. An
::::::::::::
irreducible

:::::::::
positive

:::::::::::
recurrent MC

has a unique SD π given by

π(x) =
1

mx
, x ∈ S .

Pf.: Step 1. Uniqueness.
We first assume the SD exists, denoted by π, to
show π(x) = 1

mx
, x ∈ S . In fact,

π(x) =
∑

z

π(z)Pm(z , x) (i .e., π = πPm,∀m > 1)

Sum over m = 1, · · · , n and divide by n:

π(x) =
∑

z

π(z)
Ez(Nn(x))

n
.
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Take limit:

π(x) = lim
n→∞

∑

z

π(z)
Ez(Nn(x))

n

=
∑

z

π(z) lim
n→∞

Ez(Nn(x))

n
(infinite sum need DCT)

=
∑

z

π(z)
1

mx

=
1

mx
.

Therefore, the uniqueness follows.
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Added: Dominated Convergence Theorem: Suppose
(i) |an(k)| 6 M <∞, lim

n→∞
an(k) = a(k).

(ii)
∞∑
k=1

pk = 1 (or just <∞)

Then

lim
n→∞

∞∑

k=1

an(k)p(k) =
∞∑

k=1

a(k)p(k).

(e.g. lim
n→∞

∞∑
k=1

1
n+k

exists or not?)

Pf.: Apply ε-N argument to
N∑

k=1

an(k)pk

︸ ︷︷ ︸
(I)

+
∞∑

k=N+1

an(k)pk

︸ ︷︷ ︸
(II)

(II)≤ ε/2 for a large N .

(I): can be close to
N∑

k=1

a(k)p(k) as long as n is large!
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Step 2. Existence.

To show existence, it suffices to show

(i)
∑
x∈S

1
mx

= 1. (distribution)

(ii)
∑
x∈S

1
mx
P(x , y) = 1

my
, ∀ y . (stationary)
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Step 2.1 To show: (i) (ii) are two inequalities “6”.

• Note:
∑
x
Pm(z , x) = 1, ∀ z . Then

n∑
m=1

(··· )

n ⇒
∑

x∈S

Ez(Nn(x))

n
= 1 (if S is infinite, why? Fubini!)

(It will be direct if we take limit on n then “=” will follow,

however, we cannot apply DCT here (why?) we need a slight

modification)

⇒
∑

x∈S1

Ez(Nn(x))

n
6 1,∀ S1 finite

⇒
∑

x∈S1

1

mx
6 1,∀ S1 finite⇒

∑

x∈S

1

mx
6 1.
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• Note ∑

x∈S
Pm(z , x)P(x , y) = Pm+1(z , y).

n∑
m=1

(··· )/n⇒
∑

x∈S

Ez(Nn(x))

n
P(x , y) =

Ez(Nn+1(y))

n
− P(z , y)

n
.

⇒
∑

x∈S1

Ez(Nn(x))

n
P(x , y) 6

Ez(Nn+1(y))

n
− P(z , y)

n
,∀ S1 finite

⇒
∑

x∈S1

1

mx
P(x , y) 6

1

my
,∀ S1 finite

⇒
∑

x∈S

1

mx
P(x , y) 6

1

my
.
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Step 2.2 To show: (i) (ii) are two equalities “=”.

To show: (ii)
∑
x∈S

1
mx
P(x , y) = 1

my
, ∀ y .

Otherwise, ∃ y0 s.t.
∑

x∈S

1

mx
P(x , y0) <

1

my0

.

Then

1 ≥
∑

y∈S

1

my
>
∑

y∈S

[∑

x∈S

1

mx
P(x , y)

]

=
∑

x∈S

1

mx

[∑

y∈S

P(x , y)

]
(Use Fubini)

=
∑

x∈S

1

mx
a contradiction!
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To show (i):
∑
x∈S

1
mx

= 1.

Note
∑
x∈S

1
mx
≤ 1. Let c be such that

∑
x∈S

c
mx

= 1.

Then
π(x) =

c

mx
, x ∈ S

is a SD. Now, by uniqueness

c

mx
=

1

mx
, ∀x ∈ S .

∴ c = 1. So
∑
x∈S

1
mx

= 1, i.e. (i) follows.
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Corollary 1. An
::::::::::::
irreducible MC with

::::::
finite state

space has a unique SD:

π(x) =
1

mx
, x ∈ S .

e.g.: P (finite Matrix). πP = π. We then solve

(PT − I )πT = 0

though the row operation. Cor 1 says that

• the solution exists and is unique.
• it gives us a way to find mx = Ex(Tx):

mx =
1

π(x)
, x ∈ S .

(∵ mx <∞ ∴ π(x) > 0)
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Corollary 2. Let the chain be
::::::::::::
irreducible, then the

chain has a SD iff it is
::::::::
positive

::::::::::::
recurrent!

Pf.: “⇐”: It’s just the theorem.

“⇒”: Otherwise, all states are either null recurrent or transient (why?),
then in both cases,

lim
n→∞

∑n
m=1 P

m(z,x)
n = 0, ∀ z , x ∈ S .

Let π be the SD. Take x ∈ S , then

π(x) =
∑

z

π(z)Pm(z , x).

n∑

m=1

(· · · )/n⇒ π(x) =
∑

z

π(z)
Ez(Nn(x))

n
.

n→∞+ DCT⇒ π(x) =
∑

z

π(z) · 0 = 0. Contradiction!
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e.g.: P =




q p
q 0 p
q 0 p

. . . . . . . . .


, S = {0, 1, 2, · · · } is

infinite.

Assume: p > 0, q > 0, p + q = 1 (irreducible).

Recall:

• This chain is recurrent iff q > p.

• The chain has a SD iff q > p.

Then, the chain is positive recurrent iff

q > p.

(Once again, in this case, Ex(Tx) = mx = 1
π(x) .)
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Exercise: Consider a general birth & death chain

P =




r0 p0

q1 r1 p1

q2 r2 p2
. . . . . . . . .


 Row sum = 1

Assume it is
::::::::::::
irreducible.

Q.: Determine if it is either
:::::::::
positive

:::::::::::
recurrent,

::::
null

:::::::::::
recurrent, or

::::::::::
transient.
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Corollary 3. Let C be an
::::::::::::
irreducible

:::::::
closed set of

:::::::::
positive

:::::::::::
recurrent states. Then the MC has a unique

SD π concentrated on C :

π(x) =

{
1
mx

x ∈ C ,

0 Otherwise.

Indeed, we can regard {Xn} as a MC on C and
obtain πC (x) = 1

mx
, x ∈ C . Define

π(x) =

{
πC (x) x ∈ C ,

0 Otherwise.

Then it is direct to check that π is a SD on S.
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e.g.: Let S = (C1 ∪ · · · ) ∪ ST (finite or ∞), and

P =

C1 · · ·[ ]
C1 P1 0
... ∗ ∗

, C1 positive recurrent.

Regard {Xn}∞n=0 as a MC on C1. Then, by Thm 3,
πC1

(x) = 1
mx

(x ∈ C1) is the SD. Define

π(x) =

{
πC1

(x) if x ∈ C1,

0 Otherwise.

We may write π = [πC1
, 0]. Check:

πP = [πC1
, 0]

[
P1 0
∗ ∗

]
= [πC1

P1, 0] = [πC1
, 0] = π,

i.e. π is a SD of P .
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Two further notes:

• If no Ci is positive recurrent (i.e. all states in S
are either transient or null recurrent), then the
chain has no SD.

• Let P =

C1 C2 ST





C1 P1 0 0
C2 0 P2 0
ST ∗ ∗ ∗

,

Ci (i = 1, 2): positive recurrent,
πi (i = 1, 2): SD of Pi concentrated on Ci .
Then

π
def
= λπ1 + (1− λ)π2, 0 6 λ 6 1

is also the SD of P .
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§2.4 Periodicity

Recall: For an
::::::::::::
irreducible &

::::::::
positive

::::::::::::
recurrent MC,

lim
n→∞

n∑
m=1

pm(x ,y)

n
= lim

n→∞
Ex(Nn(y))

n =
1

my
= π(y), ∀ y ∈ S ,

i.e. lim
n→∞

1

n

n∑

m=1

Pm =




π
π
...
π


 exist

(S : finite or infinite)

Q.: How about lim
n→∞

Pn?
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Example: P =

[
0 1
1 0

]
, SD: π = [1

2 ,
1
2]. Note:

P2n =

[
1 0
0 1

]
, P2n+1 =

[
0 1
1 0

]

∴ lim
n→∞

Pn does NOT exist.

BUT, both lim
n→∞

P2n and lim
n→∞

P2n+1 exist!

The problem is on the “periodicity” of the chain.
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Definition. The period dx of a state x is the
greatest common divisor (g.c.d.) of

{n > 1 : Pn(x , x) > 0}.

Remarks:

(i) 1 6 dx 6 min{n > 1,Pn(x , x) > 0}.
(ii) If P(x , x) > 0 then dx = 1.

(iii) For Example above, d0 = 2 = d1. Indeed, note:

1 = P2(0, 0) = P4(0, 0) = · · · = P2n(0, 0) = · · · ,
0 = P1(0, 0) = P3(0, 0) = · · · = P2n+1(0, 0) = · · · ,

∴ g.c.d.{n ≥ 1 : Pn(0, 0) > 0} = g.c.d.{2, 4, · · · } = 2.
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Prop. For an irreducible MC, all dx are equal.

Pf.: T ake x , y ∈ S .
∵ The chain is irreducible
∴ x → y & y → x ,

i.e. ∃n1 ≥ 1, n2 ≥ 1 s.t. Pn1(x , y) > 0, Pn2(y , x) > 0
So

Pn1+n2(x , x) > Pn1(x , y)Pn2(y , x) > 0

∴ dx |n1 + n2 (∗) (i.e., dx is a divisor of n1 + n2)

Let Ay
def
= {n > 1 : Pn(y , y) > 0}. Then, for n ∈ Ay ,

Pn1+n+n2(x , x) > Pn1(x , y)Pn(y , y)Pn2(y , x) > 0

∴ dx |n1 + n + n2 Note: n = (n1 + n + n2)− (n1 + n2)
Together with (∗)⇒ dx |n, ∀ n ∈ Ay .

∴ dx |dy

The same argument gives dy |dx . ∴ dx = dy .
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Definition: Consider an irreducible MC.

• Note that all states have

the same period d > 1.

The chain is called periodic with period d > 1.

• If d = 1, we say the chain is aperiodic.

Remark: Consider an irreducible MC. If

P(x , x) > 0 for some x ∈ S ,

then the chain must be aperiodic. (∵ dx = 1 = d)
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Example 1.

P =




0 × 0 0
0 0 × 0
× 0 0 ×
0 × 0 0


 , ×: nonzero entries.

state

:• ••• • • •

• • • • • >

0 MPI Mz m
,

... Mr
time

1y(X ; )={
1 i=mi .mn "imr

o otherwise

.
a > b > C > d

-

It is obvious to see that the chain is irreducible, and

da = 3,

(Note: da = 3 means that the chain from a returns to a in

3m steps, i.e. P3m(a, a) > 0, ∀m > 1.)

∴ Period = 3. 230/323



We may directly compute: Pn, (n = 2, 3, 4, · · · ).
For m = 1, 2, · · · ,

P3m =




× 0 0 ×
0 × 0 0
0 0 × 0
× 0 0 ×


 , P3m+1 =




0 × 0 0
0 0 × 0
× 0 0 ×
0 × 0 0




P3m+2 =




0 0 × 0
× 0 0 ×
0 × 0 0
0 0 × 0


 .

Recall: dx = g.c.d. {n > 1 : Pn(x , x) > 0}.
∴ Period = 3.
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Example 2. Determine the period of an irreducible
birth and death chain:

P =




r0 p0

q1 r1 p1

q2 r2 p2
. . . . . . . . .


 , all px > 0, qx > 0.

• If some rx > 0, then P(x , x) = rx > 0, hence the chain is
aperiodic.

• If all rx = 0, then the chain can return to its initial state
ONLY after an even number of steps.
Then, for a given state x ∈ S , any integer n ≥ 1 such
that Pn(x , x) > 0 must be even.
Then d > 2 must be even.
Note P2(0, 0) = P(0, 1)P(1, 0) = p0q1 > 0.
∴ Period = 2.
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Theorem. Let {Xn}∞n=0 be
::::::::::::
irreducible and

:::::::::
positive

:::::::::::
recurrent with SD π.

(i) If the chain is aperiodic, then

lim
n→∞

Pn(x , y) = π(y), ∀ x , y ∈ S .

(ii) If the chain is periodic with period d > 2, then
for any x , y ∈ S , there exists

r ∈ {0, 1, 2, · · · , d − 1}
which may depend on x and y , s.t.

Pn(x , y) =

{
−−−→
m→∞

dπ(y) if n = md + r ,

= 0 if n 6= md + r ,

where m > 0 is an integer.

Pf.: Pages 75-80 in the textbook.
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Remark: Theorem tells that in case

Period = d ≥ 2,

we are able to determine the limits of

Pmd , Pmd+1, · · · ,Pmd+(d−1) (m→∞).

Precisely, for any given x , y ,

Pmd(x , y), Pmd+1(x , y), · · · ,Pmd+(d−1)(x , y)

are zeros, except that

exactly one of them tends to dπ(y) as m→∞.

You have to figure out which one!
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Example 3. Determine the long term behavior of
Pn for given P .

(a) P =

0 1 2 3





0 1
2

1
2 0 0

1 1
6

1
2

1
3 0

2 0 1
3

1
2

1
6

3 0 0 1
2

1
2

.

Solution:
• Note:

state

:• ••• • • •

• • • • • >

0 MPI mz m
,

... Mr
time

1y(X ; )={
1 i=mi .mn "imr

o otherwise

.
a > b > C > d

÷a a A
Os> 1<>2<>3

∴ irreducible.
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• ∃ x s.t. P(x , x) > 0. ∴ Period = 1.
• Solving π = πP , we get the ! SD

π = [
1

8
,

3

8
,

3

8
,

1

8
].

• Hence, by the theorem,

lim
n→∞

Pn =




π
π
π

π


 =




1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8


 .
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(b) P =

0 1 2 3





0 0 1 0 0
1 1

3 0 2
3 0

2 0 2
3 0 1

3

3 0 0 1 0

.

Solution:
• Note:

0<>1< >2<>3

∴ irreducible.
• Period = 2. (By the previous example)
• Solving π = πP , we get the ! SD: π = [1

8 ,
3
8 ,

3
8 ,

1
8].
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0<>1< >2<>3

By the theorem,

if x − y is even,


P2m+1(x , y) = 0, ∀m,

P2m(x , y) −−−−→
m→∞

2π(y).

If x − y is odd,


P2m(x , y) = 0, ∀m,

P2m+1(x , y) −−−−→
m→∞

2π(y).

Recall: π = [1
8 ,

3
8 ,

3
8 ,

1
8].

∴ lim
m→∞

P2m =

0 1 2 3





0 1
4

0 3
4

0
1 0 3

4
0 1

4
2 1

4
0 3

4
0

3 0 3
4

0 1
4

, lim
m→∞

P2m =

0 1 2 3





0 0 3
4

0 1
4

1 1
4

0 3
4

0
2 0 3

4
0 1

4
3 1

4
0 3

4
0

.
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Chapter 3:

Markov Jump Process
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§3.1 Introduction

• Jump process.

Recall: a MC (discrete-time stochastic process
with the Markovian property):

X (n) ∈ S , n = 0, 1, 2, · · · .
S: finite or countably infinite,

e.g. S = {0, 1, ...,N} (N ≤ ∞).0<>1< >2<>3

state

:
• ÷.- .

.*3•. . .  .

I.
.  -

.

.×
.

. .  .

*,
a

i
1

'
1

1

2•X
4 i

i
i

: amain.
.

'
1

1
1←

•

" •old*
>

0 1 2 3 4 ... time n

state
^

:

4•

.  . - - .  - - - - - -

•o
; ;

3•
: ;
i ,

:
1

2• . . ... ... -••:O;

: :n•÷==I"iffy..÷i÷±•o•••

o••••--o
"

i :
"

it
" >

• En Tz I }
•.• time t
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Consider a continuous-time stochastic process:

X (t) ∈ S , 0 ≤ t <∞,
S: finite or countably infinite.

0<>1< >2<>3

state

:
• ÷.- .

.*3•. . .  .
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− τ1, τ2, · · · : the waiting time to jump (random).
− X (τ1),X (τ2), · · · : where to jump (random).
− Always assume: limn→∞ τn =∞ (No blow-up!)
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• Probability structure.

Def.: x ∈ S is absorbing if

“X (t) = x for some t > 0”⇒“X (s) = x , ∀ s > t”.

state
A

N •÷¥¥=p

? "Him

.

• •• - >
0 t

time
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Given a non-absorbing state X (0) = x ∈ S , we
need to know two things:

(i) Fx(t), t > 0: the distribution of the waiting
time τ1. Note:

Fx(t) = Px(τ1 ≤ t).

(ii) Qxy : the transition prob to jump from a state x
to another state y(6= x):

Qxx = 0,
∑

y∈S
Qxy = 1.

(If x is absorbing, Qxy = δxy =

{
1, for x = y ,
0, otherwise.

)
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For non-absorbing x , we assume:

Px(τ1 6 t,X (τ1) = y) = Px(τ1 6 t)Qxy ,

i.e.

τ1 (the waiting time to jump)

and

X (τ1) (jump to where)

are independent!

state
A

N •¥=#=p

? "¥*

.

• •• - >
0 t

time

rstatey

•
... ... ... ... .

q
.

:
:

n••
:
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time
• .

E, ••t# >
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Similar to the MC (discrete-time), our concern is
to determine the transition function:

Pxy(t)
def
= P(X (t) = y |X (0) = x) = Px(X (t) = y),

i.e., the prob that the process starting at x will be
at y at time t > 0.

Note:

(i)
∑
y
Pxy(t) = 1, Pxy(0) = δxy .

(ii) If initial distribution is known, for instance, it is
given by π0(x), x ∈ S , then

P(X (t) = y) =
∑

x∈S
π0(x)Pxy(t),

or πt = π0P(t) in matrix form.
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• Markov property:

P(X (t) = y |X (s1) = x1, · · · ,X (sn) = xn,X (s) = x)

= P(X (t) = y |X (s) = x),

∀ 0 6 s1 6 · · · 6 sn 6 s 6 t,∀ x1, · · · , xn, x , y ∈ S .

Note:
• We always assume the process is time-homogeneous:

P(X (t) = y |X (s) = x) = P(X (t − s) = y |X (0) = x),

∀ 0 6 s 6 t,∀ x , y ∈ S .

Therefore

P(X (t) = y |X (s) = x) = Pxy (t − s).

• A Markov jump process (MJP)
def
= a continuous-time

jump process with the Markovian property.
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Now, we always consider the MJP.

Q.: How to determine Fx(t) = Px(τ1 ≤ t)?

Recall that Fx(t) is the distribution of τ1 (the
waiting time for a jump to occur!).

To show: τ1 is an exponential rv with density:

f (t) = λe−λt , t ≥ 0; λ
def
=

1

E (τ1)
.

Hence:

Fx(t) = P(τ1 ≤ t) =

∫ t

−∞
f (s) ds = 1−e−λt , t ≥ 0.
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Def.: Let τ be a r.v. taking values in [0,∞). Then
τ is said to be memoryless if

P(τ > s + t|τ > s) = P(τ > t), ∀ s, t > 0,

(i.e., after waiting for time s, the prob for waiting
for another time t has no memory that it already
waits for time s.)

e.g. Model: Wait for an unreliable bus driver.
Then, the waiting time is a memoryless r.v.:

“If we have been waiting for s units of time then the prob
we must wait t more units of time is the same as if we
have not waited at all!”
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Proposition. Let τ be a memoryless r.v. Then τ
is an exponential r.v., and the density is given by

λe−λt , t > 0; λ = 1/E (τ).

Pf.: Let G (t)
def
= P(τ > t). As τ is memoryless,

G (t) = P(τ > t) = P(τ > s + t|τ > s)

=
P(τ > s + t)

P(τ > s)
=

G (s + t)

G (s)
,

i.e.
G (s + t) = G (s)G (t), ∀ s, t > 0.
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Assuming G is differentiable,

G ′(t) = lim
h→0+

G (t + h)− G (t)

h

= lim
h→0+

G (t)G (h)− G (t)

h

= G (t) lim
h→0+

G (h)− 1

h
def
= G (t)α.

Note: G (0) = P(τ > 0) = 1. ∴ G (t) = eαt .

Note: G (t) = P(τ > t) is decreasing. ∴ α < 0. Set
α = −λ (λ > 0). The density function is

f (t) = (1− G (t))′ = λe−λt .

250/323



Proposition. Let X (t), t > 0 be a MJP. For a
non-absorbing state x ∈ S , letting X (0) = x ,

τx
def
= inf{t > 0 : X (t) 6= x}. (first time to jump)

Then, τx is a memoryless r.v.

Pf.:

P(τx > s + r |τx > s)

= P(X (t) = x , 0 6 t 6 s + r |X (t) = x , 0 6 t 6 s)

= P(X (t) = x , s 6 t 6 s + r |X (t) = x , 0 6 t 6 s)

= P(X (t) = x , s 6 t 6 s + r |X (s) = x) (Markovian)

= P(X (t) = x , 0 6 t 6 r |X (0) = x) (time-homog)

= P(τx > r).
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Remarks:

• For a MJP, as τx is memoryless:

P(τx > s + r |τx > s) = P(τx > r),

a state

gl• 0
i.

←r→ .•
:

• i. > time
0 S E N

it looks like that the process starts from s.

• Set qx
def
= 1/E (τx). Then, τx has an exponential

density given by qxe
−qx t (t ≥ 0).
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§3.2 Poisson process

We shall give the definition of Poisson process in
terms of the waiting time.

Setup:

• Let ξn ∼ ξ, n = 1, 2, · · · , be i.i.d. exp. r.v. with
parameter λ:

P(ξ > t) = e−λt , λ = 1/E (ξ).

• Define τ0 = 0, and

τn
def
= ξ1 + ξ2 + · · ·+ ξn, n = 1, 2, · · ·
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For n = 1, 2, · · · ,
ξn ∼ ξ: the waiting time for one arrival.
τn: the waiting time for the nth-arrival.
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For t > 0,

X (t)
def
= max{n > 0, τn 6 t},

i.e., the no of arrival in [0, t].

Then, we get a jump process:

X (t) ∈ {0, 1, 2, · · · }, t > 0.

Q.:

• What’s the density of X (t)? (Poisson with
rate λt!)

• Is X (t) a MJP? (YES!)
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Theorem. X (t) is Poisson with E (X (t)) = λt:

P(X (t) = n) = e−λt
(λt)n

n!
, n = 0, 1, 2 · · · .

Pf.: By definition,

{X (t) = n} = {τn 6 t < τn+1} = {τn+1 > t}\{τn > t}.
Hence,

P(X (t) = n) = P(τn+1 > t)− P(τn > t). (∗)
• n = 0:

P(X (t) = 0) = P(τ1 > t)− 0 = P(ξ1 > t) = e−λt .
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• To show:

P(τn > t) = e−λt
n−1∑

k=0

(λt)k

k!
, (∗∗)

n = 1, 2, · · · .

If so, substituting (∗∗) into (∗) gives the theorem.

Proof of (∗∗) by induction:

n = 1: P(τ1 > t) = P(ξ1 > t) = e−λt . (∗∗) holds.

Letting (∗∗) hold for n ≥ 1, we need to show that
(∗∗) is true for n + 1. Indeed,
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P(τn+1 > t)

= P(τn + ξn+1 > t)

= P(ξn+1 > t) + P(ξn+1 ≤ t, τn + ξn+1 > t)

= e−λt +

∫ t

0

λe−λs · P(τn > t − s) ds (explain later)

= e−λt +

∫ t

0

λe−λs ·
n−1∑

k=0

e−λ(t−s) (λ(t − s)k)

k!
ds

(Use induction assumption!)

= e−λt + e−λt
n−1∑

k=0

λk+1

k!
·
∫ t

0

(t − s)kds

= e−λt + e−λt
n−1∑

k=0

λk+1

k!
· tk+1

(k + 1)

= e−λt + e−λt
n−1∑

k=0

(λt)k+1

(k + 1)!
= e−λt

n∑

k=0

(λt)k

k!
.
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Note (See Durrett P93-103):

Let X ,Y be independent with densities f (·), g(·)
over [0,∞), resp. Then,

P(X < t,X + Y > t) =

∫ t

0

∫ ∞

t−x
f (x)g(y) dydx

=

∫ t

0

f (x)

∫ ∞

t−x
g(y) dydx =

∫ t

0

f (x)P(Y > t − x)dx .

Ya . x=t

toE- x•... ... . •-
×tY=t

• •

.
if R

0 N t
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Remarks:

• Note:

P(X (0) = k) = δ0k =

{
1 k = 0,
0 otherwise.

∴ P(X (t) = n) =
∞∑

k=0

P(X (0) = k)P(X (t) = n|X (0) = k)

=
∞∑

k=0

δ0kPkn(t)

= P0n(t).

∴ P0n(t) = e−λt
(λt)n

n!
, n = 0, 1, 2 · · · .

• E (X (t)) = λt is the expected no of arrivals
in [0, t]. λ is the arrival rate.
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Corollary. The Poisson process {X (t)}t>0 with
rate λt satisfies:

(i) X (0) = 0.

(ii) For 0 < s < t, X (t)− X (s) has Poisson distribution with
mean λ(t − s), and is independent of X (s).

(iii) For 0 6 t1 6 · · · 6 tn,

X (t2)− X (t1), · · · ,X (tn)− X (tn−1)

are independent.

Also, {X (t)}t>0 satisfies the Markov property with

E (X (t)) = λt, Var(X (t)) = λt.

Remark: Very often, (i)(ii)(iii) are also used as the
definition of Poisson process!
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IDEA of Proof:

• (i): Obvious.

• (ii): For 0 < s < t,

P(X (t)− X (s) = n)

=
∑∞

m=0P(X (s) = m,X (t) = n + m)

=
∑∞

m=0P(X (s) = m)P(X (t) = n + m|X (s) = m)

=
∑∞

m=0P(X (s) = m)Pm,n+m(t − s)

=
∑∞

m=0P(X (s) = m)P0,n(t − s)

= P0,n(t − s)

= e−λ(t−s) [λ(t − s)]n

n!
.
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X (t)− X (s) is independent of X (s) means

P(X (t)−X (s) = n,X (s) = m) = P(X (t)−X (s) = n)P(X (s) = m),

equivalently

P(X (t)− X (s) = n|X (s) = m) = P(X (t)− X (s) = n).

Indeed, note

LHS = P(X (t) = m+n|X (s) = m) = Pm,m+n(t−s) = P0,n(t−s).

• (iii): Omit the proof. Intuitively clear (See P94-95
in Durrent Chapter 3)

• For Markov property: Check

P(X (t) = y |X (t1) = x1, · · · ,X (tn) = xn,X (s) = x)

= P(X (t) = y |X (s) = x)

for any 0 6 t1 < t2 < · · · < tn < s 6 t.
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Sum: We see that the Poisson process

X (t), t ≥ 0,

turns out to be a MJP (continuous-time JP with
the Markov property) with X (0) = 0 and the
transition function:

For any t ≥ 0 and any x , y ∈ S = {0, 1, 2 · · · },

Pxy (t) =





0 if x > y ,

= P0,y−x(t) = e−λt
(λt)y−x

(y − x)!
if x ≤ y .

Here, λ > 0 is the arrival rate.
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§3.3 Basic properties of MJP

Let {X (t)}t>0 be a MJP with

Pxy(t) = P(X (t) = y |X (0) = x).

Proposition. (Chapman-Kolmogorov equation)

Pxy(t + s) =
∑

z

Pxz(t)Pzy(s).

In matrix form, letting P(t) = [Pxy(t)], the above is

P(t + s) = P(t)P(s).

Remark: It is similar to the discrete case

Pm+n(x , y) =
∑

z∈s

Pm(x , z)Pn(z , y)

Pm = Pm · Pn (matrix form)
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Pf.: Note:

Pxy (t + s) =
∑

z

Px(X (t) = z ,X (t + s) = y)

and

Px(X (t) = z ,X (t + s) = y)

= Px(X (t) = z)Px(X (t + s) = y |X (t) = z)

= Px(X (t) = z)P(X (t + s) = y |X (0) = x ,X (t) = z)

= Px(X (t) = z)P(X (s) = y |X (0) = z) (Markov+Time-Homg)

= Pxz(t)Pzy (s).

It follows that

Pxy (t + s) =
∑

z

Pxz(t)Pzy (s).
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Note: Assume P(t) is differentiable in [0,∞), and

D
def
= P ′(0).

Then, from the C.-K. equation

P(t + s) = P(t)P(s),

one has

d

ds

∣∣∣∣
s=0

(·)⇒ P ′(t) = P(t)D,

d

dt

∣∣∣∣
t=0

(·)⇒ P ′(s) = DP(s).

∴ P ′(t) = P(t)D = DP(t), t ≥ 0.
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Fact I.

D = P ′(0)
def
= [qxy ]x ,y∈S =




−+ + + · · ·
+− + + · · ·
+ + − + · · ·
...

... . . . . . . . . .


 ,

called the rate matrix.

+ : entry ≥ 0; − : entry ≤ 0.
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Indeed, note:

qxy = P ′xy (0)

= lim
h→0+

Pxy (h)− Pxy (0)

h

= lim
h→0+

P(X (h) = y |X (0) = x)− P(X (0) = y |X (0) = x)

h

=





lim
h→0+

P(X (h) = y |X (0) = x)−1

h
(6 0) if x = y ,

lim
h→0+

P(X (h) = y |X (0) = x)−0

h
(> 0) if x 6= y .
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Fact II. Each row sum of D is zero:
∑

y∈S
qxy = 0, ∀ x ∈ S . (∗)

Indeed, note:
∑
y∈S

Pxy(t) = 1,∀ t ≥ 0. ∴ d
dt

∣∣
t=0
⇒ ∑

y∈S
P ′xy(0) = 0.

Observe: (∗) means qxx +
∑
y 6=x

qxy = 0, that is,

−qxx︸︷︷︸
the rate to jump away from x

=
∑

y 6=x

qxy︸︷︷︸
the rate to jump to y from x

.
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Recall:

• E (τx) is the mean waiting time to jump away from x , so
qx = 1

E(τx )
is the rate of change. Note:

qx = 0 iff E (τx) =∞, iff x is absorbing.

• Q = [Qxy ] is the Markov matrix introduced before.
Qxx = 1 iff x is absorbing. For non-absorbing x ,

Qxx = 0,
∑

y 6=x

Qxy = 1,

and in such case, Qxy is understood to be the
proportion that the chain will jump to y from x .

Main Theorem:

−qxx = qx ; qxy = qxQxy for y 6= x .
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Pf.: Case x is absorbing (qx = 0,Qxy = δxy):

Pxy(t) = δxy . ∴ qxy = P ′xy(0) = 0.

Conclusion is then TRUE.

Case x is non-absorbing:

Pxy(t) = Px(X (t) = y)

= Px(τx > t,X (t) = y)︸ ︷︷ ︸
I : no jump yet

+Px(τx 6 t,X (t) = y)︸ ︷︷ ︸
II : it has jumped

.
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For I (no jump yet):

% . x=t

t•E- x•... ... ... -
×ty=t

•
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.
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0 t Tn
time

restate
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N•
:

:

:

• : • > time
0
see

t
*ts#

I = Px(τx > t,X (t) = y)

=

{
0 for y 6= x ,

Px(τx > t) = e−qx t for y = x

= δxye
−qx t .
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For II (it has jumped):

% . x=t
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II = Px(τx 6 t,X (t) = y)

=
∑

z 6=x

Px(τx 6 t,X (τx) = z ,X (t) = y)

=
∑

z 6=x

∫ t

0

Px(τx = s)QxzPzy(t − s)ds

=
∑

z 6=x

∫ t

0

qxe
−qxsQxzPzy(t − s)ds.
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∴ Pxy(t) = I + II

= δxye
−qx t +

∑
z 6=x

∫ t

0 qxe
−qxsQxzPzy(t − s)ds

= δxye
−qx t + qxe

−qx t∑
z 6=x

∫ t

0 QxzPzy(u)eqxudu

(Change of variable: t − s = u)

∴ P ′xy(t) = −qxPxy(t) + qx
∑

z 6=xQxzPzy(t)

∴ P ′xy(0) = −qxPxy(0) + qx
∑

z 6=xQxzPzy(0)

= −qxδxy + qz
∑

z 6=xQxzδzy

= −qxδxy + qxQxy

=

{
−qx + 0 = −qx for y = x ,

qxQxy for y 6= x .
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Example 1. Poisson process with rate λt:

P0n(t) = P(X (t) = n|X (0) = 0) = e−λt
(λt)n

n!
, n = 0, 1, 2, · · ·

P(t) =




e−λt e−λt λt
1!
e−λt (λt)2

2!
· · ·

0 e−λt e−λt λt
1!
· · ·

0 0
. . . . . .

0 0 0
. . .




(transition function)

Then

D = P ′(0) =



−λ λ 0 · · · · · ·
0 −λ λ 0 · · ·
0 0

. . . . . . . . .


 , Q =




0 1 0 · · · · · ·
0 0 1 · · · · · ·
0 0

. . . . . . . . .


 .
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Example 2. Car check up with 3 operations in
sequence:
(1) Engine time up → (2) air condition repair →
(3) break system replacement → (4) leave.

Assume that this is a MJP with the mean time in
each operation 1.2, 1.5, 2.5 hours.

S = {1, 2, 3, 4}. The rate of moving up to the next
stage is 1

1.2 , 1
1.5 , 1

2.5 . Thus,

D =




− 1
1.2

1
1.2 0 0

0 − 1
1.5

1
1.5 0

0 0 − 1
2.5

1
2.5

0 0 0 0



, Q =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


 .
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Further questions:

(a) What is the prob that after 4hour the car is in step (3)?
That is to find P(X (4) = 3|X (0) = 1).

(b) What is the prob that after 4hour the car is still in the
shop? That is to find P(X (4) = 4|X (0) = 1).

Generally, need to find

P(t) =




P11(t) P12(t) P13(t) P14(t)
P21(t) P22(t) P23(t) P24(t)
P31(t) P32(t) P33(t) P34(t)
P41(t) P42(t) P43(t) P44(t)


 .

Method: Solve the linear ODE system:

P ′(t) = DP(t), P(0) = I .
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Example 3. A barbar shop with two barbars and
two waiting chains. Customers arrives at a rate 5
per hr. Each barbar serves at a rate 2 per hr. If the
waiting chains are full the customer will leave.

X (t)
def
= the no of customers in the shop.

S = {0, 1, 2, 3, 4}.

D =

0 1 2 3 4





0 −5 5 0 0 0
1 2 −7 5 0 0
2 0 4 −9 5 0
3 0 0 4 −9 5
4 0 0 0 4 −4

, Q =




0 1 0 0 0
2
7 0 5

7 0 0

0 4
9 0 5

9 0

0 0 4
9 0 5

9

0 0 0 1 0



.
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Further questions:

(a) In the long run, what is the prob to have one
customer, two customers, etc.? That is to find

lim
t→∞

P(X (t) = k), k ∈ S .

(b) Find the expected time for it to be full, counting
from the opening time. That is to find

E (Ty),

where Ty = inf{t : X (t) = y ,X (0) = 0}.
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How to solve:

P ′(t) = DP(t), P(0) = I .

Case when S is finite:

P(t) = etD
def
=

∞∑

n=0

(tD)n

n!
(convergent!).

Informal Proof: At t = 0, etD = e0D = I
(Convention: 00 = 1, D0 = I ), and for t > 0,

(etD)′ =
∞∑

n=1

tn−1Dn

(n − 1)!

= D

[
∞∑

n=1

(tD)n−1

(n − 1)!

]

= DetD . 281/323



Example. Let D =

[
−1 1
2 −2

]
. Q.: Find P(t).

Sol.: Look for D = Q diag {λ1, λ2}Q−1.

(i) Eigenvalues: det(D − λI ) = 0,

i.e., 0 = det

[
−1− λ 1

2 −2− λ

]
= (−1− λ)(−2− λ)− 2,

i.e., λ2 + 3λ = 0. ∴ λ = 0,−3.

(ii) Eigenvectors: λ = 0 : D − λI =

[
−1 1
2 −2

]
, e1 =

[
1
1

]
.

λ = −3 : D − λI =

[
2 1
2 1

]
, e2 =

[
1
−2

]
.

Let Q
def
= [e1, e2] =

[
1 1
1 −2

]
, Q−1 =

[
2
3

1
3

2
3
−1

3

]
. Then,

[
0 0
0 −3

]
= Q−1DQ, i .e., D = Q

[
0 0
0 −3

]
Q−1.
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Hence

P(t) = etD =
∞∑

n=0

(tD)n

n!
= Q



∞∑

n=0

(
t

[
0 0
0 −3

])n

n!


Q−1

= Q

[∑∞
n=0

0n

n!
0

0
∑∞

n=0
(−3t)n

n!

]
Q−1

=

[
2
3

1
3

2
3

1
3

]
+ e−3t

[
1
3
−1

3

−2
3

2
3

]
,

∴ lim
t→∞

P(t) =

[
2
3

1
3

2
3

1
3

]
, namely,

lim
t→∞

P(X (t) = 0) = 2/3, lim
t→∞

P(X (t) = 1) = 1/3.

Remark: Set π = [2/3, 1/3]. Then, πP(t) = π, ∀ t ≥ 0, so π

is a SD for P(t).
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§3.4 The birth and death process

Setup:

Let S = {0, 1, · · · },

D = [qxy ] =




−λ0 λ0 0 0 0
µ1 −(λ1 + µ1) λ1 0 0
0 µ2 −(λ2 + µ2) λ2 0

0 0 . . . . . . . . .


 .

Assume that all λx , µx 6= 0 (> 0).

λx : birth rate, µx : death rate

rate Ma rate Tn
H - KK § xtl
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Example 1. Revisit the Poisson process.

We already derived earlier P(t) = [Pxy(t)] for a
Poisson process X (t), t > 0, using

X (t) = max{n : τn 6 t}.

We further have derived:

P ′(t) = P(t)D, D =



−λ λ
−λ λ

. . . . . .


 ,

λ > 0: arrival rate.
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Here we want to derive the inverse:

Proposition. If X (t) is a MJP with rate matrix

D =



−λ λ
−λ λ

. . . . . .


 ,

then X (t) has the Poisson distribution, i.e.

Pxy(t) =

{
e−λt (λt)(y−x)

(y−x)! if y > x > 0,

0 otherwise.

It is another way of obtaining the Poisson process.
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Pf.: Recall

P ′xy(t) =
∑

z

Pxz(t)qzy .

Observe

(i) If y = 0, then

P ′x0(t) = −λPx0(t), Px0(0) = δx0.

∴ Px0(t) = δx0e
−λt .

(ii) If y ≥ 1, then

P ′xy(t) = λPx ,y−1(t)− λPxy(t), Pxy(0) = δxy .

∴ Pxy(t) = e−λtδxy +

∫ t

0

e−λ(t−s)λPx ,y−1(s) ds.
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Claim #1. Pxy(t) = 0, ∀ y < x . Indeed,

if y = 0 (x ≥ 1), Px0(t) = 0.

if y = 1 (x ≥ 2),

P ′x ,1(t) = λPx ,0(t)− λPx ,1(t) = −λPx ,1(t), Px ,1(0) = 0.

∴ Px ,1(t) = 0.

If y = 2 (x ≥ 3),

P ′x ,2(t) = λPx ,1(t)− λPx ,2(t) = −λPx ,2(t), Px ,2(0) = 0.

∴ Px ,2(t) = 0.

Inductively,
Pxy (t) = 0, ∀ x > y ≥ 0.
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Claim #2. Pxy(t) = e−λt (λt)y−x

(y−x)! , ∀ y ≥ x ≥ 0.

Indeed, let x ≥ 0 be fixed.
For y = x ,

Pxx(t) = e−λt +

∫ t

0

e−λ(t−s)λPx ,x−1(s)︸ ︷︷ ︸
=0

ds = e−λt .

For y = x + 1,

Px ,x+1(t) = e−λt δx ,x+1︸ ︷︷ ︸
=0

+

∫ t

0

e−λ(t−s) λPx ,x(s)︸ ︷︷ ︸
=e−λs

ds

= · · · = e−λtλt.

Inductively, we get the desired result.
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Exercise:

(1) Extend the above to

D =




−λ0 λ0

−λ1 λ1

−λ2 λ2
. . . . . .


 , (see. P.98).

It is a general pure birth process.

(2) Think about the more general BD process:

D =




−λ0 λ0 0 0 0
µ1 −(λ1 + µ1) λ1 0 0
0 µ2 −(λ2 + µ2) λ2 0

0 0 . . . . . . . . .


 .
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Example 2. Branching Process:

– A collection of particles

– each waiting to
either split into two particles with prob p
or vanish with prob (1− p)

– the waiting time is exp. r.v. with rate λ.

X (t)
def
= be the no of particles at time t.

Q.: Find the rate matrix D.
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Lemma. Let ξ1, · · · , ξn be independent r.v. having
exponential distribution with rate α1, · · · , αn, resp.
Then,

min{ξ1, · · · , ξn}
is an exponential r.v. with rate

α1 + · · ·+ αn,

and for each k = 1, · · · , n

P(ξk = min{ξ1, · · · , ξn}) =
αk

α1 + · · ·+ αn
.

If so, then
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Q =




1 0 · · ·
1− p 0 p

1− p 0 p
. . . . . . . . .


 (Markov matrix for state transition),

D =




0 0 0
(1− p)λ −λ pλ

2λ(1− p) −2λ 2λp
3λ(1− p) −3λ 3λp

. . . . . . . . .




(rate matrix).

Indeed,
• Let X (0) = x , and ξ1, · · · , ξx be the time

:::
any

::::
one

::
of

:::
the

::::::::
particles

::::
splits

:::
or

:::::::::
disappears.

• At time τ1 = min{ξ1, · · · , ξx}, the no of particles will be x + 1 or
x − 1.

• By lemma above, τ1 is an exp. r.v. with rate λx :

:::
the

::::::
portion

:::
to

:::::
x + 1 =p·λx ;

:::
the

:::::::
portion

::
to

:::::
x − 1 =(1− p)·λx .
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rater rateln
AltR § xtl

Xnetheratetojump awayfrom -r

train

.proh=tptranprokp
n.gs Nil > at ,due to one

due to  one

particle - particle
disappearing splitting

λx = the rate to jump away from x

p · λx = the rate to jump to x + 1

(Birth rate)

(1− p) · λx = the rate to jump to x − 1

(Death rate)
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Proof of Lemma:

P(min{ξ1, · · · , ξn} > t)

= P(ξ1 > t, · · · , ξn > t)

= P(ξ1 > t)× · · · × P(ξn > t)

= e−α1t × · · · × e−αnt

= e−(α1+···+αn)t .

To consider P(ξk = min{ξ1, · · · , ξn}), W.L.G. take
k = 1. Set

η = min{ξ2, · · · , ξn}.
Then by above, η is an exp.r.v. with rate

β1
def
=

n∑

y=2

αy .
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P(ξ1 = min{ξ1, · · · , ξn})
= P(ξ1 6 η)

=

∫∫

x6y

α1e
−α1x · β1e

−β1ydxdy

=

∫ ∞

0

(∫ ∞

x

· · · dy
)
dx

=
α1

α1 + β1

=
α1

α1 +
∑n

y=2 αy

=
α1

α1 + α2 + · · ·+ αn
.
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For instance, consider ξ1, ξ2 only:

P(ξ1 = min{ξ1, ξ2}) = P(ξ1 6 ξ2)

=

∫∫

x6y

α1e
−α1x · α2e

−α2ydxdy

= · · · =
α1

α1 + α2
.

rater rateln
AltR * xtl

Xkttheratetojump awayfrom -r

train

.prob=tptranprokp
x. 12 Nil > at ,due to one

due to  one

particle - particle
disappearing splitting

Myth
)

f ry
xey y=n

q
,

1 I
I

>

kc
{ , )

0 ×
as

×¥y=§dx fdy ...

R
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Remark: Suppose that we allow new particles to
immigrate into the system at rate α, and then give
succeeding generation.

η
def
= the first time a new particle arrives.

τ1 = min{ξ1, · · · , ξx , η}: the waiting time to change.

the rate of changing away from x particles = xλ + α.v

D =




−α α
(1− p)λ −(λ + α) pλ + α

2(1− p)λ −(2λ + α) 2pλ + α

0
. . . . . . . . .




See the textbook P92.
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Example 3. Queuing Model.

X (t)
def
= the no of persons on the line at time t

waiting for service.

{
arrival rate λ : Poisson
service rate µ: exponential distr

There are several models for queueing.
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• M/M/1 queue:

M stands for memoyless,

1st M stands for waiting time for the arrival,

2nd M stands for waiting time for service,

The last number is for the number of servers.

D =



−λ λ 0 0
µ (−λ + µ) λ 0

0 . . . . . . . . .


 .
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• M/M/k queue (k servers):

Note: µn =

{
nµ if n 6 k ,
kµ if n > k .

D =




−λ λ
µ −(µ + λ) λ

2µ −(2µ + λ) λ
0

. . . . . . . . .
kµ −(kµ + λ) λ

kµ −(kµ + λ) λ0 . . . . . . . . .




.
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• M/M/∞ queue (∞ servers):

D =




−λ λ
µ −(µ + λ) λ

2µ −(2µ + λ) λ
. . . . . . . . .




arrival rate = λ, service rate = µ,

X (t)
def
= the no of customers on the line at time t.

(e.g., in the telephone exchange, this is a continuous-time

version of a previous example in the Markov chain).

Q.: Find Pxy(t) and lim
t→∞

Pxy(t).
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Lemma. Let Y (t) be a Poisson process with rate
λ. Then for 0 6 s 6 t (t fixed),

P(τ1 6 s|Y (t) = 1) =
s

t
,

i.e. the density function is 1
t on [0, t], namely, given

that the arrival (one) is within [0, t], the arrival time
is a uniform distr on [0, t].

Note: This is a special case of Ex 6 with Y (t) = n.
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Pf.: For 0 6 s 6 t,

P(τ1 6 s|Y (t) = 1)

= P(Y (s) = 1|Y (t) = 1)

=
P(Y (s) = 1,Y (t) = 1)

P(Y (t) = 1)

=
P(Y (s) = 1,Y (t)− Y (s) = 0)

P(Y (t) = 1)

=
e−λs (λs)

1! · e−λ(t−s) (λ(t−s))0

0!

e−λt (λt)
1!

=
s

t
.
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Assume X (0) = x .

Y (t)
def
= the total no that arrived in time (0, t].

Let

X (t) = R(t) + N(t),

R(t)
def
= the no of the original x (at t = 0) that

are still being served,

N(t)
def
= the no of those from Y (t) that are still

being served.
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Fact 1. R(t), i.e., the no of the original x (at
t = 0) that are still being served,

is a binomial r.v.:

P(R(t) = k) =

(
x
k

)
(e−µt)k(1− e−µt)x−k ,

0 ≤ k ≤ x ,

x = the total no at t = 0,

e−µt =
::::::::::::::::::::::
the success prob of still being served.
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Fact 2. Recall: Y (t) is the total no that arrived in
time (0, t]. We want to consider

P(N(t) = n|Y (t) = k).

Note: Fix t.
• Given Y (t) = k , N(t) should be a binomial r.v., but we

have to find “the success prob”:

pt = P(N(t) = 1|Y (t) = 1).

• For one that arrived at time s ∈ (0, t], the prob of still
being served at time t is e−µ(t−s).
• By lemma, the arrival time s subject to one arrival in

(0, t] is uniform dist 1/t.
• Then the prob that he is still being served at time t is

pt =

∫ t

0

1

t
· e−µ(t−s)ds =

1− e−µt

µt
.
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Hence,

P(N(t) = n|Y (t) = k) =

(
k
n

)
pnt (1− pt)

k−n,

0 ≤ n ≤ k .

∴ P(N(t) = n) =
∞∑

k=n

P(Y (t) = k ,N(t) = n)

=
∞∑

k=n

P(Y (t) = k)P(N(t) = n|Y (t) = k)

= · · ·

=
(λtpt)

n

n!
e−λtpt . (see P101)

The same as in last Chap (P55).
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We conclude that (Recall X (t) = R(t) + N(t))

Pxy (t) = Px(X (t) = y)

=

min{x ,y}∑

k=0

Px(R(t) = k)P(N(t) = y − k)

=

min{x ,y}∑

k=0

(
x
k

)
e−kµt(1− e−µt)x−k

(λtPt)
y−ke−λtpt

(y − k)!
.

For t →∞, all the terms vanish except k = 0:

lim
t→∞

Pxy (t) = e−λ/µ
(λ/µ)y

y !
(tpt → 1/µ as t →∞).

Note: Compare it with the “telephone exchange” example
last chapter.
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§3.5 Limiting properties of MJP

The definitions of

– stationary distribution (SD)

– recurrence or transience

– etc

are the same as Markov chain.

Let us only sketch some of them.
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• SD:

Let
X (t), t > 0,

be a MJP.

Def.: π is called a SD if

(i) (distribution)

π(y) > 0,∀ y ∈ S ;
∑

y

π(y) = 1.

(ii) (stationary)∑

x∈S
π(x)Pxy(t) = π(y),∀ y ∈ S ,∀ t > 0.
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How to find the SD π?

In fact,

0 =

(∑

x

π(x)Pxy(t)

)′
=
∑

x

π(x)P ′xy(t).

(Note: there is a technical point to interchange
∑
x

and (·)′

for the infinite sum)

Let t → 0+, then
∑
x
π(x)qxy = 0, i.e. in matrix

form
πD = 0,

where D = [qxy ] is the rate matrix. The converse is
also true.
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Example. Find the SD of the birth and death
process with rate

D =




−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2
. . . . . . . . .


 .

313/323



Sol.: Let π = (x0, x1, · · · ). πD = 0 is

[x0, x1, · · · ]



−λ0 λ0

µ1 −(µ1 + λ1) λ1

. . . . . . . . .


 = [0, 0, · · · ].

Hence{
−λ0x0 + µ1x1 = 0,
λk−1xk−1 − (λk + µk)xk + µk+1xk+1 = 0, k ≥ 1.

Note: For k ≥ 1,

λkxk − µk+1xk+1 = λk−1xk−1 − µkxk
= · · · = λ0x0 − µ1x1 = 0.

∴ xk = λk−1

µk
xk−1 = · · · = λk−1

µk
· λk−2

µk−1
· · · λ0

µ1
x0,

∴ xk = βkx0, βk
def
=
λ0 · · ·λk−1

µ1 · · ·µk
(k ≥ 1).
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Formally,
∞∑
k=0

xk = (
∞∑
k=0

βk)x0 (Convention: β0 = 1).

Then,

• if β
def
=

∞∑
k=0

βk <∞, then choosing x0 = 1
β ,

π =

(
1

β
,
β1

β
,
β2

β
, · · ·

)
is a SD.

• if
∞∑
k=0

βk =∞, then, no SD!
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Exercise: Use this to check the queue models:

M/M/1, M/M/2, M/M/∞.

For instance, M/M/∞ case:{
λk = λ (k > 0)
µk = kµ (k > 1)

∴ βk =
(
λ0

µ1

)
· · ·
(
λk−1

µk

)
= λk

k!µk .

∑

k≥0

βk = eλ/µ.

∴ π =


e−

λ
µ , e−

λ
µ
λ

µ
,
e−

λ
µ (λµ)2

2!
, · · · ,

e−
λ
µ (λµ)k

k!
, · · ·


 .

“the same as the one by looking for the limit
distribution lim

t→∞
Pxy(t)”
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• Recurrence and transience.

τ1
def
= the first time to jump

Ty
def
= min{t > τ1 : X (t) = y} (hitting time)

(=∞ if X (t) 6= y ,∀ t > τ1)

ρxy
def
= Px(Ty <∞)

(the prob that the process starting from x eventually hits y)

Recurrent: ρyy = 1.
Transient: ρyy < 1.
Process is irreducible: ρxy > 0, ∀ x , y ∈ S .
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Let Q be the matrix in the MJP, i.e.

Px(τ1 6 t,X (τ1) = y) = Fx(t)Qxy , y 6= x ,

Fx(t) = 1− e−qx t .

Assume irreducible, i.e. qx > 0, ∀ x . Then

P(X (τ1) = y |X (0) = x) = Qxy(=
qxy
qx

), ∀ y 6= x .

Let τ0 = 1, and

Zn = X (τn), n = 0, 1, 2, · · ·

(Only count the jump each time, but ignore the
length of waiting time).
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Then,

{Zn}∞n=0 is a Markov chain with Q as tran-
sition matrix.

Note:

Ty
def
= inf{t > τ1 : X (t) = y} <∞

iff

T ′y
def
= inf{n > 1 : Zn = y} <∞ (as Markov chain).

∴ ρxy for {Zn}∞n=0 is the same as ρxy for {X (t)}t>0.

∴To check recurrent/transience,

we need only consider Q!
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Example: In the birth & death process

Q =




0 1
µ1

λ1+µ1
0 λ1

λ1+µ1
µ2

λ2+µ2
0 µ2

λ2+µ2
. . . . . . . . .




def
=




0 1
q1 0 p1

q2 0 p2
. . . . . . . . .


 .

It follows from Chapter 1 (P33) that the chain is
recurrent iff

∞∑

n=1

µ1 · · ·µn
λ1 · · ·λn

=
∞∑

n=1

q1 · · · qn
p1 · · · pn

=∞.
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• Long-run behavior.

Let mx
def
= Ex(Tx) (the mean return time).

– Null recurrent: mx =∞
– Positive recurrent: mx <∞. In this case

π(x) =
1

qxmx
. (∗)

Intuitive Proof of (∗):

– In [0, t] for large t, the process will visit x for t
mx

times and the average time staying at x (waiting
time to jump way) per visit is 1/qx .

– The total time spent in x during [0, t] is t
mx
· 1
qx

.

– The proportion of time spent in x is 1
qxmx

.
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Note: Any MJP is aperiodic.

For an irreducible, positive recurrent MJP,

lim
t→∞

Pxy(t) = π(y) =
1

qymy
, x , y ∈ S .
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The end of lectures
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