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Chapter O:
Review on probability



§0.1: Probability

Perform an experiment:

An outcome: a particular state w
Sample space: the set of all outcomes, 2
An event: a subset of 2,e.g., A CQ
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Examples:

1. Toss a coin.

w1 = H,CUQ =T
Q={H, T} ={w,ws}
all possible events: A=0,Q,{H},{T}
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2. Toss 3 coins.
=(H,H, H),wy = ..., -+ ,wg =.
= {(H,H,H),(H,H, T) (H, T, H) (T,H, H),
(H, T, T),(T,H, T),(T, T,H),(T, T, T)}

d f b n
Want an event A = “exactly 2 heads occur”.
Then,

A={(H,H,T),(H, T,H),(T,H, H)}
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Probability measure P: a function that assigns
real values in [0, 1] to events, satisfying

(i) P(Q) =1
(i) 0 < P(A) < 1,VA

(i) P(U A) = > P(A), V{A;}_; which is disjoint
i=1 i=1

(n finite or infinite)
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Probability space (L2, F, P):

(i) F is an event space, i.e. a collection of events
one is interested in, satisfying

(a) Qe F
(b) If A€ F then A€ F
(c)IfAie F,i=1,2,..., then |JA €F

i=1
F is a o-field over 2 in measure theoretical
term.

(i) P: F — [0,1] is a probability measure.
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Examples:

1. Given €, the largest o-field is the set of all
subsets of 2.

2. Given €, the smallest o-field is F = {®, Q}.

10/323



Conditional probability: A, B are two events, the

probability that B happens given that A occurs is

P(AN B)
P(A)

P(B[A) =

Note:
e A, B are independent if

P(B|A) = P(B),i.e. P(AN B) = P(A)P(B).

o Let A be a fixed event,

Pa(-) < P(-|A)

is called the conditional probability measure.

11/323



Theorem. Let Q = U A; where Ay, ..

disjoint events. Then for any event B

VY
ol ) () )
WEB

(i) P(B) = §P<B|A,-)P<A,->

i) P(A;|B) = P(ANB) __ n'D(B|Ai)P(Ai)
(i) PIAIB) = e > P(BIA)P(4)

(Bayes' formula)

LA, are
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Note:

In many practical applications, we are given
P(B|A;) and P(A;), and we want to find P(A;|B),
i.e. to find the probability of the “causes”
Ai(i=1,2,...,n) subject to the outcome B.

VY
Q. () )
IRED
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Example: P(B) = P(B|A)P(A) + P(B|AC)P(AC)
(B is caused by either A or A°)

A B Q

O

Proof: B = (BN A)U (B N A®)
P(B) = P(BNA) + P(B N AS)
= P(B|A)P(A) + P(B|A)P(AS). [



One more example:

Suppose that we have 3 cards that are identical
in form, except that both sides of the first card
are colored red, both sides of the second card
are colored black, and one side of the third card
is colored red and the other side black. The 3
cards are mixed up in a hat, and 1 card is
randomly selected and put down on the ground.

If the upper side of the chosen card is colored
red, what is the probability that the other side is
colored black?
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Sol.: Denote

RR®the event that the chosen card is red-red

BBd:efthe event that the chosen card is black-black
RBd:efthe event that the chosen card is red-black

Rt he event that the upper side of the chosen card is red

Then
P(RBIR) = BB NR) (PI;](BFS )
- P(RIRB)P(RB)
N P(R|RR)P(RR) + P(R|BB)P(BB) + P(R|RB)P(RB)
1.1
EREIn T

Wl
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§0.2 Random variables and distributions

Example: Toss a coin n-times.

Q={w=(w,wa...,wp) wj=Hor T}
f of Q =2"

P&} = o

Let X denote the number of heads,

then X takes values in {0,1,2,..., n},
Let k=0,1,...,n, then X = k means
the event that we get kK number of heads,
P(X = k) = %
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Random variable: A random variable (r.v.) X on
(Q, F, P) is to assign an outcome with a real
number

X: Q=R
Qo>w— X(w)eR

Note: Let Rx = the set of all possible values of X

on €2, then Ry is either “discrete” or “continuous’:

Case 1: R, is a discrete set. In this case, X is called
a discrete r.v.

Case 2: R, is an interval of R or itself. In this case,
X is called a continuous r.v.
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Discrete random variable: Assume
X(Q) = {k}\, (N finite or infinite)
Then the values
pr =P(X =k),(k=0,1,...,N)
is called the probability density function (p.d.f.).

Note: {X =k} E{weQ: X(w)=k}eF
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Examples (Important!)

1. Binomial distribution

We perform n independent trials. At each trial,
the prob of success is p,
and the prob of failure is 1 — p.

Let X denote the number of successes in n
trials. X has the p.d.f.

n

P(X = k) = (k)pk(l —p)"k0<k<n.

def
= B(n,p)
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2. Poisson distribution:

For instance, X counts the number of arrivals in
a unit time with rate of arrivals given by A > 0.

Theorem: For each k =0,1,---

) n e A
lim < >pk(1—p) k—e ’\F

n—o0,np=>\ k

Note: Therefore, the Poisson distribution can
be used to approximate the Binomial distribution
when p is small and n is large compared to k.
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3. Geometric distribution:

PX=k)=p(1-p)tk=12,...

is the prob that the first occurrence of success
requires k independent trials, each with success
probability p.

X denotes the number of trials for the first
success.
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Continuous random variable:
If
b
Pla< X <b)= / F(x)dx,

then f is called a density function of X.

Note:
the event “a < X < b' & {weQ:a< X(w) < b}
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Examples (Important!)

1. Uniform distribution:

=, a<t<b
f(t) =
0, otherwise
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2. Exponential distribution:

e M t>0
f(t) = € -
0, t<0
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3. Normal distribution:

1 (flt) def
f(t) = e = N(u,o
0= = (1.0°)

N(0, 1): standard normal density.
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Exercise: Assume X, Y are two independent
continuous (or discrete) r.v. with densities f, g (or

(Px), (qk))-

Find the density function for the random variable
Z=X+Y.
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§0.3 Expectation and variance

The expectation (or mean) of X:

= kak or / tf(t)dt
k —00
The 2" moment of X:
E(X?) = Zkzpk, or / t>f(t)dt
k —00

The variance of X:

o? = Var(X) = E(X — p)? = E(X?) — 2

(a measurement of how spread the distribution is)
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Conditional expectation:

Discrete case: Suppose (X, Y) has a joint
density

ef
p(Xi7.yi) d: P(X = Xi, Y :.yl)

E(YIX =x) = 3 _yP(Y = %X = x)

=PI () < 3 ()

p(x;)

Note:

a. P(Y = y;|X = x;) is the conditioned density
function of Y given X = x;.

b. E(Y|X = x;) is a function of x;, and thus
regarded as a r.v. on the o-field generated
by X, denoted by E(Y|X).
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Continuous case: Let f(x,y) be such that

P(X < / / (1, v) dudv.

Then,

E(YIX = x) = / yfff?’x{)dy,
f(x) = / f(x. y)dy

Here E(Y|X) can be understood to be a r.v. on
the o-field generated by X.
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80.4 Sequence of random variables

Repeat a random experiment independently. We
obtain a sequence of random variables which are
independent and identically distributed (i.i.d)

{XntnZo-

Two basic theorems are:
e Law of Large Number
e Central Limit Theorem
(Ref: Ross p.389)
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However, in many cases { X,}°°, may not be
independent. There exists dependence in a certain
way.

In general, we call
o {X,}°°, a discrete time stochastic process, and
e {X:}+>0 a continuous time stochastic process.
We will mainly consider the

“Markov” processes

(to be defined) in the discrete time and continuous
time.
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Example 1.1. A frog hops about on 7 lily pads. The numbers next to arrows show the
probabilities with which, at the next jump, he jumps to a neighbouring lily pad (and
when out-going probabilities sum to less than 1 he stays where he is with the remaining
probability).

0100000
05 50000

i 010000
P=|0 0 § 5 + 00

i 00000 3 2
0001000

0000001

There are 7 'states’ (lily pads). In the matrix P the
element Ps; (= 1/2) is the prob that, when starting
in state 5, the next jump takes the frog t state 7.
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Some questions we may want to know:

1. Starting in state 1, what is the prob that we are
still in state 1 after 3 steps? after 5 steps? or
after 1000 steps?

2. Starting in state 4, what is the prob that we
ever reach state 77

3. Starting in state 4, how long on average does it
take to reach either 3 or 77

4. Starting in state 2, what is the long-run
proportion of time spent in state 37

We can answer those by the end of this course

End of Chapter 0——

34/323



Chapter 1:
Markov Chain



§1.1: Definition & Examples
Example:

e Consider the weather (0=Sunny, 1=Rainy,
2=Cloundy) of days in Hong Kong.

e Let Xy be a r.v. describing the weather of the
Oth day, then

Xo=0, 1, or 2,
i.e. Xp takes values in
S :={0,1,2}.

e Similarly, for n > 0 let X, be a r.v. describing
the weather of the nth day, then X, =0, 1, or 2,
i.e. X, takes values in the same state space S.

e In the end we get a chain {X,},>0.
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Definitions:

e Let S be a finite or countably infinite set of
integers.

For instance, S ={0,1,2,..., N}, or
$§={0,1,2,...},or S={...,-1,0,1,... }.

We call each element of S a state and S the
state space.

o Let {X,}°°, be a sequence of r.v. taking values

in S, defined on a common probability space
(Q,F,P).
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Notation for the future:

e For random variables, we use

X, Y, Z, -

e For states (which are values of random variables),
we use
X, Y,Z,: - € S

or
Xis Yiy Ziy* - € 5;7

or
ij k€85,
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Def: {X,}>°, is a Markov chain if

P(Xn+1 = Xn+l‘X0 = Xy - - - aanl — anlaxn - Xn)
= P(Xn+1 = Xn+1|Xn = Xn). (*)

Note:

e (x) is called the Markov property which says that given the
present state, the past states have no influence on the future!

e P(X,+1 = y|X, = x) is called the transition probability. If
it is independent of n, we denote

P(x,y) = P(Xot1 = y| X, = x) = P(X1 = y|Xo = x)

which is the transition probability from state x to state y. In
such case, {X,}5%, is called a time-homogeneous Markov

chain.
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It is clear that

(i) P(x,y) > 0.

(i) > P(x,y)=1.

y€eS

Proof:

(I) 'D(va) = 'D(Xn+1 :)/|Xn :X) > 0.

(i) X P(x,y)=> P(Xpr1=y|Xpo=x) =1L

yeSs yeS
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eg. for $=1{0,1,2,..., N} (N finite or o), we
may express all the transition probabilities

P(x,y), x,y €S

as a matrix form:

P = [P(x, y)] (or [P(i,/)])

[ P(0,0) P(0,1) --- P(0, N)
P(1,0) P(1,1) --- P(1,N)

_P(I\:l, 0) P(I\:/, 1) . P(I\;, N)|

which is called the Markov matrix (or transition
matrix) (Note: each row vector is a probability vector).
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Example 1. Toss a possibly biased coin repeatedly
with prob p for H and 1 — p for T.

Q.: Set up the model as a Markov chain.
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Example 2. Consider a machine that at the start

of the day is broken down or in operation. Assume

(i) if it is broken down, the prob that it will be
repaired and in operation on the next day is p,
(0<p<1).

(i) if it is in operation, the prob that it will be
broken down on the next day is g, (0 < g < 1).

Q: Set up the model as a Markov chain. Further,

(a) Find the transition prob.

(b) Find the prob that the machine is broken down on the n®
day.

(c) In the long term, what is the prob that the machine is
broken down on a day.
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Example 3 (Random walk):

Let {&}5°, bei.i.d. r.v. taking values in
S={--,-1,0,1,---}
and having a pdf f, i.e. for each /
P(& = k) =f(k), k=0+1,42 ..
Let X, = Xo+ & + -+ - + &,, where Xj is the initial
position independent of {£;}%°,. Then,
P(x,y) = P(Xs11 = y| X, = x)
= P(§r+1 =y — x| X, = x)
= P({r1 =y —x)
=y —x).
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A simple random walk:

Consider a move to left or right with prob p,1 —p
resp, i.e. & = +1 or — 1 with prob p,1 — p resp.

How does the chain behave as n — o0 7
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Example 4 (Gambler's ruin chain)

A gambler starts out with a certain amount and
bets against the house.

(i) Each time he wins or loses $1 with prob p and
g=1— presp.

(i) If he reaches $0, he is ruined and his amount
remain $0. (he quits playing)

Q.: Set up the model as a Markov chain.
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Let X, denote the amount he has at the n-th stage.
$=4{0,1,2,---}.

e For x =0,
P(0,0) =1,
P(0,y)=0,y=1,2,---

Def: A state a € S is absorbing if P(a,a) =1,
i.e. P(a,y)=0,Vy # a.

.. 0 is an absorbing state.
e For x > 0,

p y=x+1
Px,y)=q1-p y=x-1

0 otherwise
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A modification of the model: Add a rule
(iii) If he reaches $N, he quits playing.
Then,

S={0,1,--- ,N}.

0 and N are absorbing,

p y=x+1

Px,y)=<1—p y=x—-1 forl<x<N-1.

0 otherwise
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Alternative view to the above modified “gambler’s

ruin chain”: Two gamblers start a series of $1 bets
against each other.

(i) The total amount is $NV.

(i) p = prob of the 1%* gambler wining
g =1 — p = prob of the 2" gambler winning.
(iii) The game is over when one of them losses all.

X &f'$ of the 15 gambler at the n'" stage

Q:
e What is the expected value?
e Wo has higher prob of winning?

e How long does the game last?
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Remark: The more general form of the chains in
examples 3 & 4:

e

px y=x-1

g« y=x+1
P(x,y) = <

e y=Xx

0 otherwise

\

which corresponds to the “birth & death” chain.

Here

Px; Gx; Ix = 0,
px+qx+rx:]--
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Example 5 (Queueing chain)
Consider a check out counter at a supermarket.

(i) Let &, denote the number of arrivals in the nt/
period (say, one minute). Then {£,}5%; is i.i.d.
r.v. having pdf f (usually Poisson distribution).

(ii) Suppose that if there are any customers waiting
for service at the beginning of any given period,
then exactly one customer will be served during
that period.

Q.: Set up the model as a Markov chain.
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en=20:

f C
Xo %' the number of persons on the line initially.

en>1:

f :
X % the number of persons on the line present at
the end of the n®" period.

e Then,

o 0+ &nt1 if X,=0
TAX b -1 i X, > 1
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e For x =0,

P(0,y) = P(Xp41 = y|X, =0)
= P(§p41 = y|Xn = 0)
P(&ni1 =)

= f(y).

e For x > 1,
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For instance, f is Poisson:
/\k
f(k) = P(& = k) = e_’\F, k=0,1,2,---

Then

—
EEDSIESIE ~l i
1>,
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Example 6 (Branching chain, population growth)

Each individual generates £ offspring in the next
generation independently.

def

X, = the total NO in the n'" generation.

P(va):P(£1+€2+"“|‘€X:)/)

Question concerns the extinction or growth of the population! o7 2



§1.2 Computations with transition probabilities

Setup:
o {X,}°°,: a time-homogeneous Markov chain

e S5=1{0,1,2,..., N}: state space
(N: finite or co)

o P =[P(x,y)] = [P(Xns1 = y|Xn = X)]:
transition prob matrix
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Question 1: Given pdf of Xy, can one compute
pdf of X, for any n > 17

Let the pdf of Xj be

A€ p(xg=k), k=01,--- N,

or equivalently we write in the prob row-vector form

70 =[x 20 .. 20,
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en=1:P(X;=k), ke S?orr)= [0, 7 D)7
P(Xy=k)=> P(Xy=kXo=1i)

i€S
= P(Xy = k|Xo = i)P(Xo = i)
i€S
P(0, k)
P(1, k)
= [P(Xo=0),P(Xo=1),....P(Xo=N)] |
P(N, k)
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e In general, for n > 1, setting the pdf of X,, as a

probability row-vector in the form

7N = [P(X, = 0), P(X, =1),---, P(X,

Then,

7l = 7~V p|,

N)l,
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e Then, by iteration,
7 — (h-1)p
— n=2)p . p

:W(O)f’-P-...-Fj

TV
n terms

— 7O pn

where
P"=pP-P-...-P

'
product of n terms

Theorem: 7" = 7Opr n=12 ...
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Remark: How to compute the matrix product

P =pP.P....P, n=2,3-
N——

n terms

Indeed, for x,y € S,

P2xy ZPXXl (x1,y)

x1€S

=) > P(x,x)P(x1, %) P(x, y)

X1 X2

— ZZ .. Z P(X,X]_)P(Xl,xz) Tt P(Xn—lay)'

X1 X2 Xn—1

Proof: Left for an exercise. Argument: use induction in n
and the formula P" = P"~1. P,
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Proposition:
() P(Xo = y) = Za0()P"(x.y).
(i) P(Xn = y|Xo = x) = P"(x,y).

n

Proof: (i) is a direct consequence of the formula 7(") = 7(0) P,

To show (ii),

P(X, = y|Xo = x)

- P(Xn:y,anl GS, 7)(1 €S|X0:X)

— Z - Z P(Xn = y,Xn—l = Xp—1,""" ,Xl = Xl‘Xo = x)(tutorial)
X €S xp—_1€S

_ Z P(Xn:y,Xn71:X,,71,---,X1:X1,X0:X)
P(Xo = X)

X1, Xp—1€S

Ly PUG=XPGo)Pluy)

P(Xo = ) (proof later)

X1, Xp—1€S

= Z P(X,Xl)"'P(anlay):Pn(va)' O

X153 Xn—1€S
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Claim:

P(Xo = x0, X1 = x1, -+ , X = Xp)
= P(Xo = Xo)P(Xo,Xl) 0o a P(anl,Xn).

Proof of claim:

P(Xo = x0, X1 = x1, -+, Xn = Xp)

~——

A B
= P(Xn = Xn’XO =Xx0, " ,Xp-1 = Xn—l)
P(XO = X0, 7Xn—1 = Xn—l)

= 'D(Xn = Xn’Xn—l = Xn—l)P(XO =Xx0, X1 =X1, -, Xn-1= Xn—1)
= P(xn—1,xn)P(Xo = x0, X1 = x1,- -+ , Xp—1 = Xp—1)

= P(Xp—1,%n) P(Xn—2, Xn—1) - - - P(x0, x1)P(Xo = x0). LI

65/323



Remark: (ii) also immediately implies (i). In fact,

by def
P(Xp=y) =" P(X, = y|Xo = x)P(Xo = x)

by (ii) n
=73 P(x,y)mO(x).
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Definition:
PHKX,y),(n7:10,17”°)

is called the m-step transition function, which
gives the prob of going from state x to state y in m
steps. Here we set

1, f =
/:)0 (‘>(’ _)/) — (5)<y — <{: y X y

0, otherwise.

Correspondingly, P™ is called the m-step
transition matrix.
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Proposition:

P(Xpim = y| Xy = x) = P"(x, y).

Proof

P(Xntm = y|Xn = x)

= P(Xn+m = ¥, Xnym—1 € S, - -+ , Xngy1 € S|Xn = x)

= > 3T PXatm =Y, Xntm—1 = Xntm—1: " > Xng1 = Xpp1|Xn = X)
Xn+m—1 Xn4+1

= Z PXntm =y, s Xpy1 = xn31] X0 € S, -+, Xp1 € 5, X = x) (x)
X 1ot Xntm—1

= > P(x, xpt1) -+ - P(Xptm—1,y) (see below)
Xnbls Xnbm—1

P™(x,y). (by def of P™)

Each term in the sum (x) is equal to
P(Xnim =y, s Xpy1 = Xn1lXo = X0, -+, Xp—1 = Xp—1, Xn = X)

= P(Xntm =¥, Xpym—1," s Xo = x0)/P(Xn = x, Xn_1 = xa—1, -+ , Xo = x0)
_ P(Xo =x0)P(x0, x1) - - - P(x, Xn41)P(Xn41, Xn+2) -+ + P(Xngm—1, ¥)
- P(Xo = x0)P(x0, x1) * * - P(xp—1, x)

= P(x, xn41) - - P(Xn4m—1,y). O
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Remark: To compute

P(Xn:)/‘XOZX)
= /:)(,><i_4_,7 = )/|,><i = )(]
= /:>(A)<:24+,n = )/|,><é = )(]

= l:)(‘><;77-+-n - )/|‘><)77 - )() ;M= ()7 ]-7 :27 e

is equivalent to compute P"(x, y), that is to find
P,
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For n large, one can reduce P to a diagonal matrix
(if possible)

P=QDQ"
Xo--- 0
where D= | : .. |, and Q is the matrix for
0 - Ay
change basis consisting of eigenvectors. Then
Ag--- 0
PP =[QDQ7Y"=Q@D"Q ' =Q|: . : | QL
0--- A},

Hence P" can be calculated in such situation.

Exercise: Do this for the two-state Markov matrix.
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Question 2: How to compute the conditional
prob that the chain visits y in finite time given
that it starts from x?

We set it as p,,, then

pxy = P(3n > 1 such that X, = y|Xo = x).
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We are interested in a state x such that

Pxx = 1, 0r py < 1.
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Def (Hitting Time):
Let A C S. The hitting time T, of A is defined
by

T def min{n >1: X, € A}.

Rks:

e T, = the first positive time the chain hits A.
Taisarv. Range of T ={1,2,3,---} U{o0o}.
Convention: T4 = oo if X, ¢ Aforall n> 1.
Form=1,2.-.

{Ta=m}={Xi ¢ A - Xn_1¢AX, <A}

e Convention:

T, def Ty =min{n>1:X,=y}, ye€S,

i.e. the first positive time the chain visits y.
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A convenient notion:

P() E P(- X = x)

i.e. the probabilities of various events defined in
terms of the Markov chain starting at x € S.

For instance,
P.(A) = P(A| Xy = x)

is the prob of A given that the chain starts at x.
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Prop (i) P(T, =1) = P(x,y).

Proof:
AL, =1 ={X=y}

'DX(Ty - 1)
= P(X1 = y|Xo = x)
= P(x,y). [



Prop (ii)

Po(T, = nt+1) =) P(x,2)P(T,=n),n>1.
z#y

- 7

Proof: Note
{Ty:n+l}: U {X1227X2¢y7"'7Xn#y7Xn+1:y}'

z:zF#y
P(Ty=n+1)
:ZPX(Xl =z2,XFy, Xa F y, Xnp1 = y)
27y
= Z PX(XI = Z)PX()<2 # Yy 7Xf1 ?é y7Xn+1 = y‘Xl = Z)
27y
:ZP(X1:Z|X0:X) P(Xg;éy,~-~ 7Xn7éy,Xn+1 =y|X0:x,X1 :z)
z#y =P(x,z) =P,(Ty=n) why?
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Recall an Exercise:
P(Xn+1 € By, >Xn+m S Bm|)<0 €Ay, X1 €A1, Xy = X)
= PX(Xl S Bl,X2 S 827“' ,Xm S Bm)

See the tutorial for the proof.

Rk: It is essentially due to the Markovian property (i.e., given
“the present” state, “the past” has no influence on “the future”).
So, the prob on the LHS is understood to be the prob in the

situation when the chain initially starts at x.

S lZ)(‘><22 3’4 Yy '><;7 3zé Y '><;7-+-1 = )/"‘><i) = X, '><i. = 22')
=P,(Xi#y. Xo# Yy, Xo1 Y. Xa=y)
= P,(T,=n). [
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Prop (iii)

P'(x,y) =>_ PdT, =m)P" "(y,y).

m=1

Proof: note: P'(x,y) = P(Xn = y|Xo = x) = P(Xa = y)
{Xn=y}= LnJ {T, = m, X, = y} (disjoint union)
m=1

P”(ny) = PX(Xn:y)
=> PATy=m X, =)
m=1
:ZPX(Ty:m)PX(Xn:)’|Ty:m)
m=1

:ZPX(Ty = m)P(X,, :y‘XO :X,X1 #y’ ’Xm71 ?éy’X :y)
m=1

= Z P(T, =mP" "(y,y). O
m=t 78/323



Sum:

Proposition:

(i) P(Ty=n+1)= > P(x,2)P,(Ty=n), n>1
z£y

(ii)) P"(x,y) = ,E PAT, = m)P™=m(y, y).
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Corollary: If a € S is absorbing , i.e. P(a,a) =
1, then for any n > 1, P"(x,a) = P,(T, < n).

Proof:

(x,a) = ZP =m) P"M(a,a)

=1(to be shown later)
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It remains to show: For any n > 0, P"(a, a) = 1.

Indeed:
e n=20,1 is obvious.

o n>2:
P'(a,a)= > P(a,x)P(x, %) P(x,1,a)
- Z P(37X2)"'P(Xn—1pa)
X2, 3 Xn—1

= Z P(a, xp—1)P(Xn-1, a)

Xn—1

= P(a, a)
=1. [
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Recall: p,, = P,(T, < 00) is the prob that the
chain starting at x will visit y at some positive time.

In particular,
Py = Py(Ty < 0)

is the prob that the chain starting at y will ever
return to y.
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Def.:

e A state y is called recurrent if p,, = 1, and
transient if p,, < 1.

e A chain is called a recurrent (transient) chain if
all states are recurrent (transient).

Rk: An absorbing state is recurrent.
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Example:

1 2 3 4
17t L 0 07
p:2%§00,
310 3 & i
410 0 3 3

Q: Find the matrix [pxy] from P = [P(x,y)].
% '/ /L

el G
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Y
e,
0 VL”

Observe:
(i) 0= p13 = pa, 0= po3 = pos.
(ii) 1 = p11 = poo, . 1, 2 are recurrent.
(iii) p33 <1, pas <1, .. 3, 4 are transient.
1 2 3 4
1 x 0 07
x 1 0

0

A W N =
*
*
*
*
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Recalling p,, = Px(T, < 00), we have

y = P(x,y)+ Y P(x,2)py

z:z7y

(Exercise)
Argument: Start at x.
o If T,=1, e visit y at n=1, prob is P(x, y).

e If it does not visit y at n =1, then it will first
visit z(z # y) and then start from such z to
visit y at some positive time.
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P33 = 130-|-l 23 +%
pa3 = 130+D/ﬂﬁ'0+%

Similarly,

0
0 1 1 1
p3s =0-p12"~ +2A/ +Z'P34+Z,

0 0o 1 1
pas = 0-piz  +0-p3g~ TSPty

1
Lo pP34 = ga

‘ 2
..p44—3-
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[pi] =

= = = =
e = T S S
=N O O W
W Wk O O >

O N S

Note: There is a matrix argument for finding [pxy].
See Lawler p.23-27.
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[ Question 3. Times of visit to a state. ]

{Xh}22o: a time-homogeneous Markov chain
S={0,---,N} (N: finite or c0): state space
Xo=x€S

N(y) ' no of times that X,(n > 1) visits y.

Note:
&, 1, Xo=y
o N(y)= 1,(X,), where 1,(X,) =
()= X 1,0X0), where 1,(X,) {ijﬁéy
b N(y) € {0,1,2,3,}U{OO}
{N(y) =0} = "y is not visited”
{N(y) = k} = "y is visited exactly k times"
{N(y) = oo} = "y is visited infinitely times”
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Some Facts:

* {N(y) =1} = {T, < oo}
—_————
"y is visited at least one time” "y is visited at a positive finite time”

P (N(y) > 1) = P(Ty < 00) = pyy|.

o {N(y) =0} ={N(y) = 1}~.
E PX(N(y):O):l_pxy-
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HS. m—1
Claim: For m > 1, P.(N(y) > m) = pypy,
Case m = 2. To show: Py(N(y) > 2) = pxypyy-
Note:
{N(y) > 2} = Ug>1 Up>1 {chain starting at x first visits y at k > 1
and next visit y again after n units of time}.

For each k > 1 and n > 1, prob = P, (T, = k)P,(T, = n).
Therefore,

P«(N(y) :ZZPX Ty = k)P, (Ty = n)
n=1 k=1
=Y P(T, < )Py (T, = n)
n=1
= pxy Py (T, < 00)
= PxyPyy-

Use the same idea to show Px(N(y) > m) = pyypjy* for m > 2.
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A further fact:

{N(y) = m} ={N(y) > mi\{N(y) > m+1}
N(3)Z

l 1 Nip) 2 w1
® @ & >

m-g M m#d

S P(N(y) = m) = p it — paypli D
= PPy (1= pyy).
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Sum:

Proposition:

(i) For m > 1,
P(N(y) = m) = puypiy ™,

PX(N(y) - m) - pxyp;zfl(]- - pyy)-
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Proposition: E,(N(y)) = > P"(x,y).
n=1

|.h.s.=the expected no of visit to y from x.

Warning: The value can be oo!

Proof:
E(N(y)) = E(D_1,(Xn))
= > E(1,(Xy))
- Z PX(Xn - .y)

o0

=Y PXa=ylXo=x)=> P(x.y). O
n=1 n=1
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Theorem (i): y is transient iff P,(N(y) = o0) = 0.

Proof: Note

P(N(y) = o0) = lim P(N(y) = m)

T m—1
= Jim oot
0 if p,, <1
= { " o ] ()
Pxy W Py =
..y transient
— py <1
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Theorem (ii): If y is transient then

Ed(N(y)) = 5 fXYp <00, x€S8.
Yy

Proof: For a transient state y,
E(N(y)) = Y_ mP(N(y) = m)
m=0

= Z mﬂxyp}"fl(l — pyy) (py <1)
m=1
1
= Py (1= pyy) - m
Yy
p

= <0 O
1—pyy
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Theorem (iii):

y Is recurrent,

iff P,(N(y) =00) =1,
ff E,(N(y)) = oo

Proof: y recurrent
(%)
<= P,(N(y) = o0) =
()
EL g (N(y)) =

< pyy =1

To show (x):

" Py(N(y) = o0) =1
( (v)) = oc.

“<=": If E,(N(y)) = oo then y must be recurrent
by Theorem (ii). O
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Remark: If y is recurrent, then for x € S,

0 if poy =0

Ex(N(y)) = y ;
00 it p, > 0.

WHY? It is heuristically obvious.

Left for an exercise.
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Corollary: If S is finite, then the chain must have
at least one recurrent state.

Proof: Otherwise, all states are transient. Then,
for any x&y,

N P(x,y) = E(N(y)) = 22— < 0.
n=1

L —pyy
. lim P"(x,y) =0. Then

n—o0

0= Z nILrgo P"(x,y)
yeS
= nILn;OZ P"(x,y) (S : finite)
yeS
= lim P(X,€S)=lim1=1[]

n—00 n—o0
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[ Question 4. Decomposition of state space.

Def: x leads to y (denoted by x — y) if

Pxy > 0.

Fact 1: x — y (i.e. py, > 0) iff

P"(x,y) >0 for some n > 1.

Proof: Note:

® py = Pu(T, <o0)=P({Im>1s.t X, =y}).

o P'(x,y) = P(X, = y|Xo = x) = P«(X, =y).
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Fact 2: X%y} — X — Z.
y —z
Proof: Note

Prtm(x,z) = Yoies PM(x, i)P™(i,z) = P"(x,y)P™(y,z) > 0.
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Fact 3:

(i) y—x
x recurrent (px = 1) —> ¢ (ii) y recurrent
X =y

(iil) pyx = pxy = 1
Proof (Heuristic):

Suvel

vRiw
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Def.:
(i) C C Sis closed if
py =0, VxeC, Vy¢C,

i.e. no state in C leads to any state out C.

(ii) A closed set C is irreducible if
x—=y(ie.py >0), VxeCVyeC(C,
namely, any two in C can communicate with

each other.

(i) {Xh}>2, is an irreducible MC if its state space
S is irreducible.
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Remark (a): One can claim that

C is closed, i.e. py, =0,¥x € C,Vy ¢ C (1)
<~ P"(x,y)=0,Yxe€ C,Vy ¢ C,¥Yn>1 (2)
< P(x,y)=0,Vne C,Vy ¢ C. (3)

e Direct to see: (1) <= (2) = (3).
e To show (3) = (2): Forx e C & y ¢ C,

P(x,y) = > P(x.x1)P(x,y)

x1E€S

= P(x, x1) Pl )+ ZMB(M)
xeC x¢C

Induction = P"(x,y) =0, Vn > 1.
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Remark (b): If
C is closed, x € C, P(x,y) >0

then
y e C.

Remark (c): If C C S is closed, then

{Xn}nZo

can also be regarded as a Markov Chain with the
state space C.
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Theorem: If C is an irreducible closed set, then
either

all states in C are recurrent
or

all states in C are transient.

In particular, if C is a finite irreducible closed set,
then all states in C must be recurrent.

Proof: Two cases in general:

(i) C does NOT contain any recurrent state. In the case, all
states in C are transient.

(i) C contains at least one recurrent state. As C is
irreducible, all states in C are recurrent.

The particular case follows from the fact that any finite closed

set must contain at least one recurrent state. []
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Set

Sg = {recurrent states},

St = {transient states}.

Then,
S =5

UST.

o

S

—e

S

>

-

.. Sp is closed!

A further question: Is Sy irreducible? namely, can any

two recurrent states communicate to each other?
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Observe: Assume Sg # ¢, for instance, dxy € Sk.
Define

Co = {x € Sr: x — x}.

Then, G, must be closed & irreducible.

Proof:

(1) “Cy, closed” <= “lIf x € G, & x -y € Stheny € C”"
(Indeed, y € Sg,.". xo0 = x = y € Sg)

(2) “C,, irreducible” <= “If x,y € C,, then x — y".
Indeed, "~ X € >R

XO_)yGSR}:x%XO—U/.
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Theorem: Assume Sg # ¢. Then
k
S = U G (k: finite or infinite),
i=1

where C;, 1 </ < k are disjoint irreducible closed
sets of recurrent states.

Proof: It suffices to show: If C;& G, are two irreducible &
closed sets, then either CG; = G, or G; N G = ¢.

Assuming C; N G, # ¢, we need to show C; = G,. In fact, let
y € (7 be arbitrary, we want: y € G,

(.G C G C G).Indeed, Ix € G N Gy, then G 2 x — y.
sy e G.
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Corollary: If C is an irreducible & closed set, then
either C C Sg or C C St.

In particular, if C is a finite, irreducible & closed
set, then
C C Sg.
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In terms of the (disjoint) decomposition
S=SrUST=(U_,G)UST,
we may rewrite P as the canonical form:
G| G| - | Cl|| ST
G ol--]o0
G| 0 .10
' 0
*

Gl olololx
St Bl | Be] | ]| ] | [#]

where [x] denotes the sub-matrix with possible # 0
entries.
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Example:

1
o Y 4N - ;s

o oS —Hn O o

O O —N <t

C,‘) U St.

SRUST:( f(

Q.: Determine S
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ol —>1 . Clz{].}.

e4 —5— 6— 4 (irreducible), and 4,5,6 do not
lead to any other state (closed). ... (; = {4,5,6}.
21,34 - S ={23}
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We then reformulate P in the canonical form of

o o o O It Ao
o o o O HlN Ho
O HlN HAN g O =i
o Hm O o o o
() —lo N - O 0
— o o o Ht O
L ]
— < Te} O [q\} o™
I I I I I
T Q (S o (] S
I
Q
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Final Issue: Assume that C is an irreducible &
closed set of recurrent states. Then,

TC:mln{n 1:X,€e C}

denotes the hitting time of C.

We can also consider

pc(x) & P (Tc < o0)

is the prob that the chain starting at x hits C in
finite time (or is absorbed by the set C).
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NOTE: Once the chain hits C, it remains in C
forever. (Why?)

. pc(+) is called the absorption prob.

It is clear to see:

1 ifxeC,
pc(x) = .
0 if x is recurrent but ¢ C.

Q.: How to compute pc(x), x € 577
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Indeed, assume St is finite, then for x € St,

=Y POy)+ > Py)ocly).| (%)

yeC yeST

Assume dt def # of St is finite
# of unknowns = dr: pc(x), x € St
# of equations = dr
. it is possible to find out pc(x), x € St by solving
the linear system of dr equations.

Theorem. Let St be finite. Then (x) admits
a unique solution.

Proof. Omitted. 119/323



Example: Find pc,(e), pc,(f)?
——"

11
x=pg(e)= [04+0+0] + [§X+ Zy]
v i ~—_——

Zicartpea PO 5 oy Pl O)

1 1 1 2
P— f f— —_ —_— p— —
y = pc,(f) [5+0+5] + [5X+5y]

v . M . .
Ejeczz{b.c,d} P(f.j) EjeST:{e,f} P(f.j)pc, ()
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Similarly, let pc,(e) = x and pc,(f) =y,

then
1 1 1
x =[]+ 5x+ v 3 1
1 2
=[0] 4 [=x + =
y =10+ [px+ 2]
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Remark (i): > pc(x) =1, x € St (finite).

Indeed,

Heuristically, it is obvious:
e We totally have finite transient states.
e Each transient state is visited only finite times.

e Surely the chain from x hits a recurrent state in
finite time, so the prob = 1.
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Remark (ii): py, = pc(x), x € S,y € C.

Apply it to the previous example:

= PC—{b.c,d}(€) = Peb = Pec = Ped;

Gl OGN

= PG={be,a}(F) = P = pPrc = pra-
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§1.3 More examples
Examples 1: Birth & Death Chain.

e Setting:

{Xn}>2, S=1{0,1,--- ,d} (d : finite or c0)

gx ify=x—-1
Iy if y =x

P(x,y) = Y iy —xt1 where g, + 7 + px = L.
0 otherwise
4. fe
£ N Y

(Q

x- 1 O wid
Ye

qgo = 0; pg =0, if d is finite.
Note: the transition probs are functions of states!
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A general question: Given a, b € S with a < b,
compute

u(x) E P(T, < Tp), a<x<b,

vix) Y P (T, > T,), a<x<b.

{T, < Tp} = Before the chain hits b, it hits a, (i.e.,

the chain hits a earlier than b)

{T, > Ty} = Before the chain hits a, it hits b, (i.e.,

the chain hits b earlier than a)
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Claim:

(i) u(a) =1, u(b) =0.

(i) u(x) = geu(x — 1) + reu(x) + peu(x + 1) for

a<x<b
(iii) u(x) = fora < x < b.

x—1
:g; Yy
for a < x < b,

(iv) v(x) =1 —u(x) =
Zvy

where v, are deflned by

wr 1 ifx=0
D= e f1<x<d—1.

P1-Px
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Proof:

(i) is obvious.

(ii) follows by
Po(A) =P(A, X1 = x — 1) + Py(A, X, = x)

+PX(A,X1 :X+1)

:PX(Xl =X — 1)PX(A|X1 =X — 1)
+ PX(X]_ = X)PX(A|X1 = X)
+ PX(Xl :X+1)PX(A|X1 :X+1)

:P(Xl =X — ].lXo = X)P(A|Xg = X,Xl =X — ].)
-+ P(X1 = X‘Xo = X)P(A’XO = X,Xl = X)
+P(X1 :X+1|X0 :X)P(A|X0 :X,Xl :X‘l—].)

:qux—l(A) + rxPx(A) + pxPx+1(A)-

128/323



Proof of (iii):

u(x) = gxu(x — 1)+ (1 — px — gx)u(x) + pxu(x + 1)
(Px + Gx)u(x) = quu(x = 1) + pxu(x +1)

u(x +1) — u(x) = %[u(x) —u(x—1)] (a<x<b)

= PP 1) —u(x—
= PPy - 1) - u(x - 2)

~(5) (22 (3wt
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b1
Further, change x to y, > =
y=x

1321% b—1
u(b) —u(x) = ———, E:%ME:vy

Reminder:

o u(x) def P(T,<Tp), a<x<b.

ser 1 if x=0
*H T @ f1<x<d-—1.

P1Px
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Sum:

h < x< b
a'Z/;/// b-4?

P(T<Tb

“Death faster

b—

ZW/Z’Y}/

(T.> Tb)_ZVy/Z'Yy

Blrth faster”



e.g.: Set:
e A gambler bets $1 each time.

e The prob of winning or losing each bet is 9/19
and 10/19, resp.

e The gambler will quit as soon as his net winning
is $25 or his net loss is $10.

Q.:
(i) Find the prob he quits and wins.
(ii) Find his expected loss.
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Sol.: Let

X * the capital of the gambler at time
n=0,1,2,---

For simplicity, we choose
Xo=10, §=10,1,---,35}.
{X,}22, forms a birth & death chain on S with

‘ =10 /:’ 4
Q:z"Mq'f Q?

=0 1 %1% ol 3.4 3z=,
Cocness)

y y
q 10
= = = 0 <y <34
B <p) <9)’ Y
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(i) Find the prob he quits and wins: To find

9 9
10
yZOw yZO(E)y (@ 10 _ 1
_ = _ Y= _\9
Po(Jss < To) =5— =" N
“Birth faster” Z’Vy Z (%)y 9
y=0 y=0
= 0.047.
(ii) Find his expected loss:
gein Loss
(+15) (-10)
0.047 1~ 0,047

The expected loss is
(1 —0.047)(—10) + (0.047)(25) = —8.36. [
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e \We are further interested in the below situation:

Assume that S = {0,1,2,---} is infinite, and the
birth & death chain is irreducible, namely,

px >0,VYx>0, and g, >0,Vx > 1.

Q.: When such chain is recurrent or transient?

(NOT obvious for an irreducible chain with infinite
states!)

Proposition: The chain is recurrent iff
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Pf.: Since the chain is irreducible, we only need to
consider one state, namely, 0. Observe that

poo = Po(To < 00) =rg+ poPi(To < 00), (%)
where
P10 = Pl(To < OO) = |im Pl(To < Tn)
n—oo

1
Z] "

. [1_

n—oo

Therefore,
0 is recurrent, i.e. ppo =1

()& tpo=1 P10 = Pl(TO < OO) =1

<(*——*)>Z’yk:oo. []
k=0
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Remark: For instance, let

px=p>0,g.=9g>0, 0<p+g<1.

0 00 k
Yk = - -
k=0 k=0 p

e If p > g, then > 74 is finite. The chain is
k=0

Then,

transient .

e If p=gqorp<gq,then Y ~ = o0o. The chain
k=0
recurrent.
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Example 2. Branching chain.

Each particle generates £ particles independently in
the next generation.

14
Xn % the total no of particles in the n" generation
P(0,0) = 1.
Px,y)=P&G+ &+ +&=y), x=1
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Q.: Determine

def :
p = the prob that the descendants of a given
particle eventually become extinct.

We call p to be the extinction prob of the chain.
Then,
P = pPio = Pl(TO < OO)
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1%t Obervation: Suppose ¢ has the pdf
b= P(=k), k=0,1,2,---
Then,
P(lL,k)=P(&1=k)=p, k=0,1,2,--

From this we see:

e If pp = 0, then each individual cannot change to
zero, so population never extinct, i.e. p = 0.

e If pp = 1, then it extincts for sure, i.e., p = 1.
To avoid two trivial cases, we always assume

0<po<l.
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2nd Obervation: Assuming there are x particles,
the prob for them to extinct is

Px0 = P

(Pf.: Use independence!)
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3" Obervation: Let
def -
pEEQ) =) kpe=>_ kp.
k=0 ]
Then, E(Xps1|Xo = k) = E(61+ - + &) = ku,

o0

E(Xp) = > E(Xa|Xp-1 = k)P(Xo-1 = k)

o0
k=

k=0
S (k) P 1 = k)
k=0

= pE(Xn-1)

= ,u"E(XO)

142/323



Claim: |If u < 1, then population will extinct for
sure, i.e.,, p = 1.

Proof:

Pi(To >n) < P (X, >1) ¢ ~{T0>n}c{xn>1})

=3 Pi(X, = ZkPl(X = k)

8

k=1
= kPy(X, = k)
k=0
= E(X,) = p"E(Xo) == 0 (v p < 1)
Therefore
p = p1o = P1(To < 00) = lim Pi(Ty < n)

n—o00
extinction prob

= ||m[1—P1(To>n)]:1 []

n—oo 143/323



What about ;4 > 17
p = p1o = P1(To < 0)

= P(1,0)+ > P(1,k)pko
k=1

o0 o0
=po+ > _ P = pir”,
k=1 k=0

i.e., p solves the equation |t = ®(t)| with

(e.¢]

o(t) £ pet,

k=0

which is called the moment generating function
of the pdf (Pk)kzo of f
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Observe:

o &'(t) >0, d"(t) >0, (. d(t) T & concave
upward).

o ®(0) =po € (0,1), ®(1) = kijopk = 1.
o ¥'(1) = /i kpk = E(§) = p.

Then, we have three cases:
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Case (i): u < 1.

1
S\or A O on (1)< 1

. p =1 (extinct for sure, as proved before)
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Case (ii): = 1.

S

-—
\

o

. p =1 (extinct for sure!)
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Case (iii): © > 1.

?/ e 6=t

ﬁ 4

o t,,e(o,1)

O(t)=tatt=ty€(0,1)ort =1.

Claim: In this case, P1( Ty < n) < tp for all
n=172"--- (proved later).

sop=p1o=Pi(To < o)
= lim Pl(TO < n) < to
n—o00

.. p =ty is the only solution.
148/323



Proof of Claim: Use induction. Set
a, & Py(Ty < n).

n=0: 30:P1(T0<0):0<t0.

Assuming a, < ty(n > 0), consider

dp+1 = Pl(TO n-+ 1)

P(LO)+ D P(LK) Pu(To <
Z «(To < n)
:po Pk =[P1(To<n)]k=ak

00
S

k=0
= CD(a,,) < q)(to) =ty (¥ is nondecreasing). [
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e.g.: Every man has 3 kids with prob 1/2 being boy
and 1/2 being girl. Find the prob that the male live
eventually extinct.

SOI.:pOIP(fz()):%’pl:P(g:l):%'
p=PE=2)=5 p=P(=3) =3
1 3 3 1 3
() =0-g+1-5+2:2+3-2=2>
1 3 3 1

1 3 3 1
let ®(t) =t ie t=—+ —t+ —t>+ =3
et ®t) =tiie t=gtgttgt g

Solutions: t =1, v/5 — 2. Then
p= V5 —2

is the extinct prob. O
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Example 3. Queuing chain.
Setting:
e In a queue, let &, denote the no of arrivals in the
n-th unit time. {&,}°°; are i.i.d.r.v. with pdf:

(k) =pi, k=0,1,2,--

e The service of a customer is exactly one in a
unit time.

Let X, denote the no of customers in the queue.
P(X7y):f(y_(x_1))7 X>17
f arrival
P0,y) = f(y).
Note: P(1,y) = P(0,y).
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Q.: Assuming that the chain is irreducible, check if
the chain is recurrent or transient, i.e. letting

p = poo = Po(To < 00),
decide

fp=1lorp<l

Note. If
po>0&py+p1 <1,

then the chain is irreducible. (Ex. 37 on Page 46).
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Let

O(t) = po + prt + pat® + - -

k

I
NE

Pkt

k=0

f(k)tk

I
NE

-
|

0

be the moment generating function of f.

Claim: p = pg solves ®(t) = t.
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Pf.:

e Note
P00 = P(O, O) + Z P(O, k)pkO;
k=1
pro = P(1,0)+ > P(1,k)pxo.
k=1
P(1,k) = P(0, k), Yk > 0.
Therefore,

P10 = P00 = P-
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e To show: p,, 1 = pip = p for all x > 1.

In fact, we observe that
for the chain starting at x > 1 (.. x — 1 > 1),
the event T,_; = n means

n=min{m>0:x+(&—1)+ - ({n—1) = x—1},
ie.
n=min{m>0:14 (& —1)+-(Em—1) =0},
Therefore, P,(T,_1 =n) = Pi(To = n), Vn > 1.

L Pxx—1 = P10 = P-
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e To show:

Px,0 = Px,x—1 " Px—1,0, v x = 2. (*)
(Ex. 39, P46). If so, then

X

Px,0 = PPx—10 = """ = P,

(also true for x = 1), and hence

p=poo = P(0,0)+ > P(0, k)pxo
k=1

o0
= Po + Z P
k=1

= ®(p).
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Proof of (x): Let x > 2. Note that for m > 2,

P TO—m) ZP x— 1—€)PX_1(T0:m—€).

pr—P(T0<OO :Z To—m
m=1

:ZPX(To:m) (Note: P(To =1) =0 for x > 2)

m=2
co m—1
:Z Px(xlfg)xl(TO*m—f)
m=2 (=1
= Z Z Py(Ti—1 = £)P«—1(To = m — £) (see later)
(=1 m=~(+1
ZZP (Tx—1 = 0)px—1,0
=1
= Px,x—1Px—1,0- O
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Note:

¢ ¢

W & =~ «

m

3

2
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Sum: Let = E(§). Then

o If 1 < 1, then ®(p) = p has the only solution
p = 1. The chain is recurrent.

e If 11 > 1, then ®(p) = p has two solutions 1 and
to € (0,1). As in the previous example, one has
to take p = ty. The chain is transient.

[]
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Chapter 2:
Stationary Distribution



§2.1 Stationary Distribution

Motivation: Recall the two state MC with

g 1l—gq
We have shown (Chapter 1):
lim P(X,=0)=4q/(p+q) = a,
lim P(X,=1)=p/(p+q)=1-—a.

n—o0o

Denote m = [a,1 — a] (limit distribution), i.e.
m = lim [P(X,=0),P(X,=1)] = lim mP", (%)
= n—oo

n—00 \

pdf of X,
where my = [P(Xy = 0), P(Xo = 1)] is the initial distribution.
Note: Here 7 is independent of .
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We discuss two issues related to 7:

e |t is direct to verify
P =,

q p ]F—p p ]:[ q P
p+q¢p+q | 9 1-q| ‘p+q' p+g
Hence by induction,

P"=7m, n=12---
It means that if the chain starts with Xy with pdf m,
then at any time n=1,2,---, X, has the same

distribution as 7.

e [

Note: (x) also directly implies
7 = lim (mgP" )P = 7P.

n—o00
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e One can also show:
lim P" = [a 1_‘1 - H
n—»00 a 1—a v
Two ways:
(i) Diasonalize P. See Tutorial or Exercise.
(ii) Find
lim P"(x,y) = I|m P(X, = y|Xo = x)
n—oo
- Jim P.0% =),

As proved before, for x =0 or 1
||m P(X,=0)=a i.e. the 1°* column is a,

||m P(X,=1)=1—a ie. the2" columnis1— a.
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Observe: The fact that
TP=m=1n
means that 7 is the left 1-eigenvector of P.

Thus, we may also find the limit distribution 7
directly by solving

[u, V] [1;P 1fq] = [u, v],

(cuz0v=20utv=1_  u=

q P

7V:
p+q p+q

)
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|General Situaion |

If

7 = lim myP" exists
n—o0

for some initial distribution g,

then 7 satisfies
T = ( lim 7T0Pn_1> P =P,

n—oo
I.e.,
™ =P,
or equivalently,

m(y) = ) _w(x)P(x,y), Vy€eS.

x€eS
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Definition: We say that a probability row-vector m
is a stationary distribution for P if

™ =P,

i.e. the pdf 7 is a left 1-eigenvector of P.

Two basic questions:
(i) Existence (3J): Does every P have a SD?

(i) Uniqueness (!): Is the SD unique?
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Two notes:

(1) If 7 = wP has a unique solut'n then the limit

lim 7oP" (if it exists) is independent of 7.
n—o00

(2) If iim P=|"| then for any initial distri 7,

n— o0

lim moP" = 7,
n—o0

i.e. the limit exists and is independent of 7.

This also suggests a way of finding the SD of P.
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Proposition: Let P be a Markov matrix with finite
state space S. Assume:

(i) The left 1-eigenvector (which must exist) can be
chosen to have all nonegative entries;

(ii) 1 is a simple eigenvalue;
(iii) other eigenvalues |\;| < 1.

Then P has a unique SD 7, i.e. 7P = 7, and

[im P" =
n—oo
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Pf.: (Sketch only) (See Lawler P11-15)

P=QDQ™*, D= HQI, M" — 0

@: columns are right eigenvectors; 1st row is

1
QL rows are left eigenvectors; 1st row is a prob
vector, denoted by 7

T

v

[l
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Remarks:

(1) If 1.is NOT a simple eigenvalue, then m may
not be unique: e.g.

[P0
P_[OPJ

71 is the SD of P1} = [Amy, (1 — A)m2] is the SD of P

7o is the SD of P,
(2) Without (iii), the limit lim P" may not exist
n—o00
(but 7 still may exist): e.g.
01 11
p— _
[1 o] - =gl
BUT eigenvalues: =+1.
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(3) Two further Facts for finite S (without proof):

Fact a. If for some n > 1, P" has all entries strictly
positive, then three conditions are satisfied,
therefore, P has a unique SD 7, and

v

lim P" =

n—00

Fact b. If P is irreducible, then P still has a unique
SD.

(But lim P" may not exist, e.g., P= [0 1] )

n—o00 10
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Computation Technique for finite S:

Case 1: P is irreducible.
TP =mie, Pla" =x' ie. (PT —Nx" =0.
[k - k]
row operation 0x*--
pT — | PR, ,
00 . :
00 0 x

Upper diagonal form.

Fact b above assures that the solution exists
uniquely. (Note: Find 7 as a prob row-vector)
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Case 2. P is reducible.

For instance, let S = GG U GG U St.
Reordering S accordingly, write

P00 P 0 O
51 SQQ S1n S2n Qn
i
i=1,2:lim Pl =|:|,m:SD of P,
n—00
T
lim Q" =0,
n—o0

(Chapl: For y € 57, Ii_>m P"(x,y) =0, Vx € S).

In fact, all eigenvalues of @ have moduli < 1.
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im P" =
n—oo

,Z\l = lim f;1,7, /Z\2 = lim f;z,,i

n—oo n—oo

Ai(x, y) = prob from x € St to y € ( in_the long run,
Ax(x,y) = prob from x € St to y € G, in_the long run.

1

Uy

0

A

Q.: How to find Ay, A)?

T2

2
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Solution:

First find

(absorption prob of C;, i.e. prob to enter ;).

Assume
St={x,x, -, x}.
pCi(X), x€eSr, i=1,2,

Then, distribute according to 7}, e.g.

Ay =

pc(x1)m
pc(x)m

PG (XK)Wl

Y

Ay =

pc,(x1)m2
pc,(x2)m2

| pc, (xe)m2

175/323



Example 1. (Gambler’s ruin chain) Let

01 2 3 4

O O O Hla—
O O O O
O —HNO —HINO
O O —HNO O

_1 —NO O 0_

O — AN M <

l
Q.

Show that

<t O it HIS M —
Mmoo o o o O
NO O O O O
— O O O O O
O H ot HINHIST O

O - AN N <

I
c

Q
£

n—o0
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Solution: From P, one can check that
C& ::{0}7 Cb ::{4}7 ST ::{17273}7

and
S=GUGUST.

After reordering,

NIR ONIF O O N
ONIFEF O O O W

R

I
W N R DO
O ONR O R O
NEO O = O N
OO O O -
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10 10
Set P= |01 0| Then, Pn=[01/0 | and

S|Q S, Q"
lim S, = A, lim @, =0,
n—oo n—oo
10
lim P"= | 010
n—oo A 0

Need to find A = As,»:
Note that for i € S+ = {1,2,3}, j € G U G = {0,4},
A(i,j) = prob that the chain starting at i eventually visits j
= Pi(Tj < o0) = pjj,
pij = P(i,J) + Sies, P(i, k) pig.
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Put in matrix form

A=S+QA L JA=(1-Q)'S.
Here,
1 1
H
S = |00, Qs = 2 0 50, (1-Q7 =
03 010
31
47
13
43

NI = NIw
=N =
NIW = NI=
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limp— oo P".

< (O it =N o
M O O O o O
N O O O O O
- O O O O O
O | Mgt HN H s O
O - N o <
i
g
oM o O O O O
AN O O O O O
— O O O O O
<t (© —H HIY HAN oS
O [H O o HlN HIs
O <+ = AN ™M

i,
I I

o <
QU QU

— _UW/L — _“w,;
I I

o <

P2
p

it <

Remark: Such computation also gives us a way to
P10
P14

find
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Exercise: (Tutorial)

Modify the above to the MC with

N~ W[
NI—= WIN
o

NI~ O NIH & ()

(e)
N O O =
oIk O
o NI O

and find lim P".

n—o00
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Example 2. Consider the random walk on

$={0,1,2,---} (no longer finite!)

with
qp
g0 p
P = , ,g>0,p+qg=1.
g0 p p;q p+q

Q.: Find the SD.

Note:
e This is an irreducible BD chain.

e The chain is recurrent iff 3 (9)k=o0, iff g > p.
k=0

q
)
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Solution: Let 7 be the SD. Set

xx =m(k), k=0,1,---
From 7= = 7P, i.e.,
_q P
g0 p

[X07X17"']:[X0,X1>"'] g0 p

we get
Xo = qxo + gx1, i.e. pxo = gxi,
k> 1:Xxk= qXks1 + PXk—1-

.rme;mk:wq—m$1=~-=qm—pm:0
. k

Xk =\ ) X1 = -0 = (— Xo,k:O,].,Q,---
(q) (q)
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(i) p < q (recurrent):
a (0<=<1)

1= n= 3 (0=
k=0

Qs

k=0

._X0:ﬂ>0
c;]p p P

SD: 7= —L[1, 2 (5)2, ...
. [ q(q) ]

(i) p = q (recurrent): i(e)k:oo. 7 does not exist.
=0 q

]

184 /323
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Exercise: Modify it to the general irreducible birth
& death chain on S = {0,1,--- } with

o Po

p
P= anp row sum = 1,
q rn p2

all p; > 0, all g; > 0.

Q.: Find the SD 7.
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Example 3. Queueing model:

e In a telephone exchange, &, denotes no of new
calls coming in starting at time n > 1. {£,}°°,
is i.i.d. and has a Poisson distribution with rate
A>0:

e Suppose that each call has prob g - p to
finish in one unit time.

def . .
X, = no of calls in progress at time n.

Q.: Find the transition prob and the SD.
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Solution: To find
P(x,y) = P(Xss11 = y| X, = x),
we consider
Xo+1 = &nr1 + Yo

: def . . .
with Y,.1 = no of calls at time n that remain at time n+ 1.

Fact:

X z X—z
P(Yn+1 :Z‘anx) = (Z) p (1_P) )

0<z< k.
Note: p =non-finish prob, g = 1 — p =finish prob.
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S P(x,y) = P(Xo1 = y| Xy = x)
XAy
= P(Xns1 =y, Y1 = 2[X, = x)

z=0
XNy

:Zp(fnﬂ =y —2, Yo :Z|Xn:X)
z=0

XAy

= E P(&nr1=y—2)P(Yni1=2|Xs=x)
z=0
XNy

N Z X
—-A z X—z
= E - (] <: :) pP (]_ — [)) .

(y —2)!

To find SD, we will verify that if Xj is Poisson then
X, (n > 1) satisfy the same Poisson distribution.

188/323



Lemma 1. If X, is Poisson with rate t, then Y,
is Poisson with rate pt.

Pf.:
P(Yos1 =y) = =2, P(Yor1 =y, Xo = X)
:E:: = X)P(Yny1 = y| Xy = x)

St (v
' i [£( 1X—_ p)l
_ &em,p)

y!

_ e—pt(pt)y
— —y!

ptye ) i

) }/:071727"‘ [
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Lemma 2. If X, Y are independent Poisson with
rates t; and t, resp, then Z = X + Y is Poisson
with rate t; + t.

Pf.:
P(Z=z)=P(X+Y =2)
=2 PX+Y =2 X=x)
=2 PX=x,Y=2z—x)
=3z PX =x)P(Y =z —x)

z X Z—X
_ —t t]. —t t2
- € ¢ |
~ x! (z —x)

ei(t1+t2) & 4 X 31 Z—X
- zl Z X bt
' =0

X=
e—(t1+t2)

= 2 (1 +t)*, z=0,1,--- [
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Two lemmas above give:
e Assume Xj is Poisson with rate t (TBD).
e X1 =& + Y is Poisson with rate

of A A
Apt=t. (. dzf—za

o X, =& + Y, is Poisson with rate A + pt = t.

o X,=¢&,+ Y, is Poisson with rate \ + pt = t.

. The chain has a SD (Poisson, rate= \/q):

7(x) :e)‘/qw, x=0,1,---. [
x!
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Exercise: Check the textbook (Page 55-56) to
(i) Derive an explicit formular P"(x, y).

(ii) Show directly that

lim P"(x,y) =n(y), Vx,y=>0.

n—o0

(Hence, 7 that we have found is the unique

SD)
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Sketch: e The key is to find P":

Xo: t

X1: A+tp

Xo: A4+ (A +pt)p = tp? + A1+ p?)

Xs: A+ [tp* + A1+ p°)lp = tp° + A1+ p* + p°)

Xp:o tp"+X1+p+---+p")
1—p”

=tp" + )\
P+ -

= t,
then

- —ttX n —t tl};
E e "—P'(x,y)=P(X,=y)=¢e "
e x! y!
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Rewrite it as
> pn n [tp" + Al;w}y
Z (X7y) P = e—)\lf_pp et(l—p") 1-p
x! y!

Y

x=0

Apply Taylor expansion and binormial expansion on the right,
do the product, and compare coefficient of t* for each x, then

- min(x,y) N |:)\ 11__,_::])’—2
pn — e*A = nz(q _ pny—zLl —P1
(x,y) z Z_; (Z)p D Ay T
Let n — oo, note p" - 0as 0 < p <1, in)_, except for the

term of z = 0, all other terms tend to zero, then

. ()
lim P(x,y) =¢e T+ =7(y). O

n—00 y!
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§2.2 Average number of visits
Given {X,}>2,, S (finite or infinite),

def . :
N,(y) = no of visits to y in n-steps,
l.e. during times m=1,2,---  n.

We are interested in the limits of
No(y)  Ex(Na(y))

: as n — oo.
n n

Note:

N”T(Y): proportion of the first n units of time that the

chain visits y, or average no of visits to y per unit time.

w: expected proportion for a chain starting at x,

or frequency that the chain visits y from x.
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It is direct to see

Na(y) = Z 1y (Xin),

n

Ec(Na(y)) =) _ P7(x.y).

m=1

196 /323



Case: y is transient.

Recall: P,(N(y) < o00) = 1.

lim N,(y) = N(y) < oo with prob 1,

n—o0

lim E(No(y)) = E(N(y)) = —2%— < o0,

1—pyy
So,

Nn .
lim ) =0 with prob 1,
n—o0 n

E.(N,
jim Bx(Na(y)) _
n—00 n

Hence, we only consider y as a recurrent state.
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Let y be recurrent. Denote

f :
m, & E,(T,): the mean return time to y for

a chain starting at y.

Recall
T, &t min{n>1: X, =y}
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Theorem: Suppose

{Xn}°2, is irreducible and recurrent.

Then
Nn 1 -
lim ) = — with prob 1,
n—o0 n my
im M) L s
n—o0 n my
Remarks:

(1) Heuristically, the limit is the frequency and m, is the
waiting time. They are reciprocal to each other.

(2) If the chain is NOT irreducible, the statement of Theorem
can be modified slightly; see the textbook Pages 58-59.
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Pf.: Let the chain start from y. Introduce new r.v.:
Ty=min{n>1:Ny(y)=r}, r=12--
i.e. the min ptv-time of the r’ visit to y. Note:

e N,(y) = r: By time n, the chain visits y for r times.
(Warning: time 0 not counted).

e 7, the min positive time up to which the chain visits y
for exactly r times.

State
A

T

0 Mo, Wy M
=31 L=mym, . W,
.’lg(X.)— i

o O'eruis« 200/323

time



Set
1 def ——1 . _r .
W™= T, =T, (ie hitting time of y)

def 1
Wr:T;—T; , r=23,---
(i.e., waiting time between the (r — 1) visit to y

and the r'" visit to y)
Then
r 1 r o
Ty— Wy —|—"-+Wy, r=12---

Note: {W;}2, isi.id.
(it is intuitively obvious due to the Markov property; see the

textbook (page 59) for the rigorous proof)
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Apply the SLLN, we have

. T’ . Wit w! .
- — Y y —
rIlm o= rIlm % = E,(T,) with prob 1

= m,y.

Next, let r = N,(y), i.e. by time n, the chain visits
y for r-times, and the (r + 1) visit to y will be
after n, hence

T, <n<T/M,

so that
r r+1
L n n Ty

< =-<
ro Ny(y) r r

This implies that lim W = m, with prob 1. ]

n—o0

— my, asr — Q.
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Moreover, we observe

lim E, (N”(y)> ~E, ( lim N”(y)) (why? DCT)

n—o00 n n—o0 n
1
-5 ()
my
1
= — [
my

Added: Theorem (Dominated convergence theorem). Let (,) be a
sequence of rv's and & be a rv s.t. for each w € Q, &,(w) — &{(w) as
n — oo, and there is a rv 7 such that |{,| < n and E(n) < co. Then

E|¢n — €&l — 0as n— 0.

Particularly,
E(&n) » E(§) asn—o0. O
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Remark: The statement of the theorem can be slightly
modified in case when the chain is not irreducible. In-
deed, for a general MC, as long as y is recurrent,

> L/(Xn)

N, L7, <0
(Y) _ {7y <o} as N — OO with prob 1,
n n my
N > P(x,y)
Ee(— )):m—l S 2 a5 0o oo,
n my

where 1i7 ) is a rv meaning that 1,7 .y = 1 if
Ty < o0, and 1{Ty<oo} =0if Ty = OQ.
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§2.3 Waiting time & stationary distribution
Def.:

e A state x is called positive recurrent if it is
recurrent and m, = E,(T,) < oc.

e x is called null recurrent if it is recurrent and
m, = E,(T,) = occ.

Note:
e For a null recurrent sate x,
N, : . E(N,
lim ﬁ = 0 with prob 1, lim (Nn(x)) =0.
n—o00 n n—o0 n

e A positive recurrent state means it comes back in finite
waiting time; a null recurrent means it comes back very

rarely.
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THREE Theorems and THREE Corollaries
are COMING soon.....

no worry
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Theorem 1. If x is positive recurrent and x — y,
then y is also positive recurrent.

Pf.: "x—vy

. P™(x,y) > 0 for some n; > 1

" X recurrent, x — y

.y — x, then P™(y, x) > 0 for some np, > 1.
Hence

prrmEm(y v) = P™(y, x)P"(x, x)P™(x, y).
Sum over m=1,2,--- 'n, and divide by n:

EY(NH2+n+n1 (}/)) — Ey(Nn2+n1 ()/))

Take limit n — oo:

E.(Na(x))

> P™(y, x) P™(x,y).

1 1
- > P”Q(y,X)FP'”(X,y) > 0.

m,, ¢

. my, < 00, i.e. y is positive recurrent. ]
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Theorem 2. An irreducible MC having a finite
number of states must be positive recurrent.

Pf.: We know that all states are recurrent (.- finite
state + irreducible).

Assuming that the theorem is false, all states are
null recurrent. Note

1= Z P™(x,y) (row sum is 1).
yeS
Sum over m=1,--- ,n and divide by n:
Ex(Na(y))
1= e
2
yeS
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Take limit:

1:n|Ln;O ZM

yeS n
= Z lim E(Naly)) (S is finite)
n—o00 n
yeS
— Zo
yeS

= 0, contradiction! [
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Theorem 3. An irreducible positive recurrent MC
has a unique SD 7 given by
1
= —, e€S.
7(x) X

X

Pf.: Step 1. Uniqueness.
We first assume the SD exists, denoted by 7, to
show 7(x) = m% x € S. In fact,

7(x) =Y m(2)P"(z,x) (i.e,m=7P".¥Ym>1)

Sum over m=1,--- ,n and divide by n:

m(x) = ZW(Z)EZ(NT”(X)).
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Take limit:

m(x) = nli_}rg() ZW(Z)M

n

E,(N,
= E 7(z) lim M (infinite sum need DCT)
n—o00 n

=Y rla) -

Therefore, the uniqueness follows.
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Added: Dominated Convergence Theorem: Suppose
(i) |an(k)] < M < o0, lim a,(k) = a(k).
n—o0

o0

(ii) pr =1 (or just < c0)
Then N N
lim > an(k)p(k) = > a(k)p(k).
k=1 k=1
(e.g. lim S~ L exists or not?)

n+k
n—o0 k=1

Pf.: Apply N argument to

Z an(k)px + Z an(k) P«

k=1 k=N+1

J/

! (i)
(IN< €/2 for a large N.
N

S

(1): can be close to Y a(k)p(k) as long as n is large! O
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Step 2. Existence.

To show existence, it suffices to show

(i) > m% = 1. (distribution)

xeS

(i) > LP(x,y) ==L, Vy. (stationary)
xe$S g
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Step 2.1 To show: (i) (ii) are two inequalities “<".

e Note: > P"(z,x) =1, Vz. Then

£ L, 5 Et()

L = 1 (if S is infinite, why? Fubini!)
n

xeS
(It will be direct if we take limit on n then “=" will follow,
however, we cannot apply DCT here (why?) we need a slight

modification)

= Z M < 1,V 5 finite

n
x€eS5;

1 1
= ZFX < 1,V S finite = ZFX <Ll
X€51 xeS
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n n

Z EZ(/\f:(X))P(X,y) _ Ez(Nn+1(y)) P(Za)/)‘

xeS

- Z EZ(I\f:(X))P(X,y) < Ez(Nn+1(y)) o 'D(Zn7y)’\v/sl finite

n
xXESy

= Z—P X y — v51 finite

PN

:>Z—ny i

x€S my
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Step 2.2 To show: (i) (ii) are two equalities "="".

To show: (i) > - SPxy) = Vy.

xeSs my'

Otherwise, Jyy s.t.

Z miP(X,yo) <

xe§ % 177)40
Then
1>Z— >Z[Z—PX}/]
y€eS y€eS LxeSs
= Z — Z P(x,y)] (Use Fubini)
xeS M yeSs

1 o

- Z S a contradiction!
m
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To show (i): > L =1.
xe$S

Note Y~ = < 1. Let c be such that > = =1.

X X

x€eS xeS

Then c
= — S
7(x) ot X €

is a SD. Now, by uniqueness

1
L —_, Vx € S.
mX mX
c=1.5 Y L =1 ie (i) follows.

xeS
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Corollary 1. An irreducible MC with finite state
space has a unique SD:

1
W(X):F, XGS

X

e.g.: P (finite Matrix). 7P = m. We then solve
(PT—Nr" =0
though the row operation. Cor 1 says that

e the solution exists and is unique.
e it gives us a way to find m, = E,(Tx):
1
my=——~, x¢€S.
m(x)

(. my<oo . m(x)>0)
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Corollary 2. Let the chain be irreducible, then the
chain has a SD iff it is positive recurrent!

Pf.: = It’s just the theorem.

“=": Otherwise, all states are either null recurrent or transient (why?),
then in both cases,

lim w =0, Vz,x€S.

n— o0

Let m be the SD. Take x € S, then

n

Z(...)/n = m(x) = ZW(Z)M'
m=1 >

n— oo+ DCT = 7(x) = Zw(z) -0=0. Contradiction! [

z
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_qp =

5190 0p B .
e.g.: P= g0 p , §={0,1,2,---}is
infinite. i

Assume: p >0, g > 0, p+ g = 1 (irreducible).

Recall:

e This chain is recurrent iff g > p.
e The chain has a SD iff g > p.

Then, the chain is positive recurrent iff

q > p.
(Once again, in this case, E,(T,) = m, = ﬁ)
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Exercise: Consider a general birth & death chain

v Po
qan p1
a rn p2

Row sum =1

Assume it is irreducible.

Q.: Determine if it is either positive recurrent, null
recurrent, or transient.
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Corollary 3. Let C be an irreducible closed set of
positive recurrent states. Then the MC has a unique
SD 7 concentrated on C:

L x € C,
m(x) =

0 Otherwise.

Indeed, we can regard {X,} asa MCon C and

obtain m¢(x) = =, x € C. Define
7rc(x) x e C,
m(x) =
0 Otherwise.

Then it is direct to check that 7 is a SD on S.
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e.g.: Let S= (G U---)U St (finite or o), and

G -
p= G [Pl 0 ], (1 positive recurrent.
: |k *

Regard {X,}°°, as a MC on C;. Then, by Thm 3,

T, (x) =+ (x € G) is the SD. Define

My

(x) o (x) if x € G,
X = 0 Otherwise.

We may write m = [r¢,,0]. Check:

0
] = [, P1,0] = [7¢,,0] =,

*

7P = [, 0] E

i.e. wisa SD of P.
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Two further notes:

e If no G is positive recurrent (i.e. all states in S
are either transient or null recurrent), then the

chain has no SD.
G G St
G|PL 0O O
o Let P = Glo P, 0
N

G (i =1,2): positive recurrent,
m; (i =1,2): SD of P; concentrated on C;.
Then

7Td:ef)\7rl+(1—/\)7rg, 0<A«<1

is also the SD of P.
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§2.4 Periodicity
Recall: For an irreducible & positive recurrent MC,

n

2 PT(xy) 1

lim 2= = lim M:—:W(y), Vyes,
n—00 n n—00 n m,
-
e lim . Z pr— || exist
ile. lim = = exis
n—oo N :
m=1
T

(S: finite or infinite)

Q.: How about |Iim P"?

n—oo
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Example: P = E (1)] SD: 7 = [3,3]. Note:
10 01
2n __ 2n+1 __
=l P[]
o lim P™ does NOT exist.
n—oo
BUT, both lim P?" and lim P?"t1 exist!
n—oo n—o0

The problem is on the “periodicity” of the chain.
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Definition. The period d, of a state x is the
greatest common divisor (g.c.d.) of

{n>1:P"(x,x) > 0}.

Remarks:
(i) 1 < dye <min{n>1 P"(x,x) > 0}.
(ii) If P(X,x) > 0 then d, = 1.
(iii) For Example above, dy = 2 = d;. Indeed, note:
1= P%(0,0) = P*0,0) =--- = P?"(0,0) = - - -,
0= PY0,0) = P*(0,0) =--- = P*"(0,0) = -- -,

. gcd{n>1:P"0,0) >0} =gcd{2,4,---} =2
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Prop. For an irreducible MC, all d, are equal.

Pf.: T ake x,y € S.
*.* The chain is irreducible
Sx—=y&y—x,
ie. I >1,m >1st. P"(x,y) >0, P2(y,x) >0
So
P™™(x, x) = P™(x,y)P™(y,x) > 0

oo dye|ny 4 o (%) (i.e., dy is a divisor of ny + )

Let A, &ef {n>1:P"(y,y) >0}. Then, forne A,

P”1+”+"2(X,x) > P™(x,y)P"(y,y)P™(y,x) >0

codilnr+n—+n Note: n=(n +n+m)— (n + n)
Together with (%)= dy|n, Vn € A,.

. dyld,

The same argument gives d, |d. code=d,.

[l
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Definition: Consider an irreducible MC.

e Note that all states have
the same period d > 1.
The chain is called periodic with period d > 1.

e If d = 1, we say the chain is aperiodic.

Remark: Consider an irreducible MC. If
P(x,x) > 0 for some x € S,

then the chain must be aperiodic. (" dy =1 =d)
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Example 1.

0x00

00x20 .
P = , X nonzero entries.
x 00 x

O0x00
60—

It is obvious to see that the chain is irreducible, and
d, =3,

(Note: d, = 3 means that the chain from a returns to a in
3m steps, i.e. P>™(a,a) >0,Vm>1.)
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We may directly compute: P", (n=2,3,4,---).
Form=1,2---,

x 00 X 0x00
O0Ox00 00x0

3m __ 3m+1 __
P 100 x0]”’ P T x 00 x
x 00 x 0x00

00x0

3m+2 __ x 00 x

P ~l0x00

00x0

Recall: dy = g.cd. {n>1:P"(x,x) > 0}.
". Period = 3.
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Example 2. Determine the period of an irreducible
birth and death chain:

n Po
qan p1
a rn p2

[ call py >0,y > 0.

e If some r, > 0, then P(x, x) = r, > 0, hence the chain is
aperiodic.

e If all r, = 0, then the chain can return to its initial state
ONLY after an even number of steps.
Then, for a given state x € S, any integer n > 1 such
that P"(x, x) > 0 must be even.
Then d > 2 must be even.
Note P?(0,0) = P(0,1)P(1,0) = pogy > O.
.. Period = 2.
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Theorem. Let {X,}°°, be irreducible and positive
recurrent with SD 7.

(i) If the chain is aperiodic, then
n—o00

(i) If the chain is periodic with period d > 2, then
for any x,y € S, there exists
re{0,1,2,---,d—1}
which may depend on x and y, s.t.

., ——dn(y) ifn=md+r,
P (x,y)Z{

m—>00

=0 if n% md+r,
where m > 0 is an integer.
Pf.: Pages 75-80 in the textbook.
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Remark: Theorem tells that in case
Period=d > 2,
we are able to determine the limits of
Pmd’ /_->md+17 . 7Pmd+(d—1) (m N Oo)
Precisely, for any given x, y,
P™(x,y),  P™(x,y),- -, PP (x, y)
are zeros, except that

exactly one of them tends to dn(y) as m — oo,

You have to figure out which one!
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Example 3. Determine the long term behavior of
P" for given P.

01 2 3
1 1
S R
(@ pP=1]5 2 3 0f
210 1 1 1
57
3100 5 5
Solution:
e Note:

A

!

L
IQ
W

. irreducible.
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e dx s.t. P(x,x)>0. .. Period = 1.
e Solving m = wP, we get the | SD

1331

"=lgggsl

e Hence, by the theorem,

133 17
A 88838
1331

im P = "] = {8888
n—00 v 5855
us 1331
L8 8 8 84
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01 2 3
0|0 1 0 O
(byp=1]3 05 0|
210 5 0 3
3]0 010
Solution:
e Note:
D& <223
*. irreducible.

e Period = 2. (By the previous example)

e Solving m = P, we get the ! SD: w—[% 22 g.

—_

237/323



D& €223

By the theorem,

. . P>™tl(x y) =0, Vm,
if x — y is even,

P27 (x,y) —— 2 (y).
m— oo

_ P*"(x,y) =0, V¥m,
If x — y is odd,
P2m+1(x,y) T) 27 (y).
. 1 3 31
Recall. ™ = [g,g,g,g]
01 2 3 01 2 3
ors 0 2 0 oo 2 o0 !
oo 213 0 2 0| mo 210 2 0 3|
30 2 0 % 3L 02 0
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Chapter 3:
Markov Jump Process



§3.1 Introduction
e Jump process.

Recall: a MC (discrete-time stochastic process
with the Markovian property):

X(n) €S, n=0,1,2--.

S: finite or countably infinite,
eg. S={0,1,...,N} (N < o0).

state
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Consider a continuous-time stochastic process:
X(t)eS, 0<t<oo,
S: finite or countably infinite.

54'41’6

1
{
i

1t
: t
P -~—"— o0e
3 ' ¢
| t

Tz T3 XY /{—im t
— T1,Tp, - the waiting time to jump (random).

— X(m), X(7),---: where to jump (random).
— Always assume: lim, o, 7, = oo (No blow-up!)
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e Probability structure.

Def.: x € S is absorbing if

“X(t) = x for some t > 0"="X(s) =x, Vs > t".
State

a’ == -:h—¢"

N
, )
Time
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Given a non-absorbing state X(0) = x € S, we
need to know two things:

(i) Fx(t), t > 0: the distribution of the waiting
time 71. Note:

F.i(t) = Py(m1 < t).

(ii) Q. the transition prob to jump from a state x
to another state y(# x):

(;)x3< — (), :EE::: (:;{x)/ = 1.
yeS

1, for x =y,

(If x is absorbing, Q., = d,, = {0, otherwise.

)
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For non-absorbing x, we assume:
Px(Tl < tax(Tl) = y) = PX(Tl < t)Qxya

71 (the waiting time to jump)
and
X(11) (jump to where)
are independent!
state

4
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Similar to the MC (discrete-time), our concern is
to determine the transition function:

Py (t) = P(X(t) = y|X(0) = x) = P(X(t) = y),

I.e., the prob that the process starting at x will be
at y at time t > 0.

Note:
(i) 22 Po(t) =1, Py(0) = 0.
(ii) hginitial distribution is known, for instance, it is
given by m(x), x € S, then
P(X(t) =y) =) mo(x
x€eS

or my = meP(t) in matrix form.
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e Markov property:

P(X(t) = y|X(s1) = x1,- -+ , X(sn) = xp, X(5) = x)

= P(X(t) = y|X(s) = x),

Vo<1 <+ <5, <s<t,Vxq, -, Xp, X,y €8S,
Note:

e \We always assume the process is time-homogeneous:

P(X(t) = y[X(s) = x) = P(X(t — 5) = y|X(0) = x),
VO<s<tVx,yeSs.
Therefore

P(X(t) = y|X(s) = x) = Pq(t = s).

e A Markov jump process (MJP) &3 continuous-time
jump process with the Markovian property.
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Now, we always consider the MJP.
Q.: How to determine F,(t) = P,(m < t)?

Recall that F,(t) is the distribution of 71 (the
waiting time for a jump to occur!).

To show: 74 is an exponential rv with density:

1
f(t)=Xe ™ t>0 \& .
& . E(r)

Hence:
t

F(t)=P(m <t) = / f(s)ds =1—e ", t>0.

—00

247/323



Def.: Let 7 be a r.v. taking values in [0, 00). Then
T is said to be memoryless if

P(tr>s+tlt>s)=P(r>t), Vs, t>0,

(i.e., after waiting for time s, the prob for waiting
for another time t has no memory that it already
waits for time s.)

e.g. Model: Wait for an unreliable bus driver.
Then, the waiting time is a memoryless r.v.:

“If we have been waiting for s units of time then the prob
we must wait t more units of time is the same as if we
have not waited at alll”

248/323



Proposition. Let 7 be a memoryless r.v. Then 7
is an exponential r.v., and the density is given by

Xe M t>0, A=1/E(7).

Pf.: Let G(t) & P(t > t). As 7 is memoryless,

G(t)=P(r >t)=P(r >s+t|T > s)
_ P(r>s+1t) G(s+t)
 P(r>s)  G(s)

G(s+t)=G(s)G(t), Vs, t>0.
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Assuming G is differentiable,

Note: G(0) = P(t > 0) =1. ... G(t) = e“".

Note: G(t) = P(7 > t) is decreasing. .. a < 0. Set
a = —\ (A > 0). The density function is

f(t) = (1 - G(t)) = Xe ™. [
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Proposition. Let X(t), t > 0 be a MJP. For a
non-absorbing state x € S, letting X(0) = x,

r, & inf{t > 0: X(t) # x}. (first time to jump)

Then, 7, is a memoryless r.v.

Pf.:
P(1« > s+ r|1c > s)
=P(X(t)=x,0<t<s+rX(t)=x,0<t < s)
_ P(X() = x,s <t < s+ rX(E) = x,0< £ < s)
= P(X(t) = x,s < t < s+ r|X(s) = x) (Markovian)
= P(X(t) = x,0 < t < r|X(0) = x) (time-homog)
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Remarks:
e For a MJP, as 7, is memoryless:

P(rx > s+ r|m>5s)=P(r>r),

Ag‘l'ﬁ'“—
9L e 0
=Y !I_
< } > time
° ”

it looks like that the process starts from s.

o Set g, & 1/E(7x). Then, 7, has an exponential

density given by g,e %' (t > 0).
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§3.2 Poisson process

We shall give the definition of Poisson process in
terms of the waiting time.

Setup:

eleté,~& n=12 .- beiid. exp. r.v. with
parameter A:

P(¢>t)=e M A=1/E(&).

e Define 75 = 0, and

Tnd:ef£1+§2+...+€n’ n:]_’z’..
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A State
ne -~-—--—=~~—~ -~ +—o

) |
2¢ - -—---——9°0 |
e
OH- ' s

‘Z:, oo T, '1'['7142

|%§9| kél

Forn=1,2---,
&, ~ &: the waiting time for one arrival.
T, the waiting time for the n‘-arrival.
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Fort >0,

X(t) € max{n>0,7, < t},

i.e., the no of arrival in [0, t].

Then, we get a jump process:

X(t)e {0,1,2,---}, t=>0.

Q.:
e What'’s the density of X(t)? (Poisson with
rate \t!)

o Is X(t) a MJP? (YES!)
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Theorem. X(t) is Poisson with E(X(t)) = At:

P(X(t) =n) = e_M(

Pf.: By definition,
{X(t)=n}={m <t <mpu1} = {11 > t}\{m > t}.
Hence,
P(X(t)=n)=P(the1 >t)— P(th, > 1t). (%)
e n=20:

PX(t)=0)=P(rn>t)—0=P(& >t)=e .
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If so, substituting (*%) into () gives the theorem.
Proof of (xx) by induction:
n=1: P(ry >t) = P(& > t) = e M. (s) holds.

Letting (*x) hold for n > 1, we need to show that
(%) is true for n+ 1. Indeed,

257/323



P(T,H_l > t)
= P(Tn +£n+1 > t)
= P(€n+1 > t) + P(gn-i-l < t,mh+ €n+1 > t)

t
_ ot +/ e ™. P(1, >t —s)ds (explain later)
0

VK
ety /)\e)\s Ze#\t s) A(t 5) )ds

(Use mductlon assumpt|on!)

n—1 Ak+1 t
=eMpe ™ —/ (t —s)<ds
0

k!
k=0
-1
=eMipe ™ o A ot
|
—~ k. (k+1)

n—1 k+1 n k
CAE | At (At) e (A)
= = —. U
¢ e ZO k+1)1 € kz k!
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Note (See Durrett P93-103):

Let X, Y be independent with densities (-), g(-)
over [0,00), resp. Then,

PIX <t,X+Y>t)= // f(x)g(y) dydx
—/0 f(x)/t_x (y )dydx—/0 f(x)P(Y >t — x)dx.
S x=}
t
=L
L-2 e o~
> 2
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1 k=0,
otherwise.

e £(X(t)) = At is the expected no of arrivals
in [0, t]. A is the arrival rate.
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Corollary. The Poisson process {X(t)};>o with
rate A\t satisfies:

(i) X(0)=0.
(i) For 0 <s < t, X(t) — X(s) has Poisson distribution with
mean \(t — s), and is independent of X(s).

(i) For0 <ty < -+ < 8y,
X(tQ) - X(tl)a T ,X(tn) - X(tn—l)
are independent.

Also, {X(t)}+>o satisfies the Markov property with
E(X(t)) = At, Var(X(t)) = At.

Remark: Very often, (i)(ii)(iii) are also used as the
definition of Poisson process!
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IDEA of Proof:
e (i): Obvious.
o (ii): For0 < s < t,
P(X(t) = X(s) = n)
= 2om=oP(X(s) = m, X(t) = n+ m)

)
= 2 m-oP(X(s) = m)P(X(t) = n+ m|X(s) = m)
= 2 m—oP(X(s) = m)Pmnim(t —5)
= 2 m-oP(X(s) = m)Pon(t —s)
= Pon(t —s)
_ o Nt-s) [A(t —s)]
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X(t) — X(s) is independent of X(s) means
P(X(t)=X(s) = n,X(s) = m) = P(X(t)=X(s) = n)P(X(s) = m),
equivalently
P(X(t) — X(s) = n|X(s) = m) = P(X(t) — X(s) = n).
Indeed, note
LHS = P(X(t) = m+n|X(s) = m) = Pmmin(t—s) = Pon(t—s).

e (iii): Omit the proof. Intuitively clear (See P94-95
in Durrent Chapter 3)

e For Markov property: Check
P(X(t) = y|X(t1) = x1, -+, X(ts) = xp, X(5) = x)
— P(X(t) = yIX(s) = x)
forany0<ti <bh<---<t,<s<t. L[]
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Sum: We see that the Poisson process
X(t), t>0,

turns out to be a MJP (continuous-time JP with
the Markov property) with X(0) = 0 and the
transition function:

Forany t >0 and any x,y € $§=4{0,1,2---},

0 if x>y,

) = ey

0.y—x(t) = e b= ifx<y

Here, A > 0 is the arrival rate.

[l
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§3.3 Basic properties of MJP
Let {X(t)}:>0 be a MJP with

Py (t) = P(X(t) = y|X(0) = x).
Proposition. (Chapman-Kolmogorov equation)
Polt+5) = 3 Pult)Py(s)

In matrix form, letting P(t) = [Py, (t)], the above is
P(t+s) = P(t)P(s).

Remark: It is similar to the discrete case
P™1(x Z P™(x,z)P"(z,y)
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Py (t+s)= ZP X(t+s)=y)

P.(X(t) =z, X(t+5)=y)

= Pu(X(t) = 2)P(X(t + 5) = y|X(t) = 2)

= P.(X(t) = z)P(X(t + s) = y|X(0) = x, X(t) = 2)

= P(X(t) = z)P(X(s) = y|X(0) = z) (Markov+Time-Homg)

= PXZ(t)PZy(s).
It follows that

Py(t+s) = }:PH
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Note: Assume P(t) is differentiable in [0, o), and

D ¥ P(0).

Then, from the C.-K. equation

P(t +s) = P(t)P(s),

one has
&L 0=Pw=PoD
d ,
p » (1) = P'(s) = DP(s).

- [P'(t) = P(t)D = DP(t), t>0.
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Fact I.

def
D = P'(0) = [quy]xyes =

called the rate matrix.

+ :entry > 0; —:entry <O0.
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Indeed, note:

qu = P)/<y(0)
_ i Polh) — Py(0)
a h—|>n01+ h
o POX(R) = yIX(0) = X) = P(X(0) = yIX(0) = x)
h—0+ h
i PX) =y X© =21 e

h—0+ h

lim
h—0+ h
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Fact Il. Each row sum of D is zero:

quy = 07

yeS

Indeed, note:

S Py (t)=1,¥t > 0.

yeS

. d
© dt

VxeSs. ()

|t:0 = > P, (0)=0.
yeS

Observe: (x) means g + Y gx, = 0, that is,
y#x

- qxx
~——

the rate to jump away from x

>

y#X

Qxy
~—

the rate to jump to y from x

[l
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Recall:

e E(7y) is the mean waiting time to jump away from x, so

O = ﬁ is the rate of change. Note:

gx = 0 iff E(7,) = oo, iff x is absorbing.

o Q =[Q,] is the Markov matrix introduced before.
Q. = 1 iff x is absorbing. For non-absorbing x,

Qu=0, Y Q=1
y#X

and in such case, @, is understood to be the
proportion that the chain will jump to y from x.

Main Theorem:

_qXX — qu qu = qXQxy 'FOF y # X.
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Pf.: Case x is absorbing (gx = 0, Qy, = 0y, ):
Py (t) =0x. .. Gy = P;y(O) = 0.
Conclusion is then TRUE.

Case x is non-absorbing:

Py (t) = P(X(t) = y)
= Py(7 > t, X(t) = yz

A

TV
I: no jump yet

+ P(re < £, X(t) =y).

A\

II: it has jumped
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For I (no jump yet):

te
1\54'0. ‘
Xy—1—
0 t {E ?'Hme,
%L

[ = P(7c > t, X(t) = y)

{0 for y # x,

P71« >t) =e %t fory=x

N —qx t
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For /I (it has jumped):

Stafe
KEZ|oo . c— z *—
Xp—
i > time
0
. Ty"—t -5 t

Il = Py(7 < t,X(t) = y)
—ZP Tx < t, X(7x) = z, X(t) = y)
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Py (t) =1+ 1l

- Xye_th + Zz#x fothe_qXSQXZsz(t - S)dS

= Xye—CIxt 4 qxe—thZz;Ax fOthszy(u)eqxudu
(Change of variable: t — s = u)

P F&y(t):: __qxfzy(t)'+'qx§:z¢xczafiy(t)

‘. P)/(y(O) = —qXPXy(O) + QXZZ;,AXszsz(O)

= _qx5xy + qzzz7gXszézy

- - (7)<(5;()/ + qx (;)Xj/

—qx +0 = —gx fOI’y:X, 0
quxy fOI’y;éX.
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Example 1. Poisson process with rate At:

Pon(t) = P(X(t) = n|X(0) =0) = e‘”%, n=0,1,2,---
et e—)\t% e—)\t%
e_)‘t e_)‘tﬁ [
P(t) = v (transition function)
0 0
Then
AN O e 010 -+ ---
D = P'(0) 0 -2 X 0 Q=001 .-
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Example 2. Car check up with 3 operations in
sequence:

(1) Engine time up — (2) air condition repair —
(3) break system replacement — (4) leave.
Assume that this is a MJP with the mean time in
each operation 1.2, 1.5, 2.5 hours.

5$={1,2,3 4} The rate of moving up to the next
stage is i L Thus,

12" 1. 2_
1513 0 0 0100
b_ |0 —& 3 0 o [0010
0 0 _2_15% ’ 0001
0 0 0 0 0001
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Further questions:

(a) What is the prob that after 4hour the car is in step (3)?
That is to find P(X(4) = 3|X(0) = 1).

(b) What is the prob that after 4hour the car is still in the
shop? That is to find P(X(4) = 4|X(0) =1).

Generally, need to find
P11(t) Pro(t) Pi3(t) Pia(t)
P(t) = P21 (t) Pao(t) Pas(t) Paa(t)
P31(t) Ps2(t) Psa(t) Psa(t)
Pa1(t) Pax(t) Pas(t) Paa(t)
Method: Solve the linear ODE system:

P'(t) = DP(t), P(0)=I.
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Example 3. A barbar shop with two barbars and
two waiting chains. Customers arrives at a rate 5
per hr. Each barbar serves at a rate 2 per hr. If the
waiting chains are full the customer will leave.

X(t) % the no of customers in the shop.

5$=1{0,1,2,3,4}.
o 1 2 3 4 (01000]
0[-5 5 0 0 0] 5
112 -7 5 0 O 7272
D=192l0 4 —9 5 0| Q@=105035
310 0 4 -9 5 00503
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Further questions:

(a) In the long run, what is the prob to have one
customer, two customers, etc.? That is to find
lim P(X(t) =k), keS.

t—00

(b) Find the expected time for it to be full, counting
from the opening time. That is to find

where T, = inf{t : X(t) =y, X(0) = 0}.
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How to solve:
P’(t) = DP(t), P(0)=1.

Case when S is finite:

ef o (tD)"
P(t) = e d:fg ( |) (convergent!).
n!
n=0

Informal Proof: At t =0, et? = &P = |
(Convention: 0° =1, D® = /), and for t > 0,

L 1Dn
SN
i%
— (n—1)!
— DetP. O 281/323
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-11
2 =2

Sol.: Look for D = Qdiag {\1, A2} Q1.
(i) Eigenvalues: det(D — \/) =0,

Example. Let D = [ ] Q.: Find P(t).

: -1-X 1
|.e.,0:det[ 5 _2_/\}:(—1—)\)(—2—)\)—2,
e, A2+31x=0. . A=0,-3.
- _ C[-11 1
(i) Eigenvectors: A=0:D — A\ = 5 _2],el— 1l
21 1
v sone s [
2 1
e 11 3 3
Let Qd:f [eljez] = |:1 _;|1 Q_l = [2 _31 . Then,
373
00| A . A 100 ] 41
[0_3]—0 DQ, /.e.,D—Q[O?J :
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Remark: Set 7 =[2/3,1/3]. Then, 7P(t) =m, YVt >0,so 7
is a SD for P(t).
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§3.4 The birth and death process

Setup:
Let S ={0,1,--- 1,
X Ao 0 0 0]
M1 —()\1+,LL1) /\1 00
D = [gy] =
[q y] 0 J9) —(>\2+,u2) >\2 0
0 0 .. o,

Assume that all A\, ux # 0(> 0).
Ax: birth rate, puy: death rate

. ET‘J' P« ' Tole N @
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Example 1. Revisit the Poisson process.

We already derived earlier P(t) = [P,,(t)] for a
Poisson process X(t), t > 0, using

X(t) = max{n: 7, < t}.

We further have derived:

—A A
P'(t)= P(t)D, D= DY :

A > 0: arrival rate.
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Here we want to derive the inverse:

Proposition. If X(t) is a MJP with rate matrix

—A A
D = —A A

then X(t) has the Poisson distribution, i.e.

_)\t()\t)(y_x) c
Pyy(t) = {e o Ty2x20

0 otherwise.

It is another way of obtaining the Poisson process.
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Pf.: Recall

PL(E) =3 Pult)ay.
Observe
(i) If y =0, then

>/<O(t) = _/\’DXO(t)v PXO(O) = 0x0-
L. PxO(t) - Xoe_At.

(ii) If y > 1, then

Po(t) = APxy1(t) = APy(t),  Py(0) = 0y

t
Py (t) = e M5, +/ e MNP, 1(s) ds.
0
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Claim #1. P, (t) =0, Vy < x. Indeed,
if y=0(x>1), Po(t)=0.
ify=1(x>2),
Pla(t) = APxo(t) — APc1(t) = —APca(t), Px1(0) =0.
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Claim #2. P, (t) = e P vy > x>0,

Indeed, let x > 0 be fixed.
For y = x,

t
Po(t) = e M+ / e MNP 1(s) ds = e M,
° =0

Fory = x+1,

t
Pexii(t) = e Mo, i1+ / e M AP, (5) ds
N—— 0 N——

=0 :e—)\s

— .. = e ML

Inductively, we get the desired result. [l
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Exercise:

(1) Extend the above to

D —

[\ Ao
M N
“X Mo )

It is a general pure birth process.

(2) Think about the more general BD process:

D—

— Ao Ao

p1 —(A1 4 p)
0 M2
0 0

0 00
A1 0 0
—()\2 + ,LLQ) )\2 0

(see. P.98).
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Example 2. Branching Process:

— A collection of particles

— each waiting to
either split into two particles with prob p
or vanish with prob (1 — p)

— the waiting time is exp. r.v. with rate \.

X(t) " be the no of particles at time t.

Q.: Find the rate matrix D.
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Lemma. Let &, - ,&, be independent r.v. having

exponential distribution with rate aq, - , a,, resp.
Then,

nﬂn{éla"°7£n}
is an exponential r.v. with rate

a1 + N + @n’
and foreach k=1,--- ,n

: g
P(£ = min e 6L = .U
(&x {&,- . &}) ot o

If so, then
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[ 1 0

l=p 0 »p . N
Q= 1-p 0 p (Markov matrix for state transition),

0 0 0

(1-p)A -2 pA
D = 2M(1—=p) 2% 2Xp (rate matrix).
3M1—p) =3A3Xp

Indeed,

e Let X(0) = x, and &1, -+, &« be the time any one of the particles

e At time 73 = min{&y, -, &}, the no of particles will be x + 1 or
x—1.
e By lemma above, 7 is an exp. r.v. with rate \x:

the portion to x + 1 =p-Ax; the portion to x =1 =(1 — p)-Ax.
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/—Wan. m{,: \-P

yran P(DL:f

&

/Pm'ﬁidz

d«'SA/WW'mg

AX =

p-AXx =

(L—p) Ax =

Jue to one

@ Auz o ona

. viicle

/Pc. 4—‘ |
$‘F]VH';V\6

the rate to jump away from x

the rate to jump to x + 1

(Birth rate)

the rate to jump to x — 1

(Death rate)




Proof of Lemma:

P(min{&, -, &} > t)
=P >t & >t)
= P(& > t) X - X P(€, > 1)
—e Mfx ... x e ¥t
,(a1+...+an)t.

e
To consider P(&x = min{&y, -+ ,&,}), W.L.G. take
k =1. Set

n=min{&, -, &}

Then by above, 1 is an exp.r.v. with rate

n
def
61: E Qy .
y=2
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P(§& = min{&, -+, &n})
= P(& < 1)

= //ozle_o‘lx . Bre Y dxdy

X<y

([ 9)s

a

a + B
a1

n
a1+Zy:2ay

a1
a1+ oo+ + ap
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For instance, consider &1, & only:

P(& = min{&1,6)) = P(& < &)

= // are” Y ape” ¥ dxdy
Xy

Qg

(651 + [6%)

N (3.)
Vs
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Remark: Suppose that we allow new particles to
immigrate into the system at rate «, and then give
succeeding generation.

n %' the first time a new particle arrives.
71 = min{&y, -, &, n}: the waiting time to change.

the rate of changing away from x particles = x\ + a.v

—Q (e
(1-pA—-(A+0a) pr+a
D= 2(1 = p)A —(2A + @) 2pA +

See the textbook P92. O
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Example 3. Queuing Model.

def : :
X(t) = the no of persons on the line at time t
waiting for service.

arrival rate \ : Poisson
service rate u: exponential distr

There are several models for queueing.
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e M/M/1 queue:

M stands for memoyless,

1°* M stands for waiting time for the arrival,
274 M stands for waiting time for service,

The last number is for the number of servers.

-\ A 00
D=|p (=A+p) XA 0
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e M/M/k queue (k servers):

_ ~Jonp if n <k,

Note: jin = {ku ifn> k.
S _
po—(utN) A 0

2 —(u+A) A

ki —(kit ) A
O ki —(kp+A) A
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e M/M/oco queue (oo servers):

—A A

po—(ptA) A
2 —Ru+A) A

arrival rate = ), service rate = p,

def : :
X(t) = the no of customers on the line at time t.

(e.g., in the telephone exchange, this is a continuous-time

version of a previous example in the Markov chain).

Q.: Find Py (t) and tlim Py (t).
— 00
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Lemma. Let Y(t) be a Poisson process with rate
A. Then for 0 < s < t (¢t fixed),

P(r <s|Y(t)=1) = ;

i.e. the density function is % on [0, t], namely, given
that the arrival (one) is within [0, t], the arrival time
is a uniform distr on [0, t].

Note: This is a special case of Ex 6 with Y(t) = n.

303/323



Pf.: For0 <s < t,
P(r <s|Y(t) =1)
= P(Y(s) =1]Y(t) =1)
_ P(Y(s)=1,Y(t)=1)
P(Y(t)=1)
_ P(Y(s)=1,Y(t)— Y(s) =0)
P(Y(t)=1)

e—)\s(AS) . e—/\(t—s) (A(t=9))°
1! 0!

e—)\t()‘t)

1!

|
H-.l 0
L]



Assume X(0) = x.

Y(t) % the total no that arrived in time (0, t].

Let
X(t) = R(t) + N(t),

R(t) % the no of the original x (at t = 0) that
are still being served,

N(t) & the no of those from Y/(t) that are still

being served.
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Fact 1. R(t), i.e., the no of the original x (at
t = 0) that are still being served,

is a binomial r.v.:

P(R(t) = k) = (i) (e MYF(1 — e M)k,

0 < k<x,

x = the total no at t =0,
e " = the success prob of still being served.
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Fact 2. Recall: Y(t) is the total no that arrived in
time (0, t]. We want to consider

P(N(t) = n|Y(t) = k).

Note: Fix t.
e Given Y(t) = k, N(t) should be a binomial r.v., but we
have to find “the success prob":

pr = P(N(t) = 1|Y(t) = 1).

e For one that arrived at time s € (0, t], the prob of still
being served at time t is e (=)

e By lemma, the arrival time s subject to one arrival in
(0, t] is uniform dist 1/t.

e Then the prob that he is still being served at time t is

t —put
pt — / 1 . ef:u‘(tfs)ds — ]-_—eu
o t ut
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Hence,

—

Atpe)" i,
= e .
nl

(see P101)

The same as in last Chap (P55). O
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We conclude that (Recall X(t) = R(t) + N(t))

Py (t) = P(X(t) = y)

= > PR = WP(N() =y — K

k=0

min{x,y} _
= Zy (i) e_kut(]- - e—Mt)X_k (AtPt) k " .

— (y — k!

For t — o0, all the terms vanish except k = 0:

I|m P

xy

( ) e—A/u( ﬁﬁd

(tpr = 1/ as t — 00).

Note: Compare it with the “telephone exchange” example
last chapter.
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§3.5 Limiting properties of MJP

The definitions of
— stationary distribution (SD)
— recurrence or transience
— etc

are the same as Markov chain.

Let us only sketch some of them.
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e SD:

Let

be a MJP.

Def.: 7 is called a SD if
(i) (distribution)
w(y) 2 0,¥y e S > w(y)=1
y

(i) (stationary)
Z?T(X)ny(t) =m(y),Vy € S,Vt > 0.

xeS
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How to find the SD #?

In fact,

0= (Z W(X)ny(t)> =) w(x)P,(1).

X X

(Note: there is a technical point to interchange ) and (-)’

X

for the infinite sum)

Let t — O+, then > 7(x)gyx, = 0, i.e. in matrix

form
D =0,

where D = [q,,] is the rate matrix. The converse is

also true.
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Example. Find the SD of the birth and death
process with rate

—o Ao
1 —(A1 4 )
M2

A

— (A2 + 12) A2
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SOI.: Let 7 = (X(),Xl7 cee ) ™D =0 is
— o Ao
[x0, x1, - -] [“1 —(p+ A1) M =1[0,0,--].

Hence
{ —XoXg + p1x1 = 0,

Ak—1Xk—1 — (>\k + ,uk)Xk + pks1Xer1 = 0, kK > 1.

Note: For k > 1,

AMkXk — Mk+1Xk+1 = Ak—1Xk—1 — MkXk

= = Aoxo — rxy = 0.

* _A p— T ee—t ———— e e e
o Xk = ik Xk—1 = = X0,

Xe=Bioo, BiE S (k> 1),
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Formally, > xx = (>_ Bk)xo (Convention: [y = 1).

k=0 k=0
Then,

oif B = def Z Bk < 0o, then choosing xg =

=0

_ (LB B,
_(5’5’5’ )lsaSD.

‘:blh*

o if Z Bk = oo, then, no SD! O
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Exercise: Use this to check the queue models:
M/M/1, M/M/2, M/M/ .

For instance, M/M /oo case:

{)\k:)\(k>0) ﬁk:(&)'”

ko =kp (k>1) ul
IEED
k>0
LA e (22 ek
R e_ﬁ’e_ﬁ_} K S K o
2l Kl

“the same as the one by looking for the limit
distribution lim Py, (t)"

t—00
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e Recurrence and transience.

f L :
71 & the first time to jump

T, ¥ min{t > r : X(t) = y} (hitting time)

(=0 if X(t) #£y,Vt =)

Py & PUT, < 0)

(the prob that the process starting from x eventually hits y)

Recurrent: p,, = 1.
Transient: p,, < 1.
Process is irreducible: p,, >0, Vx,y € 5.
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Let @ be the matrix in the MJP, i.e.
P < t,X(m1) =y) = F(t)Qyy, ¥ # X,

Fo(t)=1— e %%

Assume irreducible, i.e. g, > 0, Vx. Then

P(X(1) = y|X(0) = x) = Qu(= ‘Z;y) Vy % x.

Let o =1, and
Z,=X(1y), n=0,1,2,---

(Only count the jump each time, but ignore the
length of waiting time).
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Then,

{Z,}°, is a Markov chain with Q as tran-
sition matrix.

Note:

T, d:eflnf{t T X(t) =y} < o0

iff

T, ' inf{n>1:Z,=y} < oo (as Markov chain).

" Pxy for {2,102, is the same as p,, for {X(t)}+=o0.
.. To check recurrent/transience,

we need only consider Q!
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Example: In the birth & death process

1

A
0 A1+
M2 O

(0 1
g1 0 ;
G 0 p

It follows from Chapter 1 (P33) that the chain is

recurrent iff

© Ml...un: 0 ql...qn

R

= OQ.

“— p1- P
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e Long-run behavior.

Let m, & E.(Tx) (the mean return time).

— Null recurrent: m, = oo
— Positive recurrent: m, < oo. In this case

7(x) = — (+)

qxMx

Intuitive Proof of (x):

— In [0, t] for large t, the process will visit x for -
times and the average time staying at x (waiting
time to jump way) per visit is 1/qx.

1

. - - - t
— The total time spent in x during [0, t] is - - o

— The proportion of time spent in x is ——.
Qx My
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Note: Any MJP is aperiodic.

For an irreducible, positive recurrent MJP,

: 1
im Po(t) =nly) = - xyes.
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The end of lectures
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