THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4240 - Stochastic Processes - 2020/21 Term 2

Homework 1 Due date: January 22, 2021

Please hand in your answers on Blackboard to all questions below.

- **Q1.** A plane is missing, and it is presumed that it was equally likely to have gone down in any of 3 possible regions. Let $1 \beta_i$, i = 1, 2, 3, denote the probability that the plane will be found upon a search of the *i*-th region when the plane is, in fact, in that region. (β_i : overlook probability). What is the conditional probability that the plane is in the *i*-th region given that a search of region 1 is unsuccessful?
- **Q2.** Consider a random variable X taking the values

$$k_1, k_2, \cdots, k_n \in \mathbb{R}$$

with probability

$$p_1, p_2, \cdots, p_n \in [0, 1]$$

respectively, where $p_1 + p_2 + \cdots + p_n = 1$. Write down the formula for the expected value of f(X) for a given function $f(\cdot)$.

- Q3. Exercises of textbook (Chapter 1, starting from page 41): 4.
- **Q4.** Compute the distribution of X + Y in the following cases:
 - (a) X and Y are independent binomial random variables with parameters (n, p) and (m, p).
 - (b) X and Y are independent Poisson random variables with means respective λ_1 and λ_2 .
 - (c) X and Y are independent normal random variables with respective parameters (μ_1, σ_1^2) and (μ_2, σ_2^2) .
- **Q5.** Read materials on *Law of Large Number* and *Central Limit Theorem* in the book "A First Course in Probability" by Ross (Chapter 8), and write down the statements of both theorems.