Answer to a Question Posed in class March 10:
Claim: Let y be recurrent, then
$$\lim_{h \to \infty} \frac{N_n(y)}{n} \stackrel{\text{prod.}}{=} \frac{1}{1} \frac{1}{T_y} \frac{T_y}{Coo}$$

Proof. $\{T_y < \infty\} = \{1 \le T_y < \infty\} = \bigcup_{\substack{k=1 \\ k=1}}^{\infty} \{T_y = k\}$
Consider the limit in two cases:
 $T_y = k$ for $k \in \{1, 2, \dots\}$ and $T_y = \infty$
Case 1. $T_y = \infty$, to show: $\lim_{\substack{n \le 1 \\ n \le \infty}} \frac{N_n(y)}{n} \stackrel{\text{prod.}}{=} 0$, $(\therefore 1]_{\substack{T_y = \infty \\ T_y = \infty}}$
Indeed, recall $T_y = \infty$ in means
 $X_m \neq y$, $\forall m \ge 1$
 $\therefore N_n(y) = \sum_{\substack{n=1 \\ m \le 1}}^{\infty} 1_y (X_m) = 0$, $\forall n \ge 1$

Plugging those back to (**), $\frac{\text{prd}}{2}$ 0 + $\frac{1}{m_y}$ = $\frac{1}{m_y}$. Combing two cases above gives the proof of the desired result 1: <u>Na(Y)</u> - <u>Ittycos</u>, yyeSe for a general Markov Chain. ####