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Recall from the previous tutorial that we have shown

Proposition

Show that the European put options with strike price K and maturity at
time T satisfies Pg(t, K) > Ke="(T=t) — S(t) for all t < T, where S(t) is
the stock price, r is the continuous compound/ng interest rate.

Also, one can always deduce that

Proposition

Pe(t,K) >0 forallt < T

WONG, Wing Hong (CUHK) MATH 4210 Tutorial 4 7 October, 2020 2/20



Two vanilla put options are identical except for the maturity dates
T1 < T». If the interest rate is zero between Ty and T», then
Pe(t, T1) < Pe(t, T2) at any time t < Tj.
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Options

Answer

Suppose Pg(to, T1) > Pe(to, T2) for some ty < T. Make a portfolio: long
one put with maturity T, and short one put with maturity T1 at time ty.
Then, the values of the portfolio are

M(to) = Pe(to, T2) — Pe(to, T1) <0
M(T1) = Pe(Ty, T2) — (K — S(TL)t
. {K—S(Tl) —(K=5(Ty)) ifS(T1) <K
0-0 if S(T1) > K
)

This is an arbitrage opportunity. Thus, we must have
Pe(t, T1) < Pe(t, Tp) at any time t < Tj.
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Options
What happens if the continuous compounding interest rate is r > 07

Answer

The original portfolio becomes

Mo(to) = Pe(to, T2) — Pe(to, T1)
Mo(T1) = Pe(T1, T2) — (K — S(T1))*
Ke "(To=T1) — §(Ty) — (K = S(T1)) ifS(T1) <K
{0—0 ifS(Th) > K
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Options

Answer

To obtain useful inequality, we make a new portfolio as follows: long one
ut option with maturity T», short e "(T2=T1) put option with maturit
P P 34 Y

T1, and long (1 — e~"(T2=T1) stock at time ty. Then, the values of the
portfolio are

Mi(to) = Pe(to, T2) — e "2 ™ Pe(ty, T) + (1 — e 27 T))S(10)
Mi(T1) = Pe(T1, T2) — e =) (K S(m)" + (
Ke "(2mT) — §(Ty)

>9 —e (K —S(T))+ (1 —e"2")S(Ty) ifS(Th) < K
0—0+(1—e -k ifS(T1) > K
>0

_ o (2= ))5(7—1)

To satisfy no arbitrage opportunity assumption, we must have

(=T pp(t, Ty) < Pe(t, Ta) + (1 — e (T2~ T)5(¢t)

v
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Options

Answer

Another approach: we make a new portfolio as follows: long one put
option with maturity T, short one put option with maturity T1, and long

(e_r(Tl_tO) = e_’(T2_t°))K cash at time ty. Then, the values of the
portfolio are

Mi(to) = Pe(to, T2) — Pe(to, Ta) + (e 7170 — e (70K
MNy(T1) = Pe(T1, T2) — (K = S(Th)) T + (1 — e (2" Tk
Ke "(Ta=T1) _ S(T1)
> —(K-S(T))+(1—e""TK ifS(T1) <K

0—-0+(1—e -k ifS(Th) > K
>0

To satisfy no arbitrage opportunity assumption, we must have

Pe(t, T1) < Pe(t, T2) + (e—r(T1—t) . e—r(Tg—t))K

v
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We have two inequalities now:

e~ (=T Pe(t, T1) < Pe(t, To) + (1 — e (727 T)S(¢) (1)
Pe(t, T1) < Pe(t, Ta) + (e (=8 — e=r(T=thyc . (2)

Which one is tighter?

Answer
(2) is tighter because (2) + (3) implies (1):

Pe(t, To) > Ke "(T271) — §(¢t) (3)

(Simple algebra! Exercise !)
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What happens if the underlying asset pays deterministic dividend D?

Proposition

(Put-Call Parity Relation with Dividend) Assume that the value of the
dividends of the stock paid during [t, T] is a deterministic constant D at
time tp € (t, T]. Let S(t) be the stock price, r be the continuous
compounding interest rate , Ce(t, K) and Pg(t, K) be the prices of
European call and put option at time t with strike K and maturity T
respectively. We have

Ce(t, K) — Pe(t,K) = S(t) — Ke"(T~9) — De=o=
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Thus, we have

PE(t7 K) = CE(t, K) — S(t) + Kefr(T*t) + De*r(tpft)
> Kefr(Tft) 4 De*”(tD*t) . 5(1.')

WONG, Wing Hong (CUHK) MATH 4210 Tutorial 4 7 October, 2020 10 /20



Options

Answer

If the dividend is paid at time tp € (t, T1], it does not affect our above

analysis. If the dividend is paid at time tp € (T1, T2], the our portfolio
becomes

Mi(to) = Pe(to, T2) — Pe(to, T1) + (e~ 170 — (270K
M(T1) = Pe(T1, To) — (K — S(Th)) " + (1 — e (2" Tk
Ke="(T2=T1) | pe—r(to—T1) _ S(T)
>3 —(K=S(M)+@1-e "MK ifS(T1) <K

0—0+(1—e -k ifS(Ti) > K
>0

To satisfy no arbitrage opportunity assumption, we still have

PE(t, Tl) < PE(t, T2) u (e—r(T1—t) . e_'(T2_t))K
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Can it be tighter?

Answer

Yes, we make a new portfolio as follows: long one put option with
maturity To, short one put option with maturity Ty, and long
((e=r(Ti—to) _ g=r(Ta=t))) K — De=r(to=t))+ cash at time ty. Then, the
values of the portfolio are

Mi(to) = Pe (to, T2) — Pe(to, To) + (671270 — gm0y _ pe=rlto—n)y+

Mi(Ty) = Pe(Ti, T2) — (K — S(T1))" + ((1 — e "2 T)K — De~ (o= T)y*
e="(T2=T1) | pe=r(to=T1) —S(Th)
—(K—=S(T1)) + (1 — e (=T K — De~"0=T1) i §(T;) < K
0-0+0 if S(T1) > K
>0
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To satisfy no arbitrage opportunity assumption, we must have

Pe(t, T1) < Pe(t, To) + ((e7" (=8 — e=r(Ta=t))k _ pe=rlto=t))+
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Show that S(t) — Ke="(T=t) < Cx(t) < S(t) for any t before maturity T
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Options

Answer

Note that Ca(t) > Ce(t) > S(t) — Ke="(T=t). To show Ca(t) < S(t),
suppose not, assume Ca(tg) > S(to) for some to < T. We make a
portfolio: long one stock and short an American call options. Then, if the
option is never exercised, the values of the portfolio become:

M(to) = S(to) — Ca(to) <0
N(7)=5(7)>0

If the option is exercised at time t1, then
N(T) = Ke(T=%) > 0

Note that for the first case, we also have

P(MN(T) > 0) =P(S(T) > 0) > 0. Thus, this is an arbitrage opportunity.
Thus, we must have Ca(t) < S(t) under no arbitrage opportunity
assumption.
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Show that Pa(t) < K for all t < T if the underlying asset pay
deterministic dividends D at the some time tp € (t, T].

Answer

Suppose Pa(ty) > K for some ty. We construct a portfolio: short one
American put option and long cash K. The values of the portfolio are:

N(to) = K — Pa(to) <0
N(T) = Ke(T=%) > 0

if the option is never exercised.
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Options

If the option is exercised at some t; < tp,

n(tl) — Ker(tl—tO) L S(t) — K= K(er(tl—to) _ 1) + S(t)
H(T) — K(er(T—to) _ er(T—tl)) + S(T) + Der(T—tD) >0,

If the option is exercised at some t; > tp.

M(t1) = Ke' (=% 4 S(t) — K = K(et7%) — 1) 4 S(t)
MN(T) = K(eT—1) — e"(T=1)) 4 §(T) >0,

These are arbitrage opportunity. Thus, we must have Pa(t) < K.

WONG, Wing Hong (CUHK) MATH 4210 Tutorial 4 7 October, 2020 17 /20



Show that Cg(t) < Ca(t) < Cg(t) + De~"(to=%) if the underlying pay a
deterministic dividend D at time tp € (t, T].

Answer

Ce(t) < Ca(t) is trivial. We construct a portfolio: long one American call
at t and exercise it at t; < tp. Then, the values of the portfolio are

Mi(t) = Ca(t)
|_|1(t1) =S 5(1‘1) — K
Mi(tp) = S(tp) + D — Ke'®0=1) < S(tp) — Ke="(T=t) 4+ D
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Options

Answer

If we do not exercise the option, then we have

M1(t) = Ca(t)
I'Il(tD) = CA(I‘D)

We construct another portfolio as follows: long one European call option
and long De="(to=t) cash. Then, the values of the portfolio are

rlg(t) = CE(t) a4 De_r(tD_t)
ng(tD) = CE(tD) +D = CA(tD) + D > I'Il(tD)

Thus, we have My(t) > MNy(t), i.e. Ca(t) < Ce(t) + De="t0=1) for all
t < tp.
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If we have the assumption that
D> K —e T min(K, S(T)),

one can deduce that Ca(t) > Cg(t) for t < tp (exercise!). If S(T) — 0,
this assumption becomes unrealistic. In some cases, we have very strong
confidence that S(T) will have a lower bound B < K, e.g. the company
owns a lot of government bond. Then, the assumption becomes more
realistic:

D>K-eT-t)B

Suppose r =0, S(t) = S(0) for t € [0,7), then at time 7, one has a
dividend D, so that S(t) = S(0) — D for t € [7, T]. In this case, an
American call will be different to an European call, since it is optimal to
exercise the call option before the dividend time 7.
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