MATH4210: Financial Mathematics Tutorial 4

WONG, Wing Hong

The Chinese University of Hong Kong

whwong@math.cuhk.edu.hk

7 October, 2020

Recall from the previous tutorial that we have shown

Proposition

Show that the European put options with strike price K and maturity at time T satisfies $P_E(t, K) > Ke^{-r(T-t)} - S(t)$ for all $t < T$, where $S(t)$ is the stock price, r is the continuous compounding interest rate.

Also, one can always deduce that

Proposition $P_F(t,K) > 0$ for all $t < T$

Two vanilla put options are identical except for the maturity dates $T_1 < T_2$. If the interest rate is zero between T_1 and T_2 , then $P_E(t,T_1)$ < $P_E(t,T_2)$ at any time $t \leq T_1$.

Suppose $P_E(t_0,T_1) \ge P_E(t_0,T_2)$ for some $t_0 \le T$. Make a portfolio: long one put with maturity T_2 and short one put with maturity T_1 at time t₀. Then, the values of the portfolio are

$$
\begin{aligned} \Pi(t_0) &= P_E(t_0, T_2) - P_E(t_0, T_1) \le 0 \\ \Pi(T_1) &= P_E(T_1, T_2) - (K - S(T_1))^+ \\ &> \begin{cases} K - S(T_1) - (K - S(T_1)) & \text{if } S(T_1) < K \\ 0 - 0 & \text{if } S(T_1) \ge K \end{cases} \\ &= 0 \end{aligned}
$$

This is an arbitrage opportunity. Thus, we must have $P_E(t,T_1)$ < $P_E(t,T_2)$ at any time $t \leq T_1$.

What happens if the continuous compounding interest rate is $r > 0$?

Answer

The original portfolio becomes

$$
\begin{aligned}\n\Pi_0(t_0) &= P_E(t_0, T_2) - P_E(t_0, T_1) \\
\Pi_0(T_1) &= P_E(T_1, T_2) - (K - S(T_1))^+ \\
&> \begin{cases}\nK e^{-r(T_2 - T_1)} - S(T_1) - (K - S(T_1)) & \text{if } S(T_1) < K \\
0 - 0 & \text{if } S(T_1) \ge K\n\end{cases}\n\end{aligned}
$$

To obtain useful inequality, we make a new portfolio as follows: long one put option with maturity $T_{2},$ short $\mathrm{e}^{-r(T_{2}-T_{1})}$ put option with maturity T_1 , and long $(1 - e^{-r(T_2 - T_1)})$ stock at time t_0 . Then, the values of the portfolio are

$$
\begin{aligned}\n\Pi_1(t_0) &= P_E(t_0, T_2) - e^{-r(T_2 - T_1)} P_E(t_0, T_1) + (1 - e^{-r(T_2 - T_1)}) S(t_0) \\
\Pi_1(T_1) &= P_E(T_1, T_2) - e^{-r(T_2 - T_1)} (K - S(T_1))^+ + (1 - e^{-r(T_2 - T_1)}) S(T_1) \\
&\quad \times \begin{cases}\nK e^{-r(T_2 - T_1)} - S(T_1) \\
-e^{-r(T_2 - T_1)} (K - S(T_1)) + (1 - e^{-r(T_2 - T_1)}) S(T_1) & \text{if } S(T_1) < K \\
0 - 0 + (1 - e^{-r(T_2 - T_1)}) K & \text{if } S(T_1) \ge K \\
&\ge 0\n\end{cases}\n\end{aligned}
$$

To satisfy no arbitrage opportunity assumption, we must have

$$
e^{-r(T_2-T_1)}P_E(t, T_1) < P_E(t, T_2) + (1 - e^{-r(T_2-T_1)})S(t)
$$

Another approach: we make a new portfolio as follows: long one put option with maturity T_2 , short one put option with maturity T_1 , and long $(\mathrm{e}^{-r(T_1-t_0)}-\mathrm{e}^{-r(T_2-t_0)})K$ cash at time $t_0.$ Then, the values of the portfolio are

$$
\begin{aligned} \Pi_1(t_0)&=P_E(t_0,\,T_2)-P_E(t_0,\,T_1)+({\rm e}^{-r(T_1-t_0)}-{\rm e}^{-r(T_2-t_0)})K \\ \Pi_1(T_1)&=P_E(T_1,\,T_2)- (K-S(T_1))^+ +(1-{\rm e}^{-r(T_2-T_1)})K \\ &\times \begin{cases} Ke^{-r(T_2-T_1)}-S(T_1) \\ -(K-S(T_1)) +(1-{\rm e}^{-r(T_2-T_1)})K &\text{if } S(T_1)< K \\ 0-0+(1-{\rm e}^{-r(T_2-T_1)})K &\text{if } S(T_1)\geq K \\ \geq 0 \end{cases} \end{aligned}
$$

To satisfy no arbitrage opportunity assumption, we must have

$$
P_E(t, T_1) < P_E(t, T_2) + (e^{-r(T_1 - t)} - e^{-r(T_2 - t)})K
$$

We have two inequalities now:

$$
e^{-r(T_2-T_1)}P_E(t, T_1) < P_E(t, T_2) + (1 - e^{-r(T_2-T_1)})S(t) \tag{1}
$$
\n
$$
P_E(t, T_1) < P_E(t, T_2) + (e^{-r(T_1-t)} - e^{-r(T_2-t)})K. \tag{2}
$$

Which one is tighter?

Answer

(2) is tighter because $(2) + (3)$ implies (1) :

$$
P_E(t, T_2) > Ke^{-r(T_2 - t)} - S(t)
$$
 (3)

(Simple algebra! Exercise !)

What happens if the underlying asset pays deterministic dividend D?

Proposition

(Put-Call Parity Relation with Dividend) Assume that the value of the dividends of the stock paid during $[t, T]$ is a deterministic constant D at time t_D \in (t, T]. Let S(t) be the stock price, r be the continuous compounding interest rate, $C_F(t,K)$ and $P_F(t,K)$ be the prices of European call and put option at time t with strike K and maturity T respectively. We have

$$
C_E(t, K) - P_E(t, K) = S(t) - Ke^{-r(T-t)} - De^{-r(t_D - t)}
$$

Thus, we have

$$
P_E(t, K) = C_E(t, K) - S(t) + Ke^{-r(T-t)} + De^{-r(t_D - t)}
$$

> $Ke^{-r(T-t)} + De^{-r(t_D - t)} - S(t)$

If the dividend is paid at time $t_D \in (t,\mathcal{T}_1]$, it does not affect our above analysis. If the dividend is paid at time $t_D \in (T_1,T_2]$, the our portfolio becomes

$$
\begin{aligned} \Pi_1(t_0)&=P_E(t_0,\,T_2)-P_E(t_0,\,T_1)+(e^{-r(T_1-t_0)}-e^{-r(T_2-t_0)})K\\ \Pi_1(T_1)&=P_E(T_1,\,T_2)-(K-S(T_1))^++(1-e^{-r(T_2-T_1)})K\\ &\times\begin{cases} Ke^{-r(T_2-T_1)}+De^{-r(t_0-T_1)}-S(T_1)\\ -(K-S(T_1))+(1-e^{-r(T_2-T_1)})K &\text{if } S(T_1)< K\\ 0-0+(1-e^{-r(T_2-T_1)})K &\text{if } S(T_1)\geq K\\ \geq 0 \end{cases}\end{aligned}
$$

To satisfy no arbitrage opportunity assumption, we still have

$$
P_E(t, T_1) < P_E(t, T_2) + (e^{-r(T_1 - t)} - e^{-r(T_2 - t)})K
$$

Options

Question

Can it be tighter?

Answer

Yes, we make a new portfolio as follows: long one put option with maturity T_2 , short one put option with maturity T_1 , and long $((e^{-r(T_1-t_0)}-e^{-r(T_2-t_0)})K-De^{-r(t_D-t_0)})^+$ cash at time $t_0.$ Then, the values of the portfolio are

$$
\Pi_1(t_0) = P_E(t_0, T_2) - P_E(t_0, T_1) + ((e^{-r(T_1 - t_0)} - e^{-r(T_2 - t_0)})K - De^{-r(t_0 - t_0)})^+
$$

\n
$$
\Pi_1(T_1) = P_E(T_1, T_2) - (K - S(T_1))^+ + ((1 - e^{-r(T_2 - T_1)})K - De^{-r(t_0 - T_1)})^+
$$

\n
$$
\begin{cases}\nKe^{-r(T_2 - T_1)} + De^{-r(t_0 - T_1)} - S(T_1) \\
-(K - S(T_1)) + (1 - e^{-r(T_2 - T_1)})K - De^{-r(t_0 - T_1)} & \text{if } S(T_1) < K \\
0 - 0 + 0 & \text{if } S(T_1) \ge K\n\end{cases}
$$

≥ 0

To satisfy no arbitrage opportunity assumption, we must have

$$
P_E(t, T_1) < P_E(t, T_2) + ((e^{-r(T_1-t)} - e^{-r(T_2-t)})K - De^{-r(t_D-t)})^+
$$

Show that $S(t) - Ke^{-r(T-t)} < C_A(t) < S(t)$ for any t before maturity T

Note that $C_A(t) \geq C_E(t) > S(t) - K e^{-r(T-t)}$. To show $C_A(t) < S(t)$, suppose not, assume $C_A(t_0) \geq S(t_0)$ for some $t_0 < T$. We make a portfolio: long one stock and short an American call options. Then, if the option is never exercised, the values of the portfolio become:

$$
\begin{aligned} \Pi(t_0) &= S(t_0) - C_A(t_0) \leq 0 \\ \Pi(T) &= S(T) \geq 0 \end{aligned}
$$

If the option is exercised at time t_1 , then

$$
\Pi(\mathcal{T})=Ke^{r(\mathcal{T}-t_1)}>0
$$

Note that for the first case, we also have $\mathbb{P}(\Pi(T) > 0) = \mathbb{P}(S(T) > 0) > 0$. Thus, this is an arbitrage opportunity. Thus, we must have $C_A(t) < S(t)$ under no arbitrage opportunity assumption. WONG, Wing Hong (CUHK) [MATH 4210 Tutorial 4](#page-0-0) 7 October, 2020 15/20

Show that $P_A(t) < K$ for all $t < T$ if the underlying asset pay deterministic dividends D at the some time $t_D \in (t, T]$.

Answer

Suppose $P_A(t_0) \ge K$ for some t_0 . We construct a portfolio: short one American put option and long cash K. The values of the portfolio are:

$$
\Pi(t_0) = K - P_A(t_0) \leq 0
$$

$$
\Pi(\mathcal{T}) = Ke^{r(\mathcal{T} - t_0)} > 0
$$

if the option is never exercised.

If the option is exercised at some $t_1 < t_D$,

$$
\Pi(t_1) = Ke^{r(t_1-t_0)} + S(t) - K = K(e^{r(t_1-t_0)} - 1) + S(t)
$$

$$
\Pi(T) = K(e^{r(T-t_0)} - e^{r(T-t_1)}) + S(T) + De^{r(T-t_0)} > 0,
$$

If the option is exercised at some $t_1 \geq t_D$.

$$
\Pi(t_1) = Ke^{r(t_1-t_0)} + S(t) - K = K(e^{r(t_1-t_0)} - 1) + S(t)
$$

$$
\Pi(T) = K(e^{r(T-t_0)} - e^{r(T-t_1)}) + S(T) > 0,
$$

These are arbitrage opportunity. Thus, we must have $P_A(t) < K$.

Show that $C_E(t) \leq C_A(t) < C_E(t) + D e^{-r(t_D-t)}$ if the underlying pay a deterministic dividend D at time $t_D \in (t, T]$.

Answer

 $C_F(t) \leq C_A(t)$ is trivial. We construct a portfolio: long one American call at t and exercise it at $t_1 < t_D$. Then, the values of the portfolio are

$$
\begin{aligned} \n\Pi_1(t) &= C_A(t) \\ \n\Pi_1(t_1) &= S(t_1) - K \\ \n\Pi_1(t_D) &= S(t_D) + D - Ke^{r(t_D - t_1)} < S(t_D) - Ke^{-r(T - t_D)} + D \n\end{aligned}
$$

If we do not exercise the option, then we have

 $\Pi_1(t) = C_A(t)$ $\Pi_1(t_D) = C_A(t_D)$

We construct another portfolio as follows: long one European call option and long $De^{-r(t_D-t)}$ cash. Then, the values of the portfolio are

$$
\begin{aligned} \n \Pi_2(t) &= C_E(t) + De^{-r(t_D - t)} \\ \n \Pi_2(t_D) &= C_E(t_D) + D = C_A(t_D) + D > \Pi_1(t_D) \n \end{aligned}
$$

Thus, we have $\Pi_2(t) > \Pi_1(t)$, i.e. $C_A(t) < C_E(t) + De^{-r(t_D-t)}$ for all $t < t_D$.

Options

If we have the assumption that

$$
D>K-e^{-r(T-t_D)}\min(K,S(T)),
$$

one can deduce that $C_A(t) > C_E(t)$ for $t < t_D$ (exercise!). If $S(T) \rightarrow 0$, this assumption becomes unrealistic. In some cases, we have very strong confidence that $S(T)$ will have a lower bound $B \leq K$, e.g. the company owns a lot of government bond. Then, the assumption becomes more realistic:

$$
D>K-e^{-r(T-t_D)}B
$$

Example

Suppose $r = 0$, $S(t) = S(0)$ for $t \in [0, \tau)$, then at time τ , one has a dividend D, so that $S(t) = S(0) - D$ for $t \in [\tau, T]$. In this case, an American call will be different to an European call, since it is optimal to exercise the call option before the dividend time τ .