MATH 4210 - Financial Mathematics

[MATH 4210 - Financial Mathematics](#page-27-0)

 \leftarrow

 \triangleright -4 \equiv \triangleright

٠

B

 $2Q$

Assumptions of Black-Scholes model

(1) Stock price $(S_t)_{0 \leq t \leq T}$ follows the Black-Scholes model:

$$
S_t = S_0 \exp ((\mu - \sigma^2/2)t + \sigma B_t),
$$

or equivalently,

$$
dS_t = \mu S_t dt + \sigma S_t dB_t.
$$

(2) Risk-free interest rate r is constant.

- Short selling is allowed.
- No transaction fees.
- All securities are perfectly divisible.
- No dividends during the lifetime of the derivatives.
- Security trading is continuous.
- No arbitrage opportunities.

 $2Q$

Stochastic Integral: motivation

Dynamic trading: let $t_k := k \Delta t$, risky asset price $(S_{t_k})_{k \geq 0}$, interest rate $r \geq 0$.

Discrete time dynamic trading between t_k and t_{k+1} :

$$
\Pi_{t_{k+1}} = \phi_{t_k} S_{t_{k+1}} + (\Pi_{t_k} - \phi_{t_k} S_{t_k}) e^{r\Delta t} \n= \Pi_{t_k} e^{r\Delta t} + \phi_{t_k} (S_{t_{k+1}} - S_{t_k} e^{r\Delta t}) \n\approx \Pi_{t_k} + (\Pi_{t_k} - \phi_{t_k} S_{t_k}) r\Delta t + \phi_{t_k} (S_{t_{k+1}} - S_{t_k}).
$$

Then

$$
\Pi_{t_n} = \Pi_0 + \sum_{k=0}^{n-1} \left(\Pi_{t_k} - \phi_{t_k} S_{t_k} \right) r \Delta t + \sum_{k=0}^{n-1} \phi_{t_k} \left(S_{t_{k+1}} - S_{t_k} \right).
$$

The continuous time limit:

$$
\Pi_T = \Pi_0 + \int_0^T (\Pi_t - \phi_t S_t) r dt + \int_0^T \phi_t dS_t.
$$

ミメメミメ

Dynamic trading strategy

We say a portfolio is *self-financing* if

$$
d\Pi_t = (\Pi_t - \phi_t S_t) r dt + \phi_t dS_t,
$$

where Π_t denotes the total wealth of the portfolio, ϕ_t denotes the number of the stocks in the portfolio, $\Pi_t - \phi_t S_t$ denotes the wealth invested in the risk-free asset.

Option pricing by replication

Let us consider the European call option with payoff $(S_T - K)_+$, if there is a self-financing portfolio Π such that

$$
\Pi_T = (S_T - K)_+,
$$

then the option price at time t is given by

 Π_t .

Option price at initial time 0 is Π_0 .

Remember that

$$
S_t = S_0 \exp\left((\mu - \sigma^2/2)t + \sigma B_t\right), \text{ (or equivalently } dS_t = \mu S_t dt + \sigma S_t dB_t).
$$

Let $u : [0, T] \times \mathbb{R} \to \mathbb{R}$ be a smooth function, then by Itô's lemma, $Y_t = u(t, S_t)$ satisfies

$$
dY_t = du(t, S_t) = du(t, S_0 \exp ((\mu - \sigma^2/2)t + \sigma B_t))
$$

=
$$
(\partial_t u(t, S_t) + \mu S_t \partial_s u(t, S_t) + \frac{1}{2} \sigma^2 S_t^2 \partial_{ss}^2 u(t, S_t)) dt
$$

+
$$
\partial_s u(t, S_t) \sigma S_t dB_t
$$

=
$$
(\partial_t u(t, S_t) + \frac{1}{2} \sigma^2 S_t^2 \partial_{ss}^2 u(t, S_t)) dt + \partial_s u(t, S_t) dS_t
$$

 $2Q$

∍

メ ヨ ト

Black-Scholes Formula: Delta hedging

Let $u : [0, T] \times \mathbb{R} \to \mathbb{R}$ satisfy

$$
\partial_t u(t,s) + rs \partial_s u(t,s) + \frac{1}{2} \sigma^2 s^2 \partial_{ss}^2 u(t,s) - ru(t,s) = 0,
$$

and $u(T, s) = (s - K)_{+}$.

Then with dynamic trading strategy $\phi_t = \partial_S u(t, S_t)$, and initial wealth $\Pi_0 = u(0, S_0)$, one has

$$
\Pi_t = u(t, S_t),
$$

since

$$
d\Pi_t = \phi_t dS_t + (\Pi_t - \phi_t S_t) r dt
$$

= $\partial_s u(t, S_t) dS_t + (\partial_t u(t, S_t) + \frac{1}{2} \sigma^2 S_t^2 \partial_{ss}^2 u(t, S_t)) dt$
= $du(t, S_t).$

ミドメミド

Black-Scholes Formula: Delta hedging

Since $u(T, s) = (s - K)_+$, one has

$$
\Pi_T = u(T, S_T) = (S_T - K)_+,
$$

i.e. the perfect replication of the payoff of the call option. (1) Solve the Black-Scholes PDE

$$
\partial_t u(t,s) + rs \partial_s u(t,s) + \frac{1}{2} \sigma^2 s^2 \partial_{ss}^2 u(t,s) - ru(t,s) = 0,
$$

with terminal condition $u(T, s) = (s - K)_+.$

(2) Construct a perfect replication portfolio Π , i.e. with initial wealth $\Pi_0 = u(0, S_0)$ and dynamic trading strategy $\phi_t = \partial_s u(t, S_t)$, one has

$$
\Pi_T = (S_T - K)_+.
$$

(3) The call option price is given by

$$
\Pi_0 = u(0, S_0).
$$

ミメメミメ

Theorem 1.1

The price of a vanilla European call option C_E is the solution of PDE

$$
\begin{cases} \frac{\partial C_E}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C_E}{\partial S^2} + rS \frac{\partial C_E}{\partial S} - rc = 0, \\ C_E(T, S) = (S - K)^+.\end{cases}
$$

つへへ

∍

Theorem 1.2

The price of a vanilla European option with payoff $g(S_T)$ is the solution of PDE

$$
\begin{cases} \frac{\partial u}{\partial t} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 u}{\partial s^2} + rs \frac{\partial u}{\partial s} - ru = 0, \\ u(T, s) = g(s). \end{cases}
$$

œ ∍

Continuous-Time Risk-Neutral Valuation

In the risk neutral world (under the risk neutral probability $\mathbb Q$), the stock price follows:

$$
dS_t = rS_t dt + \sigma S_t dB_t^{\mathbb{Q}},
$$

\n
$$
S_T = S_0 e^{(r - \frac{1}{2}\sigma^2)T + \sigma B_T},
$$

\n
$$
\ln(S_T) \sim^{\mathbb{Q}} N (\ln(S_0) + (r - \frac{1}{2}\sigma^2)T, \sigma^2 T).
$$

Proposition 1.1

One has

$$
u(0, S_0) = \mathbb{E}^{\mathbb{Q}}[e^{-rT}g(S_T)].
$$

 $2Q$

モミト

Continuous-Time Risk-Neutral Valuation

 299

∍

э ⊪

Continuous-Time Risk-Neutral Valuation

 299

∍

э ⊪

Theorem 1.3

The the Black-Scholes formula for European call option is

$$
C_E(0, S_0) = S_0 N(d_1) - K e^{-rT} N(d_2),
$$

and the Black-Scholes formula for European put option is

$$
P_E(0, S_0) = Ke^{-rT}N(-d_2) - S_0N(-d_1),
$$

where $N(x) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$

$$
d_1 = \frac{\ln(S_0/K) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}, \quad d_2 = \frac{\ln(S_0/K) + (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}
$$

 $2Q$

[MATH 4210 - Financial Mathematics](#page-0-0)

 \leftarrow

 $\leftarrow \equiv$

∍ \mathbf{p}_i Ε

 299

[MATH 4210 - Financial Mathematics](#page-0-0)

 \leftarrow

 $\leftarrow \equiv$

∍ \mathbf{p}_i Ε

 299

More generally, one has:

Theorem 1.4

The the Black-Scholes formula for European call option is

$$
C_E(t, S_t) = S_t N(d_1) - K e^{-r(T-t)} N(d_2),
$$

and the Black-Scholes formula for European put option is

$$
P_E(t, S_t) = Ke^{-r(T-t)}N(-d_2) - S_tN(-d_1),
$$

where

$$
d_1 = \frac{\ln(S_t/K) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}},
$$

and

$$
d_2 = \frac{\ln(S_t/K) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}.
$$

 \Rightarrow

 $2Q$

Option Pricing

Monotonicity in the factors:

We can justify these conclusions with the Black-Scholes formula.

 $2Q$

Þ

The Black-Scholes formula for the vanilla European call option has the following properties

\n- $$
\frac{\partial C_E}{\partial S} > 0
$$
. (Note that $\Delta = \frac{\partial C_E}{\partial S}$.)
\n- $\frac{\partial C_E}{\partial K} < 0$.
\n- $\frac{\partial C_E}{\partial (T-t)} > 0$.
\n- $\frac{\partial C_E}{\partial r} > 0$.
\n- $\frac{\partial C_E}{\partial r} > 0$.
\n

$$
\bullet \ \tfrac{\partial C_E}{\partial \sigma} > 0.
$$

 $2Q$

∍

メイラメ

Greek Letters

We define the Greek letters for an option or portfolio C_E as

Delta: $\Delta = \frac{\partial C_E}{\partial S}$. Theta: $\Theta = \frac{\partial C_E}{\partial t}$. Gamma: $\Gamma = \frac{\partial^2 C_E}{\partial S^2}$. Rho: $\rho = \frac{\partial C_E}{\partial r}$. Vega: $\mathcal{V} = \frac{\partial C_E}{\partial \sigma}$.

 $2Q$

Greek Letters

Because the price C_E satisfies

$$
\frac{\partial C_E}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C_E}{\partial S^2} + rS \frac{\partial C_E}{\partial S} - rC_E = 0,
$$

we derive that

$$
\Theta + \frac{1}{2}\sigma^2 S^2 \Gamma + rS\Delta = rC_E.
$$

 \leftarrow

 $2Q$

∍. **B** ∍

Carr-Madan formula

Let $g \in C^2$, it follows by Taylor's theorem that

$$
g(S_T) = g(F_0) + g'(F_0)(S_T - F_0)
$$

+
$$
\int_0^{F_0} g''(K)(K - S_T) + dK + \int_{F_0}^{\infty} g''(K)(S_T - K) + dK.
$$

In practice, let us choose $F_0 = S_0 e^{rT}$, then the price (at time $0)$ of the option with payoff $q(S_T)$ is given by

$$
g(F_0)e^{-rT} + \int_0^{F_0} g''(K)P_E(K)dK + \int_{F_0}^{\infty} g''(K)C_E(K)dK.
$$

[Black-Scholes Model](#page-1-0)

Pricing by the martingale approach: discrete time market

Pricing by the martingale approach: discrete time market

The risk-neutral probability

$$
q = \frac{e^{r\Delta t} - d}{u - d}.
$$

Price of the derivative option:

$$
f_u = e^{-r\Delta t}(qf_{uu} + (1-q)f_{ud}) = \mathbb{E}^{\mathbb{Q}}[e^{-r\Delta t}f_{t_2}|S_{t_1} = S_u],
$$

\n
$$
f_d = e^{-r\Delta t}(qf_{ud} + (1-q)f_{dd}) = \mathbb{E}^{\mathbb{Q}}[e^{-r\Delta t}f_{t_2}|S_{t_1} = S_d],
$$

\n
$$
f_{t_0} = e^{-r\Delta t}(qf_u + (1-q)f_d)
$$

\n
$$
= e^{-2r\Delta t}(q^2f_{uu} + 2q(1-q)f_{ud} + (1-q)^2f_{dd})
$$

\n
$$
= \mathbb{E}^{\mathbb{Q}}[e^{-2r\Delta t}f_{t_2}|S_{t_0} = S_0],
$$

It follows that the following discounted process are martingales:

$$
(e^{-kr\Delta t}S_{t_k})_{k=0,1,2}, \quad (e^{-kr\Delta t}f_{t_k})_{k=0,1,2}.
$$

Pricing by the martingale approach: continuous time

Under the risk neutral probability $\mathbb Q$, the risky asset:

$$
S_t = S_0 \exp ((r - \sigma^2/2)t + \sigma B_t),
$$

and the option price are given by

$$
u(t, S_t) = \mathbb{E}^{\mathbb{Q}} \big[e^{-r(T-t)} g(S_T) \big| S_t \big].
$$

It follows that the following discounted process are martingales:

$$
(e^{-rt}S_t)_{t\in[0,T]},
$$
 $(e^{-rt}u(t, S_t))_{t\in[0,T]}.$

Self-financial strategy

Dynamic trading: let $t_k := k \Delta t$, risky asset price $(S_{t_k})_{k \geq 0}$, interest rate $r \geq 0$. Let us denote $S_t := e^{-rt} S_t$ and $\Pi_t := e^{-rt} \Pi_t$.

Discrete time dynamic trading between t_k and t_{k+1} :

$$
\widetilde{\Pi}_{t_{k+1}} := e^{-rt_{k+1}} \Pi_{t_{k+1}} = e^{-rt_{k+1}} \left(\phi_{t_k} S_{t_{k+1}} + (\Pi_{t_k} - \phi_{t_k} S_{t_k}) e^{r\Delta t} \right)
$$
\n
$$
\approx \widetilde{\Pi}_{t_k} + \phi_{t_k} \left(\widetilde{S}_{t_{k+1}} - \widetilde{S}_{t_k} \right).
$$

Then

$$
\widetilde{\Pi}_{t_n} = \widetilde{\Pi}_0 + \sum_{k=0}^{n-1} \phi_{t_k} (\widetilde{S}_{t_{k+1}} - \widetilde{S}_{t_k}).
$$

The continuous time limit:

$$
\widetilde{\Pi}_T = \widetilde{\Pi}_0 + \int_0^T \phi_t d\widetilde{S}_t
$$

$$
\iff \Pi_T = e^{rT} \Big(\Pi_0 + \int_0^T \phi_t d\widetilde{S}_t \Big).
$$

[MATH 4210 - Financial Mathematics](#page-0-0)

Self-financial strategy: martingale property

Then the portfolio is self-financing if

$$
\Pi_t = \Pi_0 + \int_0^t (\Pi_\theta - \phi_\theta S_\theta) r \, d\theta + \int_0^t \phi_\theta \, dS_\theta
$$
\n
$$
\iff \widetilde{\Pi}_t = \Pi_0 + \int_0^t \phi_\theta \, d\widetilde{S}_\theta.
$$

Recall that

$$
d\widetilde{S}_{\theta} = \sigma \widetilde{S}_{\theta} dB_{\theta}^{\mathbb{Q}},
$$

then

$$
\widetilde{S}_t = S_0 + \int_0^t \sigma \widetilde{S}_{\theta} \, \mathrm{d}B_{\theta}^{\mathbb{Q}}, \quad \widetilde{\Pi}_t = \Pi_0 + \int_0^t \phi_{\theta} \sigma \widetilde{S}_{\theta} \, \mathrm{d}B_{\theta}^{\mathbb{Q}},
$$

are both martingales under Q.

メ ヨ ト

Pricing by the martingale approach

Theorem 1.5 (FTAP(Fundamental Theorem of Asset Pricing))

Assume that there exists a probability measure $\mathbb Q$ equivalent to $\mathbb P$, such that the discounted values of all the financial assets are martingales under Q . Then there is no arbitrage opportunity on the market.

つQC