The Chinese University of Hong Kong Department of Mathematics MATH3280A Introductory Probability Solutions to Assignment 6

p.373 Q4

(a)

$$
E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{y} x \, dx \, dy = \frac{1}{6}
$$

.

.

(b)

(c)
$$
E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy = \int_{0}^{1} \int_{0}^{y} x \frac{1}{y} dx dy = \frac{1}{4}.
$$

$$
E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{y} y \frac{1}{y} \, dx \, dy = \frac{1}{2}.
$$

p.373 Q13

For $i = 1, 2, ..., 1000$, let X_i be the random variable such that $X_i = 1$ if the *i*-th person gets a card which matches his age, and $X_i = 0$ otherwise. Then $X = \sum_{i=1}^{1000} X_i$ is the number of matches. Since for each i , only one of the 1000 cards matches the age of the i -th person, we have

$$
E(X_i) = P(X_i = 1) = 1/1000,
$$

and it follows that

$$
E(X) = \sum_{i=1}^{1000} E(X_i) = 1.
$$

p.374 Q21

(a) For $i = 1, 2, ..., 365$, let X_i be the random variable such that $X_i = 1$ if the *i*-th day is a birthday of exactly three people, and $X_i = 0$ otherwise. Then $X = \sum_{i=1}^{365} X_i$ is the number of days that are birthdays of exactly three people. Note that for each i ,

$$
E(X_i) = P(X_i = 1) = {100 \choose 3} \left(\frac{1}{365}\right)^3 \left(\frac{364}{365}\right)^{97}
$$

Hence

$$
E(X) = \sum_{i=1}^{365} E(X_i) = 365 \cdot {100 \choose 3} \left(\frac{1}{365}\right)^3 \left(\frac{364}{365}\right)^{97} \approx 0.9301.
$$

(b) For $i = 1, 2, ..., 365$, let Y_i be the random variable such that $Y_i = 1$ if the *i*-th day is the birthday of at least one person, and $Y_i = 0$ otherwise. Then $Y = \sum_{i=1}^{365} Y_i$ is the number of days that are birthdays of at least one person. Note that for each $i,$

$$
E(Y_i) = P(Y_i = 1) = 1 - \left(\frac{364}{365}\right)^{100}
$$

.

Hence

$$
E(Y) = \sum_{i=1}^{365} E(Y_i) = 365 \cdot \left(1 - \left(\frac{364}{365}\right)^{100}\right) \approx 87.5755.
$$

p.375 Q30

Note that since X and Y are independent, we have $E(XY) = E(X)E(Y)$. Hence

$$
E((X - Y)^2) = E(X^2 - 2XY + Y^2)
$$

= $E(X^2) - 2E(XY) + E(Y^2)$
= $Var(X) + E(X)^2 - 2E(X)E(Y) + Var(Y) + E(Y)^2$
= $\sigma^2 + \mu^2 - 2\mu^2 + \sigma^2 + \mu^2$
= $2\sigma^2$.

p.375 Q38

Note that $Cov(X, Y) = E(XY) - E(X)E(Y)$.

$$
E(XY) = \int_0^\infty \int_0^x xy \cdot \frac{2e^{-2x}}{x} dy dx = \frac{1}{4}.
$$

\n
$$
E(X) = \int_0^\infty \int_0^x x \cdot \frac{2e^{-2x}}{x} dy dx = \frac{1}{2}.
$$

\n
$$
E(Y) = \int_0^\infty \int_0^x y \cdot \frac{2e^{-2x}}{x} dy dx = \frac{1}{4}.
$$

Hence $Cov(X, Y) = 1/8$.

p.376 Q48

(a) We have

$$
E(X) = \sum_{k=1}^{\infty} kP(X = k) = \sum_{k=1}^{\infty} k \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}.
$$

Using the fact that for $|x| < 1$,

$$
\sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2},
$$

it follows that $E(X) = 6$.

(b)

$$
E(X|Y=1) = \sum_{k=1}^{\infty} k \cdot P(X=k|Y=1)
$$

=
$$
\sum_{k=2}^{\infty} k \left(\frac{5}{6}\right)^{k-2} \frac{1}{6}
$$

=
$$
\sum_{k=1}^{\infty} (1+k) \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}
$$

=
$$
1 + E(X)
$$

= 7.

(c)

$$
E(X|Y=5) = \sum_{k=1}^{\infty} k \cdot P(X=k|Y=5)
$$

=
$$
\sum_{k=1}^{4} k \cdot P(X=k|Y=5) + \sum_{k=6}^{\infty} k \cdot P(X=k|Y=5)
$$

$$
\sum_{k=1}^{4} k \cdot P(X = k|Y = 5) = 1(1/5) + 2(4/5)(1/5) + 3(4/5)^2(1/5) + 4(4/5)^3(1/5)
$$

= $\frac{821}{625}$

$$
\sum_{k=6}^{\infty} k \cdot P(X = k|Y = 5) = \sum_{k=6}^{\infty} k(4/5)^4(5/6)^{k-6}(1/6)
$$

= $(4/5)^4 \sum_{k=1}^{\infty} (5 + k)(5/6)^{k-1}(1/6)$
= $(4/5)^4(5 + E(X))$
= $\frac{2816}{625}$.

Hence

$$
E(X|Y=5) = \frac{3637}{625} \cdot
$$

p.376 Q50

The density of Y is

$$
f_Y(y) = \int_0^\infty \frac{e^{-x/y}e^{-y}}{y} dx = e^{-y}, \quad y > 0,
$$

and $f_Y(y) = 0$ if $y \le 0$. Hence for $y > 0$,

$$
f_{X|Y}(x|y) = \frac{f(x,y)}{e^{-y}},
$$

and

$$
E(X^{2}|Y=y) = \int_{-\infty}^{\infty} x^{2} f_{X|Y}(x|y) dx = \int_{0}^{\infty} x^{2} \frac{e^{-x/y}}{y} dx = 2y^{2}.
$$

p.381 Q12

(a) Note that $E(X_n) = 1$ for each n. Since $\frac{X_n}{3^n} \geq 0$ for each n, by the monotone convergence theorem, we have

$$
E(X) = \sum_{n=1}^{\infty} E(\frac{X_n}{3^n}) = \sum_{n=1}^{\infty} \frac{E(X_n)}{3^n} = \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{2}.
$$

(b) Note that $Var(X_n) = E(X_n^2) - E(X_n)^2 = 2 - 1^2 = 1$ for each n. Let N be a positive integer. Since X_1, X_2, \ldots, X_N are independent, we have

$$
Var(\sum_{n=1}^{N} \frac{X_n}{3^n}) = \sum_{n=1}^{N} \frac{Var(X_n)}{3^{2n}} = \sum_{n=1}^{N} \frac{1}{9^n}.
$$
 (1)

Note that

$$
Var(\sum_{n=1}^{N} \frac{X_n}{3^n}) = E\left((\sum_{n=1}^{N} \frac{X_n}{3^n} - \sum_{n=1}^{N} \frac{1}{3^n})^2 \right)
$$

converges to $E((\sum_{n=1}^{\infty} \frac{X_n}{3^n} - \sum_{n=1}^{\infty}$ $(\frac{1}{3^n})^2$ = $Var(\sum_{n=1}^{\infty} \frac{X_n}{3^n})$ as $N \to \infty$ by the dominated convergence theorem. Hence, taking limit $N \to \infty$ in (1), we have

$$
Var\left(\sum_{n=1}^{\infty} \frac{X_n}{3^n}\right) = \sum_{n=1}^{\infty} \frac{1}{9^n} = \frac{1}{8}.
$$

p.381 Q19

$$
Cov(X + Y, X - Y) = E((X + Y)(X - Y)) - E(X + Y)E(X - Y)
$$

= $E(X^2 - Y^2) - (E(X) + E(Y))(E(X) - E(Y))$
= $E(X^2) - E(Y^2) - (E(X)^2 - E(Y)^2)$.

Since X and Y are identically distributed, it follows that $E(X) = E(Y)$ and $E(X^2) = E(Y^2)$. Hence $Cov(X + Y, X - Y) = 0.$