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(b) The cumulative distribution function of X is
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(c) Assume that the lifetimes of the electronic devices are independent. Let Y be the random
variable of the number of devices that will function for at least 15 hours. Then Y has a

binomial distribution with parameters n = 6 and p, where
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First, note that
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Solving (1) and (2), we have a = 3/5 and b = 6/5.
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We may identify the line segment with the interval [0, L]. A point z is randomly chosen on
the interval and let X be the random variable given by the value of z. Then X is the uniform

random variable over [0, L]. Note that
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The required probability is
P(X < L/5)+ P(X >4L/5)=1/5+1/5=2/5.
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Assume that the annual rainfalls are independent from year to year. Let X be the random
variable of annual rainfall. Then X ~ N (40, 4?).
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The required probability is P(X < 50) ~ 0.9397.
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Suppose X ~ N(5,02). Then we have
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ie. ®(4/0) = 0.8. Checking the standard normal table, we have ®(0.84) ~ 0.8 and thus
4/0 ~ 0.84. Hence Var(X) = o ~ 22.7.
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We assume that X is a continuous random variable with density f(x).

BE(X?% = /OCfo(:v) dzx < c/ocxf(x) dr = cE(X).
Var(X) = BE(X?) — E(X)?
< cBE(X) - B(X)?
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(a) By integration by parts, we have
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Here, we need the additional assumption that
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Then we have E(¢' (7)) = E(Zg(Z)).

(b) Forn=1, E(Z*) =Var(Z)+ E(Z)*=1=1-E(Z°).
For n > 2, put g(x) = 2. Note that the additional assumption in (a) is satisfied. Then
by (a), we have E(Z"™) = E(Zg(Z)) = E(¢'(Z)) = E(nZ"') =nE(Z").

(c) By (b), we have E(Z*) = 3E(Z?) = 3.
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Let Fx and F.x be the distribution of X and c¢X respectively. Let fx and f.x be the density
of X and cX respectively. For ¢t > 0,

Fux(t) = P(cX <t) = P(X < t/c) = Fx(t/o),

fox(t) = Flx(t) =~ Fx(t/e) = 22

For t <0, F.x(t) =0 and f.x(t) = 0. Hence cX is exponential with parameter \/c.



