Math 3280 20-12-03 Review -1hm (The weak law of large numbers) Let XI, X2, " , Xn, " be an i i.d sequence of r.u's, flaurig a finite mean Then for any $2 > o$ $P\left\{\left|\frac{X_1+\cdots+X_n}{n} -\mu\right|\geqslant \epsilon\right\}\rightarrow 0 \text{ as } n\rightarrow\infty.$ Thm $($ The central limit Thm). Let $X_1, ..., X_n, ...,$ be an iii.d. sequence of r.u.'s, each having f inite frean μ and variance σ^2 . Then $\forall \alpha \in \mathbb{R}$, $P\left\{\frac{X_1 + \cdots + X_n - n \mu}{\sqrt{n} \sigma} \leq \alpha \right\} \longrightarrow \Phi\left\{\alpha\right\} \xrightarrow{+} \Phi\left\{\alpha\right\}$ $as \quad n \rightarrow \infty$.

To prove the CLT, we state a result without proof.
\nlem 1. Let
$$
Z_1, ..., Z_n
$$
, ... be a sequence of r.v.'s
\nwith distribution functions F_{Z_n} . Let Z be
\na r.u. with data without information F_{Z} .
\nSuppose $M_{Z_n}(t) \rightarrow M_{Z}(t)$ for all $t \in \mathbb{R}$
\n $ax n \rightarrow \infty$. (Recall $M_Z(t) := E[$ \mathbb{R}^Z])
\nThen $F_{Z_n}(t) \rightarrow F_Z(t)$ for each t at
\nwhich F_Z is cts, as $n \rightarrow \infty$.
\n $\mathbb{P}^{\mathbb{P}}_1$ of the CLT.
\nFirst assume $|t = 0, 0^2 = 1$.
\nlet $Z_n = \frac{X_1 + ... + X_n}{\sqrt{n}}$, $n = 1, 2, ...$.
\nlet Z be the standard normal r.u.

Recall
$$
M_{\vec{A}}(t) = e^{t^2/2}
$$
, $t \in \mathbb{R}$.
\nHence we only need to prove for $t \in \mathbb{R}$,
\n
$$
0 \quad M_{\vec{A}_n}(t) \rightarrow e^{t^2/2} \quad \omega_0 \quad n \rightarrow \omega
$$
\nNotice that
\n
$$
M_{\vec{A}_n}(t) = E \left[e^{t \frac{X_1 t \cdot \cdots + X_n}{\sqrt{h_n}}} \right]
$$
\n
$$
= \frac{n}{\sqrt{n}} E \left[e^{t X_1 / \sqrt{n}} \right]
$$
\n
$$
= \left(M_X \left(\frac{t}{\sqrt{n}} \right) \right)^n \quad \text{where} \quad X = X_1
$$
\nTo show 0, it is equivalent to show
\n
$$
0 \quad n \log M_X \left(\frac{t}{\sqrt{n}} \right) \rightarrow t^2/2 \quad \omega_0 \quad n \rightarrow \omega
$$
\nFor convenience, we write
\n
$$
L(t) = \log M_X(t)
$$
\nNote that
\n
$$
L'(t) = \frac{M_X'(t)}{M_X(t)}, \quad L''(t) = \frac{M_X''(t) M_X(t) - (M_X'(t))^2}{M_X(t)^2}
$$

$$
\frac{\Gamma_n \text{ power law}}{\Gamma_n(s)} = \frac{M'_x(s)}{M_x(s)} = \frac{E[X]}{1} = \mu = 0
$$
\n
$$
\frac{\Gamma_n'(0) = M'_x(0) \cdot M_x(0) - M'_x(0)^2}{M_x(0)^2} = \frac{E[X^2]}{1}
$$
\n
$$
= \frac{V_{\text{av}}(x) + E[X]}{1} = \frac{V_{\text{av}}(x) + E[X]}{1} = \frac{1}{1}
$$
\n
$$
\frac{\Gamma_n'(0) - \frac{1}{1} \cdot \frac{
$$

In the general cone,
\n
$$
\frac{X_1 + m + X_n - n\mu}{\sqrt{n} \cdot 6} = \frac{X_1 - \mu}{\sqrt{n}} + \frac{X_n - \mu}{\sqrt{n}}
$$
\nNotice that $\frac{X_i}{X_i} = \frac{X_i - \mu}{\sqrt{n}}$ has mean on
\nand variance 1
\nSince $\overline{X_1}, \dots, \overline{X_n}, \dots$ are i.i.d with
\nmean on all variable 1, the distribution
\n $\frac{\overline{X_1} + \dots + \overline{X_n}}{\sqrt{n}}$ converges to the standard
\nnormal distribution 1/2

Thus 3 (The strong law of large numbers).

\nLet X₁, ..., X_n, ..., be an i.i.d. sequence of n.u.'s

\nwith a finite mean
$$
\mu
$$
. Then with probability 1 , $\frac{X_1 + \cdots + X_n}{n} \rightarrow \mu$ as $n \rightarrow \infty$.

\nIn other word, $\rho\{\lim_{n \to \infty} \frac{X_1 + \cdots + X_n}{n} = \mu\} = 1$.

\nFrom 4. Assume X is a non-negative rule with E[X]₀ when $\rho\{\times \infty\} = 1$.

\nThen $\rho\{\times \infty\} = 1$.

We will the thm under an addition. Assume
\n
$$
E[X_i^4] = K < \infty
$$
\nWLOG, assume $\mu = 0$.

\nWrite $S_n = X_1 + \cdots + X_n$.

\nWe will estimate\n
$$
E[S_n^4] = E[(X_1 + \cdots + X_n)^4]
$$
\nExpand $(X_1 + \cdots + X_n)^4$ in terms of

\n
$$
X_i^4, X_i^3 X_j, X_i^2 X_j^3, X_i^3 X_j X_k X_l X_l X_l X_k X_l
$$
\nwith distinct i, j, k, l .

\nNotice that
$$
E[X_i^3 X_j] = E[X_i^3] E[X_j] = 0
$$
\n
$$
E[X_i^3 X_j X_k] = E[X_i^3] E[X_j] E[X_k]
$$
\n
$$
= 0
$$
\n
$$
E[X_i X_j X_k X_l] = 0
$$

 $5 \sin^2 K$ $E[\frac{S_n^4}{n^4}]\leq \frac{3K}{n^2}$ Hence $\sum_{n=1}^{\infty} E\left[\left(\frac{S_n}{n}\right)^4\right] \leq \sum_{n=1}^{\infty} \frac{3k}{n^2} < \infty$ $E\left[\sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4\right] = \sum_{n=1}^{\infty} E\left[\left(\frac{S_n}{n}\right)^4\right] < \infty$ Thus Let $X = \sum_{n=1}^{\infty} \frac{(S_n)^{4}}{n}$ Then X is a r.v, non-negative (may take the value $\overline{\infty}$ However $E[X] < \infty$ By Lem 4, $P\{X < \infty\} = 1$. Hence $D\left\{\sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4 < \infty\right\} = 1$ However $\sum_{n=1}^{\infty} \left(\frac{S_n}{n} \right)^4 < \infty \implies \frac{S_n}{n} \to 0$ as $n \to \infty$ Hence $D\left\{\lim_{n\to\infty}\frac{S_n}{n}=0\right\}=1$.

Hence with Prob. 1, $\frac{S_n}{n} = \frac{\chi_1 + \dots + \chi_n}{n} \rightarrow 0$. If $\mu \neq 0$, then letting $\widetilde{X}_n = X_n - \mu$
applying the SLLN to (\widetilde{X}_n) gives $\frac{\overbrace{\chi_1 + \cdots + \chi_n}}{n} \rightarrow 0$ almost sure \Leftrightarrow $\frac{\chi_1 + \dots + \chi_n}{n} \rightarrow \mu$ almost sure