Math 3-80 20-09-14
Review.
• Axiomatic approach to probability.
A prob. P on the sample space S Sahisfies:
Axiom I:
$$0 \le P(E) \le 1$$
, \forall any Event E
Axiom II: $P(S) = 1$.
Axiom II: If $E_1, E_2, ...,$ is a sequence of events
which are mutually exclusive
then $P(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} P(E_n)$
(Countable additivity of prob.).
• Properties derived from the above axioms:
• Inclusive- exclusive identity.
 $P(E \cup F) = P(E) + P(F) - P(E F).$

$$P\left(\begin{array}{c}n\\ U\\ R=1\end{array} E_{R}\right) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{i_{1} < i_{2} < \cdots < i_{r}} P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{r}}\right)$$

$$\cdot \left(\begin{array}{c} Countable sub-additivity of Prob\right) \\P\left(\begin{array}{c}U\\ W\\ R=1\end{array}\right) < \sum_{k=1}^{\infty} P(E_{R}).$$

$$\cdot \left(\begin{array}{c} Continuity of Prob\right) \\\cdot P\left(\begin{array}{c}U\\ D\\ R=1\end{array}\right) = \lim_{k \to \infty} P(E_{R}) \quad i_{f} \in E_{1} \subset E_{2} \subset \cdots \\head P\left(\begin{array}{c}O\\ D\\ R=1\end{array}\right) = \lim_{k \to \infty} P(E_{R}) \quad i_{f} \in E_{1} \supset E_{2} \supset \cdots \\head P\left(\begin{array}{c}O\\ D\\ R=1\end{array}\right) = \lim_{k \to \infty} P(E_{R}) \quad i_{f} \in E_{1} \supset E_{2} \supset \cdots \\head P\left(\begin{array}{c}O\\ D\\ R=1\end{array}\right) = \lim_{k \to \infty} P(E_{R}) \quad i_{f} \in E_{1} \supset E_{2} \supset \cdots \\head P\left(\begin{array}{c}O\\ D\\ R=1\end{array}\right) = \lim_{k \to \infty} P(E_{R}) \quad i_{f} \in E_{1} \supset E_{2} \supset \cdots \\head P\left(\begin{array}{c}O\\ D\\ R=1\end{array}\right) = (\lim_{k \to \infty} P(E_{R}) - i_{f} \in E_{1} \supset E_{2} \supset \cdots \\head P\left(\begin{array}{c}O\\ D\\ R=1\end{array}\right) = (\lim_{k \to \infty} P(E_{R}) - i_{f} \in E_{1} \supset E_{2} \supset \cdots \\head P\left(\begin{array}{c}O\\ D\\ D\end{array}\right) = 0.8, P(F) = 0.9 \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cap F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\= 0.8 + 0.9 - P(E \cup F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\head P\left(E \cap F\right) = P(E) + P(F) - P(E \cup F) \\head P\left(E \cap F\right) = P(E \cup F) \\head P\left(E \cap F\right) = P(E \cup F) \\head P\left(E \cap F\right) = P(E \cup F) \\head P\left(E \cap F\right) \\he$$

Example 2.
If
$$P(E) = 0.8$$
, $P(F) = 0.9$, $P(E \cap F) = 0.75$
find the probability that exactly one of E or F
occurs.
Solution: Let G denote the event that
exactly one of E or F occurs.
G = (E\F) U (F\E)
(disjoint Union)
Hence $P(G) = P(E \setminus F) + P(F \setminus E)$.
Notice that $E = (E \setminus F) \cap (E \cap F)$
Hence $P(E) = P(E \setminus F) + P(E \cap F) \Rightarrow P(E \setminus F) = -P(E \cap F)$
 $= 0.8 - 0.75$
 $= 0.05$.

 $P(F|E) = P(F) - P(E \cap F)$ = 0.9 - 0.75 = 0.15 Hence P(G) = P(E|F) + P(F|E)= 0.05 + 0.15= 0.20. Sample space having equally likely outcomes. 5 2.6 In many experiments, it is natural to assume that all outcomes have the same chance to occur. In this case, $P(E) = \frac{\# \text{ of outcomes in } E}{\# \text{ of outcomes in } S} = \frac{\# E}{\# S}$

Example 3. If two dives are rolled,
What is the prob. that the sum of two outcomes
is equal to 5?
Solution: Let E be the event that the
sum of two outcomes is equal to 5. Then

$$E = \{(\dot{v}, j) : \dot{v}, j \in \{1, 2, \dots, 6\}, \dot{v} + j = 5\}$$

 $= \{(i, 4), (2, 3), (3, 2), (4, 1)\},$
and
 $S = \{(i, j) : i, j \in \{1, 2, \dots, 6\}\}$
Hence $P(E) = \frac{\#E}{\#S} = \frac{4}{36} = \frac{1}{9}$. M

Example 4.

A committee of 5 is to be selected from a group of 6 men and 9 women. If the selection is made randomly, what is the probability that the committee consists of 3 men and 2 women?

Solution: Let E denote the event that the selected committee consists of 3 men and 2 Women. Let S be whole sample space. Then $\# S = \begin{pmatrix} 15 \\ 5 \end{pmatrix},$ $\# \in = \begin{pmatrix} 6 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 2 \end{pmatrix} \cdot$ Hence $P(E) = \frac{\#E}{\#S} = \frac{\binom{6}{3}\binom{9}{2}}{\binom{2}{2}}$ $\begin{pmatrix} 15\\ 5 \end{pmatrix}$ $\binom{n}{m} = \frac{n!}{m! (n-m)!} \cdot \binom{n! = n \times (n-1) \times \cdots 1}{0! = 1}$