Week 1

MATH 2040B

September 15, 2020

1 Concepts

- 1. Vector spaces (Class Note 1)
- 2. Subspaces (Class Note 2)

2 Notations

1. Let $A = \begin{pmatrix} u & v \\ w & z \end{pmatrix}$ be a complex matrix, then (a) $\operatorname{tr}(A) = u + z$ (b) $\operatorname{det}(A) = uz - vw$ (c) $A^* = \begin{pmatrix} \bar{u} & \bar{w} \\ \bar{v} & \bar{z} \end{pmatrix}$, where \bar{u} is the complex conjugate of u

3 Problems

1. Let $\operatorname{Mat}_{2\times 2}(\mathbb{C})$ be the set of 2×2 complex matrices, and $u_2 \subset \operatorname{Mat}_{2\times 2}(\mathbb{C})$ be the subset of skew symmetric matrices, i.e.

$$u_2 = \{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) : A^* + A = 0\}$$

(a) Show that $Mat_{2\times 2}(\mathbb{C})$ with the usual matrix addition and scalar multiplication forms a complex vector space. Is it also a real vector space?

(b) Show that u_2 is a real subspace of $Mat_{2\times 2}(\mathbb{C})$, is it also a complex subspace of $Mat_{2\times 2}(\mathbb{C})$?

2. Let

$$U = \left\{ A \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) : A^2 = \operatorname{tr}(A)A \right\}$$
$$V = \left\{ A \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) : A^2 + \operatorname{det}(A)I = 0 \right\}$$

(a) Is U a vector subspace of $Mat_{2\times 2}(\mathbb{C})$?

(b) Is V a vector subspace of $Mat_{2\times 2}(\mathbb{C})$?

3. Let V be a vector space over \mathbb{R} , and W_1, W_2 be vector subspaces of V.

(a) Show by example that $W_1 \cup W_2$ may not be a vector subspace of V.

(b) Show that if $W_1\cup W_2$ is a vector subspace, then either $W_1\subset W_2,$ or $W_2\subset W_1$

(c) If

$$V = \bigcup_{i=1}^{n} U_i$$

for some vector subspaces U_1, \ldots, U_n of V, show that $U_i = V$ for some i.