Week 7

MATH 2040

November 4, 2020

1 Problems

1. $\beta = \{(1,1), (1,-1)\}, \beta' = \{(1,0), (1,1)\}$ are basis for \mathbb{F}^2 , find the change of coordinate matrix that change β' coordinates into β coordinates.

Ans: $[I]_{\beta'}^{\beta} = [I]_{std}^{\beta}[I]_{\beta'}^{std} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ 1 −1 $\bigg)^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix}$), where std means the standard basis.

2. Let
$$
T : \mathbb{F}^2 \to \mathbb{F}^2
$$
, $T(a, b) = (2a + b, a - 3b)$, $\beta = \{(1, 1), (1, 2)\}$ is a basis of \mathbb{F}^2 , find $[T]_{\beta}$
Ans: $[T]_{\beta} = [I]_{std}^{\beta}[T]_{std}[I]_{\beta}^{std} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 13 \\ -5 & -9 \end{pmatrix}$

3. For $A \in M_{n \times n}(\mathbb{F})$, the eigenpolynomial of A is $f_A(t) = \det(A - tI_n)$. Consider linear transformation $T: V \to V$ and β is a basis of V, then the eigenpolynomial of T is $f_T(t) =$ $f_{[T]_\beta}(t)$. Find the eigenvalues of $T(a, b) = (a + 2b, 4a - b)$

Ans: We know that over standard basis of \mathbb{F}^2 , $[T]_{std} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ 4 −1), then the eigenpolynomial of $\cal T$ is

$$
f_T(t) = f_{[T]_st}d(t) = \det([T]_{std} - tI) = \begin{vmatrix} 1-t & 2 \\ 4 & -1-t \end{vmatrix} = (1-t)(-1-t) - 8 = t^2 - 9.
$$

So the eigen values of T is ± 3 .

- 4. Let $A, B \in M_{n \times n}(\mathbb{R})$. We say A, B are similar over \mathbb{R} if $A = Q^{-1}BQ$ for some invertible $Q \in M_{n \times n}(\mathbb{R})$ and A, B are similar over \mathbb{C} if $A = Q^{-1}BQ$ for some invertible $Q \in M_{n \times n}(\mathbb{C})$. Prove that A, B are similar over $\mathbb R$ equals to A, B are similar over $\mathbb C$. Ans:
	- ⇒: Obvious
	- \Leftarrow : Suppose A and B are similar over C, there exists some invertible $Q \in M_n(\mathbb{C})$ such that $A = Q^{-1}BQ$, so $QA = BQ$. Now we rewrite $Q = Q_1 + iQ_2$, where $Q_1, Q_2 \in M_n(\mathbb{R})$, then $QA = BQ$ gives that $Q_1A + iQ_2A = BQ_1 + iBQ_2$, then we have $Q_1A = BQ_1$ and $Q_2A = BQ_2$. Let $f(t) = det(Q_1 + tQ_2)$, and such f is a degree n polynomial. Since $f(i) = det(Q_1 + iQ_2) = det Q \neq 0$, we know that $f \neq 0$, which means it has at most n roots. Then we can find some $t \in \mathbb{R}$ such that $f(t) = det(Q_1 + tQ_2) \neq 0$. Remark that $\hat{Q} = Q_1 + tQ_2$, then $\hat{Q} \in M_n(\mathbb{R})$ is invertible and

$$
\hat{Q}A = Q_1A + tQ_2A = BQ_1 + tBQ_2 = B\hat{Q} \Leftrightarrow A = \hat{Q}^{-1}B\hat{Q},
$$

so A and B are similar over \mathbb{R} .

- 5. Let $A \in M_{n \times n}(\mathbb{F})$, $\lambda_1, \lambda_2, \cdots, \lambda_k$ are distinct elements of \mathbb{F} , $p(t) = (t-\lambda_1)(t-\lambda_2)\cdots(t-\lambda_k)$ $P_k(\mathbb{F})$. Suppose $p(A) = 0$, where $f(M) = \sum_{i=0}^{k} a_i M^i$ for some $f(t) = \sum_{i=0}^{k} a_i t^i \in P_k(\mathbb{F})$ and $M \in M_{n \times n}(\mathbb{F}).$
	- (a) Show that for all i there exists a polynomial $f_i \in P_{k-1}(\mathbb{F})$ such that

$$
f_i(\lambda_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases} .
$$

- (b) Show that
	- i. $Af_i(A) = \lambda_i f_i(A)$ ii. $f_1(A) + f_2(A) + \cdots + f_k(A) = I_n$ iii. $f_i(A)^2 = f_i(A)$ iv. $f_i(A) f_i(A) = 0$ for $i \neq j$
- (c) Show that every $v \in \mathbb{F}^n$ can be written uniquely as $v = v_1 + v_2 + \cdots + v_k$ with $v_i \in$ $E_{\lambda_i} = \{ v \in \mathbb{F}^n | Av = \lambda_i v \}.$

Ans:

- (a) Define the linear transformation $\Phi: P_{k-1}(\mathbb{F}) \to \mathbb{F}^k$, $\Phi(f) = (f(\lambda_1, \lambda_2, \cdots, f(\lambda_k)))$, for all $f \in N(\Phi)$, $\Phi(f) = 0$ means $f(\lambda_i) = 0$ for all $i = 1, 2, \dots, k$, so f has at least k roots. However, f is degree k – 1, which means $f = 0$ and $N(\Phi) = \{0\}$. Then rank $\Phi = k - 0 = k = \dim \mathbb{F}^{\overline{k}}$, so Φ is surjective.
- (b) i. Let $g_i(t) = tf_i(t) \lambda_i f_i(t)$, then we have

$$
g_i(\lambda_j) = \begin{cases} \lambda_i f_i(\lambda_i) - \lambda_i f_i(\lambda_i) = 0, i = j \\ \lambda_j f_i(\lambda_j) - \lambda_i f_i(\lambda_j) = \lambda_j \cdot 0 - \lambda_i \cdot 0 = 0, i \neq j \end{cases}
$$

so $\lambda_1, \lambda_2, \dots, \lambda_k$ are all roots of g_i . and $g_i(t) = p(t)h_i(t)$ for some $h_i(t)$. Therefore, $q_i(A) = p(A)h_i(A) = 0 = Af_i(A) - \lambda_i f_i(A).$

- ii. Similarly, let $\hat{f}(t) = f_1(t) + f_2(t) + \cdots + f_k(t) 1$, it's easy to check that $\hat{f}(\lambda_i) = 0$ for all $i = 1, 2, \dots, k$, so $\hat{f}(t) = p(t)\hat{h}(t)$ for some $\hat{h}(t)$. Therefore, $\hat{f}(A) = 0$ $f_1(A) + f_2(A) + \cdots + f_k(A) - I$
- iii. Let $f_i'(t) = f_i^2(t) f_i(t)$, then we have $f_i'(\lambda_j) = \begin{cases} 1^2 1 = 0, i = j \\ 0, i, j, j \end{cases}$ $\frac{1}{0, i \neq j}$, so $f'_{i}(t) =$ $p(t)h'_i(t)$ and $f'_i(A) = p(A)h'_i(A) = 0 = f_i(A)^2 - f_i(A)$.
- iv. Let $\tilde{f}_{ij}(t) = f_i(t) f_j(t)$, then we have $\tilde{f}_{ij}(\lambda_a) = f_i(\lambda_a) f_j(\lambda_a)$, for all a, at least one of $f_i(\lambda_a)$ and $f_j(\lambda_a)$ is 0, so $\tilde{f}_{ij}(\lambda_a) = 0$, $\tilde{f}_{ij}(t) = p(t)\tilde{h}_{ij}(t)$. Therefore, $\tilde{f}_{ij}(A) =$ $p(A)h_{ij}^{\tilde{}}(A) = 0 = f_i(A)f_j(A).$
- (c) Exitension: from (b), $f_1(A) + f_2(A) + \cdots + f_k(A) = I$ and $Af_i(A) = \lambda_i f_i(A)$, so for all $v \in \mathbb{F}^k$,

$$
v = Iv = f_1(A)v + f_2(A)v + \dots + f_k(A)v,
$$

with $Af_i(A)v = \lambda_i f_i(A)v$, which means $f_i(A)v \in E_{\lambda_i}$. Uniqueness: suppose $v = v_1 + v_2 + \cdots + v_k$, for any $i \neq j$,

$$
\lambda_i f_i(A)v_j = Af_i(A)v_j = f_i(A)Av_j = f_i(A)\lambda_j v_j = \lambda_j f_i(A)v_j.
$$

so $(\lambda_i - \lambda_j) f_i(A)v_j = 0$, which means $f_i(A)v_j = 0$. Hence

$$
v_i = Iv_i = f_1(A)v_i + \dots + f_k(A)v_i = f_i(A)v_i.
$$

and

$$
v_i = f_i(A)v_i = f_i(A)v_1 + \dots + f_i(A)v_k = f_i(A)v,
$$

so all of these v_i are uniquely.