Week 5

MATH 2040B

October 13, 2020

1 Concepts

- 1. Matrix representation: Given a linear transformation T from finite dimension vector space U to finite dimension vector space V, $\beta = \{\beta_1, \dots, \beta_n\}$ is an ordered basis of U and $\gamma = \{\gamma_1, \dots, \gamma_m\}$ is an ordered basis of V, if $T(\beta_j) = \sum_{i=1}^m T_{ij}\gamma_i$, then the $m \times n$ matrix $[T]_{\beta}^{\gamma} = (T_{ij})$ is called the matrix representation of T.
- 2. The coordinate representation corresponding to γ of $T(\beta_j)$ is $[T(\beta_j)]_{\gamma} = (T_{1j}, \cdots, T_{mj})^T$, and $[T]_{\beta}^{\gamma}$ can be writed as the combination of these column vectors $[T]_{\beta}^{\gamma} = [[T(\beta_1)]_{\gamma}, \cdots, [T(\beta_n)]_{\gamma}]$.
- 3. If U = V and $\beta = \gamma$, then the matrix representation of T can be simplified as $[T]_{\beta}$

2 Problems

1. $T: \mathbb{R}^2 \to \mathbb{R}^3, T(a, b) = (a - b, a + b, a), \text{ find } [T]^{\gamma}_{\beta} \text{ where } \beta, \gamma \text{ are standard basis of } \mathbb{R}^2 \text{ and } \mathbb{R}^3.$

2. $T : \mathbb{R}^2 \to \mathbb{R}^3$, T(a,b) = (a - b, a + b, a), find $[T]^{\gamma}_{\beta}$ where $\beta = \{(1,1), (1,-1)\}$ and $\gamma = \{(0,1,1), (1,0,1), (1,1,0)\}$.

3. Let $\beta = \{\beta_1, \dots, \beta_n\}, \gamma = \{\gamma_1, \dots, \gamma_m\}$ be basis of vector space U and V. $\mathcal{L}(U, V)$ is the set of all linear transformation from U to V. It is known that $\mathcal{L}(U, V)$ is a vector space with addition: (P + Q)(u) = P(u) + Q(u) and scalar multiple: (aP)(u) = aP(u). Show that the map $T : \mathcal{L}(U, V) \to M_{m \times n}(F)$ that $T(P) = [P]_{\beta}^{\gamma}$ is linear.

4. Prove that $T: \mathcal{L}(U, U) \to M_{n \times n}(F)$ is injective.

- 5. Suppose $P:U\to U$ is linear, show that the following two statements are equivalent.
 - (1). $P^2 = P;$
 - (2). For some basis η of U and $r \leq n = \dim(U)$,

$$[P]_{\eta} = \begin{pmatrix} I_{r \times r} & 0\\ 0 & 0 \end{pmatrix}$$