Week 12

MATH 2040

December 3, 2020

1 Problems

1. Let T and U be self-adjoint operators on an inner product space V. Prove that TU is selfadjoint if and only if TU = UT.

Ans: $(TU)^* = U^*T^* = UT$, so TU = UT is equivalent to $(TU)^* = TU$, then TU is self-adjoint.

- 2. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that
 - (a) For all $x \in V$, $||T(x) \pm ix||^2 = ||T(x)||^2 + ||x||^2$.
 - (b) T iI is invertible and $[(T iI)^{-1}]^* = (T + iI)^{-1}$

Ans:

(a) Since T is self-adjoint, we have $T^* = T$, then $\langle x, T(x) \rangle = \langle x, T^*(x) \rangle = \langle T(x), x \rangle$. Therefore,

$$\begin{split} \|T(x) \pm ix\|^2 &= \|T(x)\|^2 + \|x\|^2 \pm \langle T(x), ix \rangle \pm \langle ix, T(x) \rangle \\ &= \|T(x)\|^2 + \|x\|^2 \mp i \langle T(x), x \rangle \pm i \langle x, T(x) \rangle \\ &= \|T(x)\|^2 + \|x\|^2 \mp i \langle T(x), x \rangle \pm i \langle T(x), x \rangle \\ &= \|T(x)\|^2 + \|x\|^2 \end{split}$$

(b) Suppose $(T \pm iI)(x) = 0$, then $||(T \pm iI)(x)||^2 = ||T(x) \pm ix||^2 = ||T(x)||^2 + ||x||^2 = 0$, which means x = 0, so $T \pm iI$ is surjective and then invertible. Since T is self-adjoint, we have that $(T - iI)^* = T^* + iI = T + iI$, then,

$$\begin{aligned} \langle x, [(T-iI)^{-1}]^*(T+iI)(y) \rangle &= \langle (T-iI)^{-1}(x), (T+iI)(y) \rangle \\ &= \langle (T-iI)^{-1}(x), (T-iI)^*(y) \rangle \\ &= \langle (T-iI)(T-iI)^{-1}(x), y \rangle \\ &= \langle x, y \rangle. \end{aligned}$$

This shows that $[(T - iI)^{-1}]^*(T + iI) = I$ and so $[(T - iI)^{-1}]^* = (T + iI)^{-1}$.

3. Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence prove that T is self-adjoint.

Ans: Please find the proof in lecture note.

4. Prove $det(A^*) = \overline{det(A)}, A \in M_{n \times n}(\mathbb{C}).$

Ans: We know that $A^* = \overline{A^t}$ and $\det(A^t) = \det(A)$, so it's sufficient to prove $\det(\overline{A}) = \det(A)$.

Claims that $det(A^*) = \overline{det(A)}$ holds for all $M_{n \times n}(\mathbb{C})$.

For n = 1, it's clear that $det(\overline{A}) = \overline{det(A)}$.

When n > 1, suppose claim holds for n - 1, then

$$\overline{\det(A)} = \overline{\sum_{j=1}^{n} (-1)^{i+j} A_{ij} \det(\tilde{A}_{ij})} = \sum_{j=1}^{n} (-1)^{i+j} \overline{A_{ij}} \overline{\det(\tilde{A}_{ij})},$$

where *i* is arbitrary, A_{ij} is the *i*, *j* element of matrix A and \tilde{A}_{ij} is the *i*, *j* minor of A. Since $\tilde{A}_{ij} \in M_{n-1 \times n-1}(\mathbb{C})$, then $\overline{\det(\tilde{A}_{ij})} = \det(\tilde{A}_{ij})$ and $\bar{A}_{ij} = \overline{A_{ij}}$, so

$$\det(\bar{A}) = \sum_{j=1}^{n} (-1)^{i+j} \bar{A}_{ij} \det(\tilde{A}_{ij}) = \sum_{j=1}^{n} (-1)^{i+j} \overline{A_{ij}} \overline{\det(\tilde{A}_{ij})} = \overline{\det(A)},$$

claim holds for n. By M.I. we have $det(A^*) = \overline{det(A)}$.

- 5. Let $T: V \to W$ be a linear transformation, where V and W are finite dimensional inner product spaces with inner products \langle , \rangle_1 and \langle , \rangle_2 , respectively. Prove the following results.
 - (a) There is a unique adjoint T^* of T, and T^* is linear.
 - (b) If β and γ are orthonormal bases for V and W, respectively, then $[T^*]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^*$
 - (c) $\operatorname{rank}T^* = \operatorname{rank}T$
 - (d) $\langle T^*(x), y \rangle_1 = \langle x, T(y) \rangle_2$ for all $x \in W$ and $y \in V$.
 - (e) For all $x \in V$, $T^*T(x) = 0$ if and only if T(x) = 0.

Ans:

(a) For some fixed $y \in W$, define $g_y(x) = \langle T(x), y \rangle_2$. It's easy to check g_y is linear that $\forall x, z \in V$ and $\forall c \in \mathbb{C}$,

$$g_y(x+cz) = \langle T(x+cz), y \rangle_2 = \langle T(x) + cT(z), y \rangle_2 = \langle T(x), y \rangle_2 + c \langle T(z), y \rangle_2 = g_y(x) + cg_y(z) + cg_y(z$$

So we can find a unique $\tilde{y} \in V$ such that $g_y(x) = \langle x, \tilde{y} \rangle_1$ for any $x \in V$, so we can define $T^*(y) = y$ then $\langle x, T^*(y) \rangle_1 = g_y(x) = \langle T(x), y \rangle_2$. Since \tilde{y} can be uniquely determined by y, such T^* exists and is well-defined. Then we can also check that for $\forall x \in V$, $\forall y, z \in W$ and $\forall c \in \mathbb{C}$,

$$\begin{aligned} \langle x, T^*(y+cz) \rangle_1 &= \langle T(x), y+cz \rangle_2 = \langle T(x), y \rangle_2 + \bar{c} \langle T(x), z \rangle_2 \\ &= \langle x, T^*(y) \rangle_1 + \bar{c} \langle x, T^*(z) \rangle_1 = \langle x, T^*(y) + cT^*(z) \rangle_1, \end{aligned}$$

so we have $T^*(y + cz) = T^*(y) + cT^*(z)$, T^* is linear.

(b) Let $\beta = \{u_1, \dots, u_n\}$ and $\gamma = \{v_1, \dots, v_m\}$, assume that $T(u_i) = \sum_{j=1}^m a_{ij}v_j$ and $T^*(v_i) = \sum_{j=1}^n b_{ij}u_j$, then $[T]_{\beta}^{\gamma} = (a_{ij})$ and $[T^*]_{\gamma}^{\beta} = (b_{ij})$. For $\overline{a_{ij}}$,

$$\overline{a_{ij}} = \overline{\langle T(u_i), v_j \rangle_2} = \overline{\langle u_i, T^*(v_j) \rangle_1} = \langle T^*(v_j), u_i \rangle = b_{ji},$$

so $[T^*]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^*$

- (c) in HW10.
- (d) $\langle T^*(x), y \rangle_1 = \overline{\langle y, T^*(x) \rangle_1} = \overline{\langle T(y), x \rangle_2} = \langle x, T(y) \rangle_2$
- (e) \Rightarrow : If $T^*T(x) = 0$, then $||T(x)||^2 = \langle T(x), T(x) \rangle_2 = \langle T^*T(x), x \rangle_1 = \langle 0, x \rangle_1 = 0$, so T(x) = 0.
 - $\Leftarrow: \text{ If } T(x) = 0 \text{ then } T^*T(x) = T^*(0) = 0.$