

Dimension

or 1: Let V be a vector space thaving a finite basis. Then, every basis of V contains the same number of vectors .

and γ be two bases of V . Pf : Let د
ا Since β spans V and γ is line independent, then $\|y\| \leq \|p\|$ (by replacement Thim) Similarly, $| \beta | \leq |\gamma|$ ⇒ 181 - - Ipl .

Definition:

 \bullet

^V is called finite-dimensional if it has ^a finite basis . The dimension of ^V , denoted as dimly , is the number of vectors in ^a basis for ^V . A vector space which is not finite - dimensional is called infinite-dimensional .

a

 α

Example:	F^n has dimension <i>n</i> .
• $P_n(F)$ has dimension <i>n</i> +	
?	$P(F)$ is infinite dimensional
• $M_{n \times n}(F)$ has dimension <i>n</i>	
• C is a vector span over $F = C$, has dimension 1	
• $(Basis \beta = 213)$	
• C is a vector span over $F = IR$ has dimension 2	
• $(\beta = 21, i3)$	

CONTRACTOR

 \sim \sim

Cor·Let V be a n-dimensional vector space.
(a) Any finite spanning set has at least n vectors, and a spanning set with exactly n vectors is a basis for V.
(b) Any linearly independent subset of V of size n is a basis for V.
(c) Every linearly independent subset of V can be extended to a basis for V.
Pr: Let β be a basis for V. (\beta = n)
(a) Let G be a finite spanning set for V. Then: $\exists Y \subset G$ which is a basis for V. (last time)
1. 3 = n = G
If $ G = Y $, then: $G = Y$ is a basis for V.

(b) Let L
$$
C V
$$
 be a lin. independent subset of size n.
\nBy the replacement theorem, $\exists H C \beta$ of
\n $Size I_{n}^{s-1}I_{n}^{s-1} = o$ such that LuH span V.
\nBut $1H1 = o$. $\therefore H = \phi$.
\n $\therefore L uH = L u \phi = L$ *Span V*.

 \overline{u}

 \sim \sim

 \bullet

(c) Let LCV be a linearly independent subset of size m.
\nBy the replacement theorem,
$$
0 \le n \le n
$$

\n $\bigcirc \exists H C \beta$ of size $n-m$ such that LuH span V.
\n $\frac{1}{m} \cdot n-m$
\n $\therefore |LuH| = m + n-m = n$
\n $\bigcirc \{ |LuH| = m + n-m = n \}$
\nBy (a), LuH is a spanning set with exactly
\n $\frac{n}{\text{elements}} \Rightarrow LuH$ is a basis.
\n $\frac{1}{\text{dim}(v)}$

 \sim \sim

September

CONCERT

 $1 - \cos 2x = 1$

 \sim 1000

Theorem:	Let	V	be a finite-dimensional vector space.
Then any subspace	$W \subset V$ is finite-dimensional and dim(W)SGim(V)		
Moreover, if dim(W) = dim(V), then	$W = V$.		
Proof:	Let	$n = dim(V)$. If $W = \{\vec{0}\}$, then	$W = W$.
dim(W) = 050 (Span(\phi) = \{\vec{0}\})			
Otherwise, W contains a non-zero \vec{u}_1 . So, $\{\vec{u}_1\}$ is Lin , indep			
Subset of W.	If	Span $\{\vec{u}_1\} = W$. Then, by a thm before,	
Otherwise, choose	$\vec{u}_2 \in W \setminus Span \{\vec{v}_1\}$. Then, by a thm before,		
$\{\vec{u}_1, \vec{u}_2\}$ is linearly independent of W.			
If $\{\vec{u}_1, \vec{u}_2\}$ span W, then $\{\vec{u}_1, \vec{u}_2\}$ is a basic.			

Repeat this process to produce a larger and larger lin. indep.
\nBut a Jin. indep, subred of V has size
$$
\le n
$$
.
\nThe above process must stop, say, it stops at
\nproducing a lin. indep. subset $\beta = \{ \vec{u}_1, \vec{u}_2, ..., \vec{u}_k \}$ of W
\nwith $\&$ n. Then, β is a basis of W.
\n
$$
\therefore \dim(W) = \frac{\beta \le n}{\beta}
$$
\nIf dim(W) = dim(V) = n and $\beta = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$
\nis a lin. indep. Subnet of V. Then, β is a basis of V
\nand W = span(p) = V

CONTRACTOR

e.g.. Set W of symmetric $n \times n$ matrices $(A^t = A)$ is a subspace of $M_{n \times n}$ (F) of $\dim = 1 + 2 + ... + (n-1) + n$ = $\frac{1}{2}$ (n)(n+1) $\leq n^2$ $\left(\begin{array}{c} \sqrt{2} & \cdots & \sqrt{2} \\ \sqrt{2} & \cdots & \sqrt{2} \\ \vdots & \ddots & \vdots \\ \sqrt{2} & \cdots & \sqrt{2} \end{array}\right) \in \mathbb{R}^+$ $dim(V)$ If W is a subspace of a fin-dimensional vector Corollan: space V, then any basis of W can be extended to a basis of V. Exercise $Proof:$

Linear Transformation
\nDefinition: Let V and W be vector spaces over F.
\nA linear transformation from V to W is a map T: V
$$
\rightarrow
$$
 W
\nsuch that: (a) T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})
\n(b) T($a\vec{x}$) = a T(\vec{x})
\nfor all \vec{x} , \vec{y} \in V, a \in F.

a

 α

 \sim cm

 \bullet

 \sim \sim

CONCERT

 $\sqrt{2\pi r}$

Proposition: Let T: V \rightarrow W be a linear transformation. Then:
(i) T(\vec{v}_v) = \vec{v}_w
(ii) T(\vec{v}_v) = $\sum_{i=1}^{n} a_i T(\vec{x}_i) \quad \forall \vec{x}_1, \vec{x}_2, \dots, \vec{x}_n \in V$
(T preserves linear combination) 0,02, ...,04
(i) T(\vec{v}_v) = T($\vec{v}_v + \vec{v}_v$) = T(\vec{v}_v) + T(\vec{v}_v)
\Rightarrow T(\vec{v}_v) = \vec{v}_w . (Cancellation law)
(ii) Use math. induction (exercise)

Examples:	For any vector spaces V and W, we have:	
(a) The zero transformation	$T_0: V \rightarrow W$ defined by	$T_0(\vec{x}):=\vec{O}_W$
(b) The identity transformation	$I_V: V \rightarrow V$ defined by	$fr\vec{v} \in V$
Let A \in M mxn (F) be a max matrixic in F .	$fr\vec{v} \times \in V$.	
Define:	$L_A: F^n \rightarrow F^m$ as:	$(F^n = space of col vectors of$ is $3e n$)
$L_A(\vec{x}) = A\vec{x}$	Δ is called the left multiplication by A.	
or $T: M_{mxn}(F) \rightarrow M_{nxm}(F)$ defined by	$T(A) = A^{\text{cl}}(transp$ and $frak{g}$ and $frak{g}$	

- T:
$$
P_n (IR) \rightarrow P_{n-1}(IR)
$$
 defined by $T(f(x)) = f(x)$
\nis a lin. transf.
\n• Let a and b \in IR, a < b. Then,
\nT: C (IR) \rightarrow IR defined by \in
\n
$$
\begin{array}{c}\nF: C(R) \rightarrow R \text{ defined by } \in \text{Space, }\\
\text{functions}\n\end{array}
$$
\n
$$
T(f) = \int_{a}^{def} f(t) dt
$$

Null space or Range
Definition: Let V and W be vector spaces and T: V \rightarrow W be
a linear transformation
Then, the null spana (or Kernel) of T is defined as:
N(T): $\stackrel{def}{=} \{ \vec{\chi} \in V : T(\vec{\chi}) = \vec{0}w \} \subset V$
the range (or image) of T is defined as:
R(T): = \{ T(\vec{\chi}) : \vec{\chi} \in V \} \subset W
e.g. For I _V : V \rightarrow V, N(I _V) = \{\vec{0}v\}, R(I _V) = V
(identity)
For $T_0: V \rightarrow W$, N(I _V) = V, R(T _V) = \{\vec{0}w\}
(sum family)

E

 \overline{u}

 \bullet

$$
L_{A}: F^{n} \rightarrow F^{m} \quad (A \in M_{max}(F))
$$
\n
$$
N(L_{A}) = N(A) = null Span of A
$$
\n
$$
R(L_{A}) = C(A) = col Span of A \quad (Span of thecombination of col vectors\n
$$
F_{\sigma} = T \cdot P_{n}(IR) \rightarrow P_{n-1}(IR) \text{ defined by}
$$
\n
$$
T(f_{(x)}) = f'(x), \text{ then:}
$$
\n
$$
N(T) = \{ a_{\sigma} \in P_{n}(IR) : a_{\sigma} \in IR \}
$$
\n
$$
R(T) = P_{n}(IR)
$$
$$

 $\sqrt{2\pi r^2}$

CONTRACTOR CONTRACTOR

Company

ie.

Proposition:	Let $T: V \rightarrow W$ be a linear transformation.
Then : N(T) and R(T) are subspaces of V and W respectively.	
Proof:	:\n $T(\vec{\sigma}v) = \vec{\sigma}w$ \n $\vec{\sigma}v \in N(T)$ and $\vec{\sigma}w \in R(T)$ \n Let \vec{x} and $\vec{y} \in N(T)$ and $\vec{\sigma} \in F$. Then: \n $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}) = \vec{\sigma}w + \vec{\sigma}w = \vec{\sigma}w$ and \n $T(\vec{x}) = a \vec{\sigma}w = \vec{\sigma}w$ \n $\therefore \vec{x} + \vec{y} \in N(T)$ and $a \vec{x} \in N(T)$ \n $\therefore N(T)$ is a subspace of V.\n

 \sim \sim

ю

Now, let
$$
\vec{u}
$$
, \vec{v} \in RT) and \vec{u} \in F.
\nThen: $\exists \vec{x}$, \vec{y} \in V such that $\vec{u} = T(\vec{x})$ and $\vec{v} = T(\vec{y})$
\nSo, $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y}) = \vec{u} + \vec{v} \Rightarrow \vec{u}+\vec{v} \in RT$)
\n $T(\vec{a}\vec{x}) = a T(\vec{x}) = a\vec{u} \Rightarrow a\vec{u} \in RT$
\n \therefore RT) is a *Subspace* of W.

ū

 \sim \sim

 \bullet

Remark:
$$
T: V \rightarrow W
$$
 is onto iff RCT) = W

\n(follows from the def)

\n**Proposition:** A linear transformation $T: V \rightarrow W$ is one-to-one iff $N(T) = \overline{\overline{2} \overline{0}} \overline{\overline{3}}$.

\n**Pf:** (Recap: One-b-one $\overline{C} = \overline{T(\overline{x})} = T(\overline{3}) \Rightarrow \overline{x} = \overline{3}''$

\n(\Rightarrow) If T is one-b-one, then: for any $\overline{x} \in N$?

\nwe have $T(\overline{x}) = \overline{0}_W = T(\overline{0}_V)$

\n $\Rightarrow \overline{x} = \overline{0}_V$

\nThis implies $N(T) = \overline{3} \overline{0}_V \overline{3}$.

$$
\begin{array}{lll}\n\text{(c)} & \text{Suppose} & \text{NLT} = \overline{16} \text{v} \, \overline{3} \\
\text{Let } \vec{x}, \vec{y} \in \text{V} \text{ such that } T(\vec{x}) = T(\vec{y}) \\
\text{Then:} & T(\vec{x}) - T(\vec{y}) = T(\vec{x} - \vec{y}) = \vec{0} \\
\text{This implies } \vec{x} - \vec{y} \in \text{NLT} = \overline{10} \text{v} \, \text{s} \\
\therefore & \vec{x} - \vec{y} = \vec{0} \text{v} \quad \text{or} \quad \vec{x} = \vec{y} \\
\therefore & \vec{1} \text{ is } I - I.\n\end{array}
$$

 α