1 2 Lecture 6: Recall: elin. ind. m C_{-} , n generating set LUH span V. $m \leq n$ 2 Charter. anto 1 <223 A

<u>Corl:</u> Let V be a vector space having a finite basis. Then, every basis of V contains the same number of vectors.

Pf: Let
$$\beta$$
 and ϑ be two bases of V.
Since β spans V and ϑ is lin. independent,
then $|\vartheta| \leq |\beta|$ (by replacement Thm)
Similarly, $|\beta| \leq |\vartheta|$
 $\Rightarrow |\vartheta| = |\beta|$.

Channel of

Definition:

-

Example:
$$F^{n}$$
 has dimension n .
 $P_{n}(F)$ has dimension $n+1$
 $P(F)$ is infinite dimensional
 $M_{n\times n}(F)$ has dimension n^{2}
 G is a vector space over $F=G$, has dimension 1
 $(Basis \ \beta = \xi 13)$
 G is a vector space over $F = 1R$ has dimension 2
 $(\beta = \xi 1, i3)$

.

-

(b) Let
$$L \subset V$$
 be a lin. independent subset of size n.
By the replacement theorem, $\exists H \subset \beta$ of
Size $|\beta| - |L| = 0$ such that $L \cup H$ span V .
n n
But $|H| = 0$.
 $\therefore H = p$.
 $\therefore L \cup H = L \cup \phi = L$ Span V .
 $\therefore L$ is a basis

-

2

.

-

Repeat this process to produce a larger and larger lin. indep.
But a lin. indep. subset of V has size
$$\leq n$$
.
The above process must stop, say, it stops at
producing a lin. indep. subset $\beta = \hat{z} \cdot \hat{u}_1, \hat{u}_2, \dots, \hat{u}_k \cdot \hat{z}$ of W
with $k \leq n$. Then, β is a basis of W.
i dim (W) = $k \leq n$.
If dim(W) = dim(V) = n and $\beta = \hat{z} \cdot \hat{u}_1, \hat{u}_2, \dots, \hat{u}_n \cdot \hat{z}$
is a lin. indep. subset of V. Then, β is a basis of V
and $W = \text{span}(\beta) = V$

e.g. . Set W of symmetric nxn matrices $(A^{t} = A)$ is a subspace of Mnxn (F) of dim = 1+2+ --- + (n-1) + n $= \frac{1}{2} (n)(n+1) \leq n^2$ dim(V)If W is a subspace of a fin-dimensional vector Corollam: space V, then any basis of W can be extended to a basis of V. Proof: Exercise

Linear Transformation
Definition: Let V and W be vector spaces over F.
A linear transformation from V to W is a map
$$T: V \rightarrow W$$

such that: (a) $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y})$
(b) $T(a\vec{x}) = aT(\vec{x})$
for all $\vec{x}, \vec{y} \in V$, $a \in F$.

.

-

Proposition: Let T: V > W be a linear transformation. Then:
(i) T(
$$\vec{v}_v$$
) = \vec{v}_w
(ii) T($\sum_{i=1}^{n} a_i \vec{x}_i$) = $\sum_{i=1}^{n} a_i T(\vec{x}_i)$ $\forall \vec{x}_1, \vec{x}_2, ..., \vec{x}_n \in V$
(T) $T(\vec{v}_v) = T(\vec{v}_v + \vec{v}_v) = T(\vec{v}_v) + T(\vec{v}_v)$
 $\Rightarrow T(\vec{v}_v) = \vec{v}_w$. (Cancellation law)
(ii) Use math. induction (exercise)

$$\frac{\mathsf{Ex} \text{ amples}:}{(a) \text{ The zero transformation } T_0: V \to W \text{ defined by } T_0(\vec{x}):= \vec{O}_W$$

$$(b) \text{ The identity transformation } I_V: V \to V \text{ defined by } I_V(\vec{x}) = \vec{x}$$

$$(b) \text{ The identity transformation } I_V: V \to V \text{ defined by } I_V(\vec{x}) = \vec{x}$$

$$(b) \text{ The identity transformation } I_V: V \to V \text{ defined by } I_V(\vec{x}) = \vec{x}$$

$$(b) \text{ The identity transformation } I_V: V \to V \text{ defined by } I_V(\vec{x}) = \vec{x}$$

$$(b) \text{ The identity transformation } I_V: V \to V \text{ defined by } I_V(\vec{x}) = \vec{x}$$

$$(b) \text{ The identity transformation } I_V: V \to V \text{ defined by } I_V(\vec{x}) = \vec{x}$$

$$(b) \text{ The identity transformation } I_V: V \to V \text{ defined by } I_V(\vec{x}) = \vec{x}$$

$$(c) \text{ Let } A \in M_{mxn}(F) \text{ be a mxn matrice in } F.$$

$$Define: L_A: F^n \to F^m \text{ as: } (F^n = \text{ space of col vectors of } Size n)$$

$$L_A(\vec{x}) \stackrel{def}{=} A\vec{x}$$

$$L_A \text{ is called the left multiplication by } A.$$

$$T = M_{mxn}(F) \to M_{nxm}(F) \text{ defined by } T(A) \stackrel{def}{=} A^{\frac{1}{2}} (\text{ transporm of } A)$$

•
$$T: P_n(IR) \rightarrow P_{n-1}(IR)$$
 defined by $T(f(x)) = f'(x)$
is a lin. transf.
• Let a and $b \in IR$, $a < b$. Then,
 $T: C(IR) \rightarrow IR$ defined by:
 $(space of continuous)$
 $functions$
 $T(f) \stackrel{def}{=} \int_a^b f(t) dt$

•
$$L_A: F^* \rightarrow F^m$$
 ($A \in M \max(F)$)
 $N(L_A) = N(A) = null space of A$
 $R(L_A) = \mathcal{C}(A) = col space of A$ (space of linear
 $combination of col vectors$
• For $T: Pn(IR) \rightarrow Pn_{+}(IR)$ defined by
 $T(f(x)) = f'(x)$, then:
 $N(T) = \{a_0 \in Pn(IR) : a_0 \in IR\}$
 $R(T) = Pn_{+}(IR)$

a given

anter 1

40000 EE AI

1

Now, let
$$\vec{u}, \vec{v} \in R(T)$$
 and $a \in F$.
Then: $\exists \vec{x}, \vec{y} \in V$ such that $\vec{u} = T(\vec{x})$ and $\vec{v} = T(\vec{y})$
So, $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y}) = \vec{u} + \vec{v} \Rightarrow \vec{u} + \vec{v} \in R(T)$
 $T(\vec{a}\vec{x}) = aT(\vec{x}) = a\vec{u} \Rightarrow a\vec{u} \in R(T)$
 $\therefore R(T)$ is a subspace of W .

1

$$\begin{array}{c} \underline{Remark:} \quad T: \lor \rightarrow \& is \quad onto \quad iff \quad R(T) = \& \& \\ & (follows \quad from \quad the \; def \;) \\ \hline \underline{Proposition:} \quad A \; linear \; transformation \quad T: \lor \rightarrow \& \; is \; one-to-one \\ & iff \quad N(T) \; = \; \overline{2} \; \overline{0} \; \overline{3} \; . \\ \hline \underline{Pf:} \; (Recap: \; One-to-one \; (\Rightarrow) \; " \; T(\overline{x}) = \; T(\overline{g}) \; \Rightarrow \; \overline{x} = \; \overline{g} \; " \\ (\Rightarrow) \quad If \; T \; is \; one-to-one \; (\Rightarrow) \; " \; T(\overline{x}) = \; T(\overline{g}) \; \Rightarrow \; \overline{x} = \; \overline{g} \; " \\ (\Rightarrow) \quad If \; T \; is \; one-to-one \; , \; then: \; for \; any \; \overline{x} \in \: N(T), \\ & \forall e \; have \; \quad T(\overline{x}) = \; \overline{0} \; \psi \; = \; T(\overline{0} \; \psi) \\ & \Rightarrow \; \quad \overline{x} = \; \overline{0} \; \psi \; \\ This \; implies \; \; N(T) = \; \overline{2} \; \overline{0} \; \psi \; \overline{3} \; . \end{array}$$

2

(
$$\Leftarrow$$
) Suppose N(T) = $\overline{10}\sqrt{3}$
Let $\overline{x}, \overline{y} \in V$ such that $T(\overline{x}) = T(\overline{y})$.
Then: $T(\overline{x}) - T(\overline{y}) = T(\overline{x} - \overline{y}) = \overline{0}$
This implies $\overline{x} - \overline{y} \in N(T) = {\overline{0}}\sqrt{3}$
 $\therefore \quad \overline{x} - \overline{y} = \overline{0}\sqrt{0} \text{ or } \quad \overline{x} = \overline{y}$.
 $\therefore \quad \overline{T} \text{ is } 1 - 1$.

-