Lecture 23:

Def: Let T be a linear operator on an inner product space V. We say T is self-adjoint (Hermitian) if T*=T. An nxn real or complex matrix A is called self-adjoint (or Hermitian) if A* = A. Lemma: Let T be a self-adjoint linear operator on a fin-dim inner product space V. Then: (a) Every eigenvalue of T is real. (b) Suppose V is real inner product space. Then, the Char. poly of T splits over IR.

But $f_{T}(t) = f_{L_A}(t)$. So, the result follows.

Theorem: Let T be a linear operator on a fin-dim real inner product space V. Then T is self-adjoint iff I orthonormal basis for V consisting of eigenvectors of T. Proof: (=) Suppose T is self-adjoint. By the Lemma, the char poly of T splits over IR. By Schur's Theorem, I an orthonormal basis & for V s.t. A = [T] is upper triangular. But; $A^* = ([T]_{\beta})^* = [T^*]_{\beta} = [T]_{\beta} = A$ So, A is both upper triangular and lower triangular. Hence, A is diagonal. 1. B consists of eigenvectors of T.

(⇐) Suppose = orthurnormal basis p for V s.t. A = ETJp is diagonal Then: $[T^*]_{\beta} = ([T]_{\beta})^* = A^* = A = [T]_{\beta}$ $T^{\star} = T$ è. in T is self-adjoint.

e.g.
Consider
$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$
. Then $\exists P \in O(3)$ s.t. $P^{t}AP$ is diagonal.
To find P explicitly, we first compute the eigenvalues if A:
 $f_{A}(t) = (8-t)(2-t)^{2}$
So the eigenvalues are $\lambda = 2$ and $\lambda = 8$
For $\lambda = 8$, $(1,1,1)$ is an eigenvector
For $\lambda = 2$, $\int (-1,1,0)$, $(-1,0,1)$ is a basis for the eigenspace E_{2}
but it is not orthogonal.
Applying the Gran - Schmidt process produces the orthogonal
basis $\int (-1,1,0)$, $(1,1,-2)$ of E_{2} .
Then an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A
is given by
 $\int \frac{1}{\sqrt{2}} (-1,1,0)$, $\frac{1}{\sqrt{2}} (1,1,-2)$, $\frac{1}{\sqrt{3}} (1,1,1)$
which gives P as
 $P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{3} \\ 0 & -2\sqrt{3} \end{pmatrix}$.

-

Def: Let T be a linear operator on finite-dim inner
product space V over F. If
$$\|T(\vec{x})\| = \|\vec{x}\| \quad \forall \vec{x} \in V$$
,
then we call T is a unitary linear operator. (resp.
orthogonal operator) if $F = \mathbb{C}$ (resp. $F = IR$)
Lemma: Let U be a self-adjoint linear operator on a fin-dim
inner product space V. If $\langle \vec{x}, U(\vec{x}) \rangle = 0 \quad \forall \vec{x} \in V$,
then $U = T_0 = zero transf.$

Pf: Choose an orthonormal basis
$$\beta$$
 for V consisting of
eigenvectors of U .
If $\vec{x} \in \beta$, then $U(\vec{x}) = \lambda \vec{x}$ for some λ .
 $0 = \langle \vec{x}, U(\vec{x}) \rangle = \langle \vec{x}, \lambda \vec{x} \rangle = \overline{\lambda} \langle \vec{x}, \vec{x} \rangle = \overline{\lambda} \|\vec{x}\|^{2}$
 $\Rightarrow \lambda = 0$
 $\therefore U(\vec{x}) = 0$ for $\forall \vec{x} \in \beta$
 $\therefore U = T_{0}$.

-

-