Lecture 23:

Def: Let T be a linear operator on an inner product space V . We say T is self-adjoint (Hermitian) if $T^* = T$. An nxn real or complex matrix A is called self-adjoin $($ or Hermitian) if $A^* = A$. Lemma: Let T be a self-adjoint linear operator on a fin. a fin-dim inner product space ^V . Then : (a) Every eigenvalue of ^T is real . (b) Suppose ^V is real inner product space . Then , the char . poly of ^T splits over IR .

Proof:	(a) Suppose $T(\vec{x}) = \lambda \vec{x}$ for $\vec{x} \neq \vec{0}$.
Then: $T^*(\vec{x}) = \overline{\lambda} \vec{x}$ (\vec{i} is normal)	
$\therefore \lambda \vec{x} = T(\vec{x}) = T^*(\vec{x}) = \overline{\lambda} \vec{x}$	
$\therefore (\lambda - \overline{\lambda}) \vec{x} = \vec{0} \Rightarrow \lambda = \overline{\lambda}$ $\therefore \lambda$ is read.	
(b) Let $n = \dim(V)$, β be an orthonormal basis for V and	
let $A \stackrel{def}{=} TT$ be	
Then: A is self-adjoint. Consider: $LA : \mathbb{C}^n \rightarrow \mathbb{C}^n$	
By (a), the eigenvalues of La are read.	
By Fundamental Thm of Algebra, $f_{LA}(t)$ splits into factors of the form $t - \lambda$ where λ is an eigenvalue of LA .	

: A is real : fLA(t) splits over IR. But $f_{\tau}(t) = f_{L_A}(t)$. So, the result follows.

Theorem: Let T be a linear operator on a fin-dim real inner product space V. Then T is self-adjoint iff 3 orthonormou basis for V consisting of eigenvectors of T. Proof: (=) Suppose T is self-adjoint. By the Lemma, the char poly of T splits over IR . By Schur's Theorem, \exists an orthonormal basis β for V s.t. $A \stackrel{\text{def}}{=} \mathsf{LTI}_{\beta}$ _Lpper triangular. But: $A^{\star} = (\epsilon \top)_{\rho}^{\star} = \epsilon \top^{\star} I_{\beta} = \epsilon \top^{\rho}$ So , ^A is both upper triangular and lower triangular . Hence, A is diagonal. \cdot β consists of eigenvectors of

 \leftarrow) Suppose \exists o*r*thornormal basis ρ for V s.t. $A = L \sqcup I$ is diagonal . Then : $I_{\perp}T^{*}J_{\beta}=(ITJ_{\rho})^{T}=A^{t}=A=(I^{T})_{\beta}$ $i = T^* = T$ τ τ is self-adjoint.

e.g. Consider
$$
A = \begin{pmatrix} 4 & 2 & 2 \ 2 & 4 & 2 \ 2 & 2 & 4 \end{pmatrix}
$$
. Then $\exists P \in O(S)$ is. If MP is diagonal.
\nTo find P explicitly, we first compact the eigenvalues A .)
\n $f_A(t) = (8-t)(2-t)^2$
\nSo the eigenvalues are $\lambda = 2$ and $\lambda = 8$
\nFor $\lambda = 8$, $(1,1,1)$ is an eigenvector.
\nFor $\lambda = 2$, $\{(-1,1,0), (-1,0,1)\}$ is a basis for the eigenspace. E_2
\nbut it is not orthogonal.
\nApplying the Gram-Schmidt process produces the orthogonal basis of $(-1,1,0)$, $(1,1,-2)$ of E_2 .
\nThen an orthonormal basis for \mathbb{R}^3 consisting of eigenvectors of A
\nis given by
\n
$$
\begin{cases} \frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{2}}(1,1,-2), \frac{1}{\sqrt{3}}(1,1,1) \\ \frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{2}}(1,1,-2), \frac{1}{\sqrt{3}}(1,1,1) \end{cases}
$$

\nwhich gives P as
\n
$$
P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{3} \\ 0 & -2\sqrt{3} & 1/\sqrt{3} \end{pmatrix}
$$

 $\overline{\mathbf{r}}$

 α

 \sim cm

 \bullet

Def: Let T be a Linear operator on finite-dim inner
product space V over F. If
$$
||T(\vec{x})|| = ||\vec{x}|| \forall \vec{x} \in V
$$
,
then we call T is a unitary linear operator. (resp.
orthogonal operator) if F = C (resp F = IR)
Lemma: Let U be a self-adjoint linear operator on a fin-dim
inner product span V. If $\langle \vec{x}, U(\vec{x}) \rangle = 0 \forall \vec{x} \in V$,
then $U = T_0 = \text{zero transf}$.

CONTRACTOR

Pf: Choose an orthonormal basis A for V consisting of eigenvectors of U. If $\vec{x} \in \beta$, then $U(\vec{x}) = \lambda \vec{x}$ for some λ . $0 = \langle \vec{x}, U(\vec{x}) \rangle = \langle \vec{x}, \lambda \vec{x} \rangle = \overline{\lambda} \langle \vec{x}, \vec{x} \rangle = \overline{\lambda} ||\vec{x}||^2$ $\Rightarrow \lambda = 0$ $U(\vec{x}) = 0$ for $\forall \vec{x} \in \beta$ \therefore $U = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Thm: For a linear operator T on a fin-dim inner product
(a) $TT^* = T^*T = I$
(b) T preserves the inner product
(c) $T(I_{\beta}) = \{T(\vec{x}), T(\vec{y})\} = \langle X, \vec{y} \rangle$ $\forall \vec{x}, \vec{y} \in V$
(c) $T(I_{\beta}) \stackrel{def}{=} \{T(\vec{v}_1), ..., T(\vec{v}_M)\}$ is an orthonormal basis
$\{W_{\alpha}^{\alpha}, \{W_{\alpha}, \cdots, W_{\alpha}\}}$ orthonormal basis β for V
(d) \exists an orthonormal basis for V
(e) $ T(\vec{x}) = \vec{x} $ for $\forall \vec{x} \in V$