Lecture 2: Subspaces

Recap :

Definition: A vector space over F is a set V equipped w1

\ntwo operations:

\n(addition) + : V \times V \rightarrow V ,
$$
(\vec{x}, \vec{y}) \mapsto \vec{x} + \vec{y} \in V
$$

\n(Scalar multiplication) + : F \times V \rightarrow V , $(\vec{a}, \vec{x}) \mapsto \vec{a} \times \vec{c} \vee$

\n(Scalar multiplication) + : F \times V \rightarrow V , $(\vec{a}, \vec{x}) \mapsto \vec{a} \times \vec{c} \vee$

 $-\cos\theta$

CONTRACTOR

Company

ik.

ie.

Satisfying ⁸ properties :

 $(181) : \vec{x} + \vec{y} = \vec{y} + \vec{x}$ $\vec{x} = \vec{y} + \vec{x}$ $V(sz)$: $(\vec{x}+\vec{y})+\vec{z} = \vec{x}+(\vec{y}+\vec{z})$ $\forall \vec{x}, \vec{y}, \vec{z} \in V$ $\exists \vec{0} \in V$ S.t. $\vec{x} + \vec{0} = \vec{x}$ $\forall \vec{x} \in V$ $+\langle$ (VS3): $(vs4)$: $\forall \vec{x} \in V$, $\exists \vec{y} \in V$ s.t. $\vec{x} + \vec{y} = \vec{o}$ (inverse) $\begin{cases} (vs5) = 1\overline{x} = \overline{x} & \forall \overline{x} \in V \\ (vs6) = \overline{F} (ab) \overline{x} = a(b\overline{x}) & \forall a,b \in F, \forall \overline{x} \in V \end{cases}$ $\hat{F}^{\hat{F}}_{\hat{A}}(\vec{x}+\vec{y}) = a\vec{x}+a\vec{y}$ $\forall a \in F, \forall \vec{x}, \vec{y} \in V$ \int (vs 7) $(a+b)\vec{x} = a\vec{x} + b\vec{x}$ $\forall a, b \in F, \forall \vec{x} \in V$ Remark: an element in F is called scalar. SI V js called vector. \mathcal{M}_c

Proposition: Let V be a vector space over F. Then: (a) The element o in (VS3) is unique, called zero vector. (b) $\forall \vec{x} \in V$, the element \vec{y} in (VS4) is unique, called the additive inverse of \vec{x} (Denote as $-\vec{x}$) (c) $\vec{\chi}+\vec{z}=\vec{y}+\vec{z} \implies \vec{\chi}=\vec{y}$ (Cancellation law) (d) $\overrightarrow{OX} = \overrightarrow{O}$ $\forall \overrightarrow{x} \in V$. (e) $(-a)\vec{x} = -(a\vec{x}) = a(-\vec{x})$ $\forall a \in F, \forall \vec{x} \in V$ (f) $\alpha \overrightarrow{0} = \overrightarrow{0}$ VaeF.

Proof:	(a). If $\vec{0}$ and $\vec{0}$ are two elements satisfying (VS 3).		
Then:	$\vec{0} = \vec{0} + \vec{0}$	$\vec{0}$	$\vec{0} = \vec{0}$
$\vec{0}' = \vec{0} + \vec{0}$	$\vec{0} = \vec{0}$		
(b). Given $\vec{x} \in V$. Suppose we have $\vec{y}, \vec{y}' \in V$ satisfying (VS 4).			
(VS 4). Then:	$\vec{x} + \vec{y} = \vec{0} = \vec{x} + \vec{y}'$	(v, z)	$\vec{0}$
Then:	$\vec{y} = \vec{y} + \vec{0} = \vec{y} + (\vec{x} + \vec{y}') = (\vec{y} + \vec{x}) + \vec{y}' = \vec{y}'$		

(c)
$$
\vec{x} + \vec{z} = \vec{y} + \vec{z}
$$

\n $\Rightarrow (\vec{x} + \vec{z}) + (-\vec{z}) = (\vec{y} + \vec{z}) + (-\vec{z})$
\n $\Rightarrow (\vec{x} + \vec{z}) + (-\vec{z}) = (\vec{y} + \vec{z}) + (-\vec{z})$
\n $\Rightarrow \vec{x} + (\vec{z} + \vec{z}) = \vec{y} + (\vec{z} + (-\vec{z}))$
\n $\Rightarrow \vec{x} = \vec{y}$
\n(d) $0 \vec{x} = (0 + 0) \vec{x}^{\text{(vg)}} = 0 \vec{x} + 0 \vec{x} \Rightarrow \vec{x} = \vec{0}$
\n $\vec{y} + \vec{0} (a + (-a))$
\n(e) $\vec{0} = (a - a) \vec{x} = a \vec{x} + (-a) \vec{x} \Rightarrow (-a) \vec{x} = -(a \vec{x})$

ONE

State

Other part: leave as exercise

CONCERT

$$
(f) \quad a \overrightarrow{o} = a(\overrightarrow{b} + \overrightarrow{c})^{\underbrace{(v \ s \ t)}_{=a \overrightarrow{0}} + a \overrightarrow{0}}
$$

$$
a \overrightarrow{o} + \overrightarrow{o} \quad \implies a \overrightarrow{o} = \overrightarrow{o}
$$

$$
(b \overrightarrow{v} \text{ (c)})
$$

 \blacksquare

 α

 \mathbf{u} can

Subspace	Subspace	N of a vector space V over a field F is
Relinition: A subset W of a vector space V over a field F is called a subspace of V if W is a vector space over F		
under the same addition and scalar multiplication inheited from V		
Proposition: Let V be a vector space over F. A subset W $\subset V$		
is a subspace if f the following S conditions holds:		
(a) $\overrightarrow{O}_V \in W$	(closed under addition)	
(b) $\overrightarrow{X} + \overrightarrow{y} \in W$, $\forall \overrightarrow{X}, \overrightarrow{y} \in W$	(closed under addition)	
(c) $a\overrightarrow{X} \in W$, $\forall a \in F$, $\overrightarrow{X} \in W$	(closed under scalar multiplication)	

 \sim cm

 $\overline{}$ $\overline{\$

Proof:	(\Rightarrow) If W \subseteq V is a subspace, then (b) and (c) must hold because W is a vector spa.
(\vee has an zero element ('. 'W is a vector spa)	
Then:	$\overrightarrow{O}_{W} + \overrightarrow{O}_{W} = \overrightarrow{O}_{W}$ in V.
($\overrightarrow{O}_{W} + \overrightarrow{O}_{W} = \overrightarrow{O}_{W}$ in V).	
\Rightarrow $\overrightarrow{O}_{W} = \overrightarrow{O}_{V}$	
$\overrightarrow{O}_{W} = \overrightarrow{O}_{V}$	
$\overrightarrow{O}_{W} = \overrightarrow{O}_{V}$	

\n- (
$$
\Leftarrow
$$
) If (a) - (c) hold, then addition and scalar multiplication are well-defined on W (by (b) and (c) and (VS3) $\frac{1}{2}$ (lows from (a), (VS1), (VS2), (VS5) - (VS8) hold for V, so they hold for W, so they hold for W, we have $-\vec{x} \in V$.
\n- 1. Let $\vec{x} \in W$ $\begin{array}{ccc}\n & \downarrow &$

CONCERT

 \sim cm

Examples:	For any vector space V,	
${\vec{0}}{C}U$	${C}U$	$(Hivival subspaces)$
For $V = Mnxn(F)$		
${C}^o_k$	$W_1 = \{ \text{diagonal matrices} \} \subset V$	
${C}^o_k$	$W_1 = \{ \text{diagonal matrices} \} \subset V$	
${C}^o_k$	$W_2 = \{ \text{diagonal matrices} \} \subset V$	
${C}^o_k$	$W_3 = \{ \text{A} \in Mnxn(F) : \text{det}(A) = 0 \} \subset V$	
${C}^o_k$	${C}^o_k$	
${C}^o_k$	${C}^o_k$	${C}^o_k$
${C}^o_k$	${C}^o_k$	
${C}^o_k$		

 ω

Parties

• For $V = P(F)$ ($a_0 + a_1x + a_2x^2 + ... + a_nx^n$) P_n $(F) := \{ f \in P(F) : deg(f) \le n \}$ is a subspace $|1_{\Lambda}| \stackrel{def}{=} \{ \int f \in P(F) : deg(f) = n \}$

: Consider
$$
V = F^n = \{(x_1, x_2,...,x_n) : x_j \in F \text{ for } j=1,2,...,n\}
$$

\nConsider linear system:
\n
$$
\begin{cases}\n a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \Leftrightarrow A \overline{x} = \overline{b} \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m\n\end{cases}
$$
\ngivas a subset, the solution set $S \subset V$.
\nIs $S = A$ subspace!!
\n $V = S \text{ if } [b_1, b_2,..., b_m] \neq 0$
\n $V \in S \text{ if } \overline{b} = 0$. (Null space)

 \blacksquare

ie.

 α

 \sim cm

 \bullet

Theorem:	Any intersection of subspaces of a vector span a V is
Proof:	Let $\{W_i\}_{i\in I}$ be a collection of subspaces of V.
Set $W: \stackrel{def}{=} \bigcap_{i\in I} W_i \subset V$.	
': $\overline{O}_V \in W_i$ for VieI : $\overline{O}_V \in W$.	
For any \overline{x}^{eW} and $\overline{y} \in W$, we have $\overline{x} \in W$, $\overline{y} \in W$ for $\overline{x} \in W$, $\overline{x} + \overline{y} \in W$ if for VieI $\Rightarrow \overline{x} + \overline{y} \in W$.	
For $\overline{x} \in W$, $a \in F$, we have $a\overline{x} \in W$; for all i.e I.	
: $a\overline{x} \in W$.	

 \sim \sim

EXECUTIVE CONTRACT OF STRAINING

is W is a subspace.

W, = Subspace ; W2 = subspace \mathcal{L} Win Wz is subspace Is WiuWz a subspace ?? No in general!

Linear combination and Span
Definition: Let V be a vector space over F and SCVA
non-empty subset
• We say a vector $\vec{v} \in V$ is a linear combination of vectors of S
• if \vec{d} and \vec{u} , \vec{u} , ..., \vec{u} are S and $a_1, a_2, ..., a_n \in F$ s.t.\n
• $\vec{v} = a_1 \vec{u}_1 + a_2 \vec{u}_2 + ... + a_n \vec{u}_n$
• \vec{u} is usually called a linear combination of \vec{u} , \vec{u} , ..., \vec{u} and $a_1, a_2, ..., a_n$ the coefficients of the linear combination of Vectors of S, denoted as Span(S), is the set of all linear combination of Vectors of S:
5pan(S) = {a_1 \vec{u}_1 + a_2 \vec{u}_2 + ... + a_n \vec{u}_n : a_j \in F, \vec{u}_j \in S for $j=1,2, ..., n$, $n \in \mathbb{N}$?

Remark: By convention, span (p) def { 0} $e^{\mu\nu}$ \cdot 1 \in Span { $1+x^2$, $1-x^2$ } $*$ $\overline{\mathsf{x}}$

$$
\frac{Example: F^n = span \{ \vec{e}, \vec{e}, \dots, \vec{e} \} where \vec{e}_j = (0, 0, \dots, 1, 0, \dots)
$$
\n
$$
\cdot P(F) = span \{1, x, x^2, \dots, x^m\} = \} \qquad j+th
$$
\n
$$
\cdot M_{n \times n} (F) = span (S) \qquad \qquad \downarrow \delta
$$
\n
$$
S = \{ \vec{e}_j : j^2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \} = \{ \vec{e}_i, j \in \mathbb{Z} \} \quad \text{if} \quad \frac{a_{i1}}{a_{i2}} \} = \{ \vec{e}_i, j \in \mathbb{Z} \} \quad \text{if} \quad \frac{a_{i2}}{a_{i3}} \} = \{ \vec{e}_i, \vec{e}_i, \vec{e}_i \} = \{ \vec{e}_i, \vec{e}_i, \vec{e}_i \} = \{ \vec{e}_i, \vec{e}_i \
$$