
Lecture 2: Subspaces
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Proposition : Let V be a vector space over F
. Then :
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Subspace
Definition : A subset W of a vector space U over a field F is

called a subspace  of V if W is a vector space over F

Under the same addition and scalar multiplication inherited from V
.

Proposition .
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Proof .
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,
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( ⇐ ) If ca ) - Cc ) hold
,
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are well - defined on W ( by (b) and Ces ) and ( V S3 )
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.

( VS I )
,

CVS 2 ) ,
( vs5) - ( VS8) hold for V

, so they hold

for W as well .

Remain to check lust )
.

cV
Let I EW

.

Then
,

we have - I
'

EV
.

F EW
Ur

But - I =  thx
'

E W

( by ca )
,

'

. W is a vector space over F under the same addition and

scalar multiplication .



Examples :
 . For any
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Theorem : Any intersection of subspaces of a vector space V is

a subspace of V
.
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Question: W ,
= Subspace ; Wz = subspace

He

Win Wz is subspace

Is Wiuwa a subspace ? ? No in general !



Linear combination  and Span

Definition : Let V be a vector space over F and SCV a
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.
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