Lecture 21: Recall : Definition: Let V be an inner product space. For $\overline{\mathsf{x}} \in \mathsf{V}$, we can define the length or norm of \overline{x} by:

 $\|\vec{x}\| := \sqrt{\langle \vec{x}, \vec{x} \rangle}$ Proposition: Let V be an inner product space over I. Then, $\forall \vec{x}, \vec{y} \in V$ and $\forall c \in F$, we have: (a) $||c \times || = |c| ||x||$ $||\vec{x}|| \ge 0$, and $||\vec{x}|| = 0$ iff $\vec{x} = \vec{0}$. $|c\rangle$ $|\langle \vec{x}, \vec{y}\rangle| \leq ||\vec{x}|| ||\vec{y}||$ (Cauchy - Schwarz Inequality) (d) $||\overrightarrow{x}+\overrightarrow{y}|| \leq ||\overrightarrow{x}|| + ||\overrightarrow{y}||$ $\left(\int_{0}^{\infty}|\overrightarrow{f}|\right)$ (\overrightarrow{f} inequality)

Apply (c) and (d) to the standard vector space Fⁿ with the
standard inner product :
$$
\vec{a} = (a_1, a_2, ..., a_n)
$$
, $\vec{b} = (b_1, ..., b_n)$

$$
\left| \sum_{i=1}^{n} a_i \vec{b_i} \right| \le \left(\sum_{i=1}^{n} |a_i|^2 \right)^{1/2} \left(\sum_{i=1}^{n} |b_i|^2 \right)^{1/2}
$$

$$
\left(\sum_{i=1}^{n} |a_i + b_i|^2 \right)^{1/2} \le \left(\sum_{i=1}^{n} |a_i|^2 \right)^{1/2} + \left(\sum_{i=1}^{n} |b_i|^2 \right)^{1/2}
$$

 \blacksquare

 \sim \sim

Orth-gonality
Definition: Let V be an inner product span. We say $\vec{x}, \vec{y} \in V$
are orth-gonal (or perpendicular) if $\langle \vec{x}, \vec{y} \rangle = 0$
A subset $S \subset V$ is called orthogonal if any two distinct vectors in S are orthogonal.
A unit vector in V is a vector $\vec{x} \in V$ with $ \vec{x} = 1$.
A subset SCV is called <u>orthonormal</u> if S is orthogonal.
And all vectors in S are unit vectors.

e.g. Let H be the square of continuous complex-valued functions
\non [0,2
$$
\pi
$$
]. We have inner product defined by:
\n $\langle f, g \rangle \stackrel{def}{=} \frac{1}{2\pi} \int_{0}^{2\pi} f(t) \overline{g(t)} dt$ for $f, g \in H$
\nFor any $n \in \mathbb{Z}^{\ell}$ index, let $\int_{1}^{2\pi} f(t) \overline{g(t)} dt$ for $f, g \in H$
\nand consider $S = \{\int_{1}^{2\pi} \sin t \frac{dt}{2} \cos nt + i \sin nt \int_{1}^{2\pi} \cos (m+n) t dt + i \sin n t \int_{1}^{2\pi} \sin (m+n) t dt\}$
\nFor any $m \ne n$, we have:
\n $\langle f_m, f_m \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} e^{imt} \overline{e^{int}} dt = \frac{1}{2\pi} \int_{0}^{2\pi} e^{imt} dt = \frac{1}{2\pi} \frac{(\frac{1}{(m+n)}e)^m}{(\frac{1}{(m+n)}e)^m}$
\n $e^{-ink} = 0$

$$
A^{lso}, \quad \langle f_n, f_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{int} \overline{e_n^{int}} dx = \frac{1}{2\pi} \int_0^{2\pi} 1 dt = 1
$$

Company

E.

i. S is orthonormal subset of H.

Sept.

CONCERN !!

 \sim \sim

 -0.56

 \bullet

Definition: Let V be an inner product space. A subset of V is an arthonormal basis for V if it is an ordered basis which is orthonormal.

\n**Proposition:** Let V be an inner product
$$
Spec
$$
 and $S = \{v_1, \ldots, v_k\}$ be an orthogonal subset of V consisting of non-zero vectors.

\n**Then:** $\forall \vec{y} \in Span(S)$, $\vec{y} = \sum_{i=1}^k \left(\frac{\langle v_i, v_i \rangle}{\|v_i\|^2} \right) v_i$.

Proof: Write
$$
\vec{y} = \sum_{i=1}^{K} a_i \vec{v}_i
$$
 for some $a_1, a_2, ..., a_k \in F$.
\nTake inner product with \vec{v}_j on both sides gives:
\n $\langle \vec{y}, \vec{v}_j \rangle = \sum_{i=1}^{K} a_i \langle \vec{v}_i, \vec{v}_j \rangle = a_j |\vec{w}_j||^2$
\n $\langle \vec{y}, \vec{w}_j \rangle = \sum_{i=1}^{K} a_i \langle \vec{v}_i, \vec{v}_j \rangle = a_j |\vec{w}_j||^2$
\nThen $\forall \vec{y} \in Span(S)$, $\vec{y} = \sum_{i=1}^{K} \langle \vec{y}, \vec{v}_i \rangle \vec{v}_i$

 \mathbf{v} can

ū

Corollary 2: Let S be an orthogonal subset of an inner product
Space V consisting of non-zero vectors. Then, S is linearly
independent.

Proof: If
$$
\sum_{i=1}^{k} a_i \overrightarrow{v}_i = \overrightarrow{0}
$$
 for some $\overrightarrow{v}_1, ..., \overrightarrow{v}_k \in S$ and
 $a_1, a_2, ..., a_k \in F$,

By previous proposition, a
\n
$$
a_i = \langle \overrightarrow{b}, \overrightarrow{w_i} \rangle / ||\overrightarrow{v_i}||^2 = 0
$$
 for $i=1,2,...,k$

 $\overline{}$

 \sim \sim

Prop:	Let V be an inner product space and $S_n = \{t_1, \ldots, t_n\}$
be a linearly independent subset of V. Define:	
$S_n' = \{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_M \}$ where $\vec{v}_1 = \vec{w}_1$ and	
for $k=2, \ldots, n$	
$\vec{v}_k = \vec{w}_k - \sum_{j=1}^{k-1} \left(\frac{\vec{w}_k \vec{v}_j}{\ \vec{v}_j\ ^2} \right) \vec{v}_j$	
Then:	S_n is orthogonal and $S_{pan}(S_n') = span(S_n)$
$\vec{v}_k = \vec{w}_k - \sum_{j=1}^{k-1} \left(\frac{\vec{w}_k \vec{v}_j}{\ \vec{v}_j\ ^2} \right) \vec{v}_j$	
Then:	S_n is orthogonal and $\sum_{j=1}^{k-1} \frac{\vec{v}_j}{\ \vec{v}_j\ ^2} \Rightarrow \vec{v}_j = \vec{v}_j$
$\vec{v}_k = \vec{v}_k$	

Proof:	We prove by induction on n.	
For n=1 , we simply have S ₁ ′ = S ₁ The statement is obvious, true.		
Suppose the statement is true for n= m-1.	Induction, 1	
That's , S _{m1} = { \overrightarrow{v}_{1} , ..., \overrightarrow{v}_{m-1} is orthogonal and $\overrightarrow{h_{1}}$ bypothes.		
Span $(S'_{m-1}) = Span(S_{m-1})$	Im (S_{m-1})	Im (S_{m-1})
Now, consider a lin. independent subset $S_m = \overrightarrow{w_1}, w_2, ... w_{m-1}$, w_m ?		
Then: for $\overrightarrow{v_m} = \overrightarrow{w_m} - \sum_{j=1}^{m-1} \frac{\langle \overrightarrow{w_m}, \overrightarrow{v_j} \rangle}{\ \overrightarrow{v_j}\ ^{2}}$ $\overrightarrow{v_j}$, w_m have:		
$\langle \overrightarrow{v_m}, \overrightarrow{v} \rangle = \langle \overrightarrow{w_m}, \overrightarrow{v} \rangle = \sum_{j=1}^{m-1} \frac{\langle \overrightarrow{w_m}, \overrightarrow{v_j} \rangle}{\ \overrightarrow{v_j}\ ^{2}}$ $\langle \overrightarrow{v_j}, \overrightarrow{v} \rangle$ for i=1, ..., m-1		
$= \langle \overrightarrow{w_m}, \overrightarrow{v} \rangle = - \langle \overrightarrow{w_m}, \overrightarrow{w} \rangle$	$\langle \overrightarrow{w_m} \rangle = 0$	

Also,
$$
\overrightarrow{u}m \neq 0
$$
 sine otherwise, $\overrightarrow{w}m \in Span(S_{m-1})$
\n
$$
G_{mn} = \sum_{m=1}^{n} a_m (S_{m-1})
$$
\n
$$
S_{pan}(\overrightarrow{w}, \overrightarrow{w})
$$
\n
$$
S_{man}(\overrightarrow{w})
$$
\

The above construction of an orthogonal basis is called Gram - Schmidt process .