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Sec. 1.6

Q4 Sol: No, they don’t generate P3(R). What we need to do is to find a polynomial in P3(R)

but not in span{v1, v2, v3}, where v1 = x3 − 2x2 + 1, v2 = 4x2 − x+ 3, v3 = 3x− 2.
Let u = v1 + v2 + v3 + 1, it is obvious that u ∈ P3(R). We will show that u /∈
span{v1, v2, v3}.
If u ∈ span{v1, v2, v3}, we have that v1 + v2 + v3 + 1 = av1 + bv2 + cv3.
Comparing the coefficient of x3, we have a = 1.
Since a = 1, minus v1 at the both side and comparing the coefficient of x2, we have
b = 1.
Since a = 1 and b = 1, minus v1 + v2 at the both side and comparing the coefficient of
x, we have c = 1.
Thus we have v1+v2+v3+1 = v1+v2+v3, contradiction arises! So u /∈ span{v1, v2, v3}.

Q11 Sol: Claim 1: {u+ v, au} is a basis for V .
Indeed, suppose c1, c2 are scalars such that c1(u+ v) + c2(au) = 0⃗. Then

(c1 + c2a)u+ c1v = 0⃗

and by linear independence of {u, v}, c1 + c2a = c1 = 0. As a 6= 0, on solving, we get
c1 = c2 = 0. It implies that {u+ v, au} is linearly independent.
Because {u, v} is a basis for V , V is of dimension 2 and by Corollary 2 in Sec. 1.6,
{u+ v, au} is a basis for V .
(Alternatively, as V = span{u, v}, ∀w ∈ V , ∃ scalars c1, c2 such that

w = c1u+ c2v = c2(u+ v) + a−1(c1 − c2)(au) (∵ a 6= 0).

Hence, V = span{u+ v, au}.
To conclude, since {u+ v, au} spans V and is linearly independent, it is a basis for V .)

Claim 2: {au, bv} is a basis for V .
Indeed, suppose c1, c2 are scalars such that c1(au) + c2(bv) = 0⃗. By linear independence
of {u, v}, c1a = c2b = 0. As a 6= 0 and b 6= 0, c1 = c2 = 0. It implies that {au, bv} is
linearly independent.
Because {u, v} is a basis for V , V is of dimension 2 and by Corollary 2 in Sec. 1.6,
{au, bv} is a basis for V .
(Alternatively, as V = span{u, v}, ∀w ∈ V , ∃ scalars c1, c2 such that

w = c1u+ c2v = (a−1c1)(au) + (b−1c2)(bv) (∵ a 6= 0 and b 6= 0).

Hence, V = span{au, bv}.
To conclude, since {au, bv} spans V and is linearly independent, it is a basis for V .)

1



Q12 Sol: Suppose a, b, c are scalars such that a(u+ v + w) + b(v + w) + cw = 0⃗. Then

au+ (a+ b)v + (a+ b+ c)w = 0⃗.

By linear independence of {u, v, w}, a = a + b = a + b + c = 0. Then, a = b = c = 0.
Therefore, {u+ v + w, v + w,w} is linearly independent.
Because {u, v, w} is a basis for V , V is of dimension 3 and by Corollary 2 in Sec. 1.6,
{u+ v + w, v + w,w} is a basis for V .
(Alternatively, as V = span{u, v, w}, ∀x ∈ V , ∃ scalars a, b, c such that

x = au+ bv + cw = a(u+ v + w) + (b− a)(v + w) + (c− b− a)w.

Thus, V = span{u+ v + w, v + w,w}.
Finally, as {u+v+w, v+w,w} spans V and is linearly independent, it is a basis for V .)

Q14 Sol: We only need to find the basis for them.
Let B1 = {(0, 1, 0, 0, 0), (0, 0, 0, 0, 1), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0)}, we will show that B1 is
a basis of W1.
It is obvious that B1 is linearly independent and B1 is a subset of W1. Then we show
that B1 generates W1.
∀v ∈ W1, we denote v by (a3 + a4, a2, a3, a4, a5). Then we have v = a2(0, 1, 0, 0, 0) +

a5(0, 0, 0, 0, 1) + a3(1, 0, 1, 0, 0) + a4(1, 0, 0, 1, 0) ∈ span(B1)

So B1 is a basis of W1 and the dimension of W1 is 4.

Let B2 = {(0, 1, 1, 1, 0), (1, 0, 0, 0,−1)}, we will show that B2 is a basis of W2.
It is obvious that B2 is linearly independent and B2 is a subset of W2. Then we show
that B1 generates W2.
∀v ∈ W2, we denote v by (a1, a2, a2, a2,−a1). Then we have v = a2(0, 1, 1, 1, 0) +

a1(1, 0, 0, 0,−1) ∈ span(B2)

So B2 is a basis of W2 and the dimension of W2 is 2.

Q15 Sol: ∀i, j ∈ {1, ..., n}, denote by Eij the n× n matrix in which the only nonzero entry is a 1

in the ith tow and jth column.

Method 1: Choose l ∈ {1, ..., n}. ∀i ∈ {1, ..., n} with i 6= l, define H i = Eii − Ell.
It is clear that the set

B = {Eij : i, j ∈ {1, ..., n}, i 6= j} ∪ {H i : i ∈ {1, ..., n}, i 6= l}

is a subset of W . We claim that it is indeed a basis for W .
Suppose A ∈ W . Then ∃ scalars aij ’s for i, j ∈ {1, ..., n} such that A =

∑n
i=1

∑n
j=1 aijE

ij .
As A has trace zero, i.e.

∑n
i=1 aii = 0, or equivalently, all = −

∑n
i=1,i ̸=l aii. Then

A =
∑

1≤i,j≤n

i≠j

aijE
ij +

n−1∑
k=1,k ̸=l

akkH
k.
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It implies that B spans W .
Suppose aij ’s for i, j ∈ {1, ..., n} with i 6= j and b1, ..., bl−1, bl+1, ..., bn are scalars such
that ∑

1≤i,j≤n

i ̸=j

aijE
ij +

n∑
k=1,k ̸=l

bkH
k = 0.

By comparing entries of matrices on both sides, we have aij = 0 ∀i, j ∈ {1, ..., n} with
i 6= j, and bk = 0 ∀k ∈ {1, ..., n} with k 6= l. Thus, B is linearly independent.
All in all, we see that B is a basis for W . Hence,

dimW = n(n− 1) + (n− 1) = n2 − 1.

Method 2: ∀i ∈ {1, ..., n− 1}, define H i = Eii − Ei+1,i+1.
It is clear that the set

B = {Eij : i, j ∈ {1, ..., n}, i 6= j} ∪ {H i : i ∈ {1, ..., n− 1}}

is a subset of W . We claim that it is indeed a basis for W .
Suppose A ∈ W . Then ∃ scalars aij ’s for i, j ∈ {1, ..., n} such that A =

∑n
i=1

∑n
j=1 aijE

ij .
We want to find scalars b1, ..., bn−1 such that

n∑
i=1

aiiE
ii =

n−1∑
i=1

bkH
k = b1E

11 + (b2 − b1)E
22 + · · ·+ (bn−1 − bn−2)E

n−1,n−1 − bn−1E
nn.

As A has trace zero, i.e.
∑n

i=1 aii = 0, we can solve the above equation to get bk =∑k
i=1 aii for any k ∈ {1, ..., n− 1}, whence

A =
∑

1≤i,j≤n

i ̸=j

aijE
ij +

n−1∑
k=1

(
k∑

i=1

aii

)
Hk.

It implies that B spans W .
Suppose aij ’s for i, j ∈ {1, ..., n} with i 6= j and b1, ..., bn−1 are scalars such that

∑
1≤i,j≤n

i ̸=j

aijE
ij +

n−1∑
k=1

bkH
k = 0.

By comparing entries of matrices on both sides, we have aij = 0 ∀i, j ∈ {1, ..., n} with
i 6= j, and

b1 = b2 − b1 = · · · = bn−1 − bn−2 = −bn−1 = 0,

whence bk = 0 ∀k ∈ {1, ..., n− 1}. Thus, B is linearly independent.
All in all, we see that B is a basis for W . Hence,

dimW = n(n− 1) + (n− 1) = n2 − 1.
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Q20 Sol:
(a)Proof: If n = 0, the proof is trivial.

If n > 0, S must contain a vector v1, s.t. v1 is not the 0 vector. If not, S = {0} then S

can not generate V . Contradiction arises!
Let S1 = v1, then we construct Sp from Sp−1, ∀p ≥ 2:
If S is not the subset of span{Sp−1}, we assume vp ∈ S but vp /∈ span{Sp−1} . Let
Sp = Sp−1 ∪ {vp}.
If S is the subset of span{Sp−1}, we stop this scheme.
Claim 1:For the constructed Sk,∀k ∈ Z+, Sk is linearly independent.
when k = 1, the claim holds since S1 = {v1} and v1 6= 0.
We assume the claim holds when k ≤ q − 1, so when k = q, we have Sq = Sq−1 ∪ {vq},
Sq−1 is linearly independent and vq /∈ span{Sq−1}.
So by theorem 1.7, we have Sq is linearly independent. Thus the claim also holds when
k = q.
Therefore the claim holds for ∀k ∈ Z+ by induction.

Claim 2: We can not get the set Sk, k ≥ n+ 1.
If the claim 2 doesn’t hold, there is a set Sn+1 such that Sn+1 is linearly independent
and it contains n+ 1 vector.
So the dimension of span{Sn+1} is n+1. And span{Sn+1} is the subspace of V because
Sn+1 ⊂ S ⊂ V . However, the dimension of V is n which is small than the dimension of
its subspace. That is impossible. So the claim 2 holds.

From claim 2, we assume that the constructing scheme stops at Sk, i.e. S is the subset
of span{Sk}. So V = span{S} ⊂ span{Sk}. Thus V = span{Sk} since Sk ⊂ V .
Since V = span{Sk} and Sk is linearly independent, so Sk is a subset of S that is a basis
of V .

(b)Proof: If S only contains k vectors, k ≤ n− 1.
From (a), we can find a subset of S that is a basis of V . We denote it by U . Then the
dimension of V is not larger that n − 1 since U is a basis of V and U contains n − 1

vector at most. Contradiction arises!
Thus S contains at least n vectors.

Q23 Sol: i. We claim that v ∈ W1 is a necessary and sufficient conditions such that

dim(W1) = dim(W2).

Note that as {v1, ..., vk} ⊂ {v1, ..., vk, v}, W1 ⊂ W2 (by a lemma in Lecture Note 3).
(⇒) Suppose v ∈ W1. Clearly, vi ∈ span({v1, ..., vk}) = W1 ∀i ∈ {1, ..., n}. Then
{v1, ..., vk, v} ⊂ span({v1, ..., vk}) and thus (by the same lemma in Lecture Note 3)

W2 = span{v1, ..., vk, v} ⊂ span(span({v1, ..., vk})) = span({v1, ..., vk}) = W1

Therefore, W1 = W2 and thus dimW1 = dimW2.
(⇐) Suppose dimW1 = dimW2. Because W1 ⊂ W2 and dimW1 = W2, W1 = W2

(by a theorem in Lecture Note 3). Thus, v ∈ {v1, ..., vk, v} ⊂ W2 = W1.
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ii. We claim that in case dim(W1) 6= dim(W2), dim(W2) = dim(W1) + 1.
We first treat the special case when {v1, ..., vk} is a basis for W1. Then dim(W1) = k.
Now, it suffices to show that {v1, ..., vk, v} is a basis for W2, implying dim(W2) =

k + 1.
By definition, {v1, ..., vk, v} spans W2. Suppose c0, ..., ck are scalars such that

c0v + c1v1 + · · ·+ ckvk = 0⃗.

Then c0v = −
∑k

i=1 civi ∈ W1. By the hypothesis that dim(W1) 6= dim(W2) and
(a), v 6∈ W1. As W1 is a vector space, c0v ∈ W1 only if c0 = 0, whence

∑n
i=1 civi = 0⃗.

By linearly independence of {v1, ..., vk}, c1 = · · · = ck = 0. Therefore, {v1, ..., vk, v}
is linearly independent. Hence, {v1, ..., vk, v} is a basis for W2.
Now we go to the general case when v1, ..., vk are arbitrary vectors of W1. Choose
any basis {v′1, ..., v′k′} for W1. Then W1 = span({v′1, ..., v′k′}). We want to show that
W2 = span{v′1, ..., v′k′ , v} so that we can apply the argument in the special case by
replacing v1, ..., vk by v′1, ..., v

′
k′ .

Since v1, ..., vk ∈ W1 = span{v′1, ..., v′k′}, {v1, ..., vk, v} ⊂ span{v′1, ..., v′k′ , v} and
hence W2 ⊂ span({v′1, ..., v′k′ , v}). Similarly, because v′1, ..., v′k′ ∈ W1 = span{v1, ..., vk},
{v′1, ..., v′k′ , v} ⊂ span{v1, ..., vk, v} and hence span({v′1, ..., v′k′ , v}) ⊂ W2. We are
done.

Q24 Sol: Let S = {f (k)(x)}, k = 0, 1, ..., n. We show that S is linearly independent. Since f(x) is
a polynomial of degree n, thus f (k)(x) is a polynomial of degree n− k.
Assume that Σn

k=0akf
(k)(x) = 0, we show that ak = 0, , k = 0, 1, ..., n thus S is linearly

independent.
When k = 0, comparing the coefficient of xn, we have a0 = 0.
We assume that ak = 0 holds when k ≤ p− 1. The when k = p, we have
Σn
k=pakf

(k)(x) = 0

Comparing the coefficient of xn−p, we have ap = 0 since the degree of f (k)(x) is n−p−1

at most when k ≥ p+ 1.
Thus ak = 0 also holds when k = p.
Therefore ak must be equal to 0 by induction, k = 0, 1, ..., n.
So S is linearly independent and contains n+ 1 vectors.
Since the dimension of Pn(R) is n+1, we get that S is a basis of Pn(R) by corollary 2(b).
The assertion of Q24 is true by the definition of basis.

Q26 Sol: Let V = {f ∈ Pn(R) : f(a) = 0}.

Method 1: ∀i ∈ {1, ..., n}, define gi ∈ Pn(R) by gi(x) = xi − ai. We claim that
{g1, ..., gn} is a basis for V and therefore the dimension of V is n.
First, notice that ∀i ∈ {1, ..., n}, gi(a) = ai − ai = 0 and hence gi ∈ V .
Second, suppose c1, ..., cn ∈ R such that c1g1 + · · · cngn = 0. Then

cnx
n + · · · c1x− (cna

n + · · ·+ c1a) = 0.

By comparing coefficients, we get c1 = · · · = cn = 0. {g1, ..., gn} is linearly independent.
Third, fix f ∈ V . ∃c0, ..., cn ∈ R such that f(x) =

∑n
i=0 cix

i. Then
∑n

i=0 cia
i = 0, or
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equivalently, c0 = −
∑n

i=1 cia
i. We have

f(x) =cnx
n + · · ·+ c1x+ c0 = cng1(x) + · · ·+ c1g1(x).

Thus, span({g1, ..., gn}) = V .
Eventually, we see that {g1, ..., gn} is a basis for V and dimV = n.

Method 2: ∀i ∈ {1, ..., n}, define gi ∈ Pn(R) by gi(x) = (x − a)i. We claim that
{g1, ..., gn} is a basis for V and therefore the dimension of V is n.
First, notice that ∀i ∈ {1, ..., n}, gi(a) = (x− a)i = 0 and hence gi ∈ V .
Second, suppose c1, ..., cn ∈ R such that c1g1 + · · · cngn = 0. Putting y = x − a, the
equality becomes cny

n + · · ·+ c1y = 0, which yields cn = · · · = c1. {g1, ..., gn} is linearly
independent.
Third, fix f ∈ V . Define h(x) = f(x + a) ∈ Pn(R). Then ∃c0, ..., cn ∈ R such that
h(x) =

∑n
i=0 cix

i. Note that c0 = h(0) = f(a) = 0. Then

f(x) = h(x− a) =

n∑
i=1

cigi(x).

Thus, span({g1, ..., gn}) = V .
Eventually, we see that {g1, ..., gn} is a basis for V and dimV = n.

Method 3: ∀i ∈ {1, ..., n}, define gi ∈ Pn(R) by gi(x) = (x − a)xi−1. We claim
that {g1, ..., gn} is a basis for V and therefore the dimension of V is n.
First, notice that ∀i ∈ {1, ..., n}, gi(a) = (a− a)ai−1 = 0 and hence gi ∈ V .
Second, suppose c1, ..., cn ∈ R such that c1g1 + · · · cngn = 0. Then

cnx
n + (cn−1 − acn)x

n−1 + (cn−2 − acn−1)x
n−2 + · · ·+ (c1 − ac2)x− ac1 = 0.

So cn = cn−1 − acn = cn−2 − acn−1 = · · · = c1 − ac2 = −ac1 = 0. On solving, we get
c1 = · · · = cn = 0. {g1, ..., gn} is linearly independent.
Third, fix f ∈ V . Since f(a) = 0, by Factor Theorem, ∃g ∈ Pn−1(R) such that
f(x) = (x − a)g(x). Then ∃c1, ..., cn ∈ R such that g(x) =

∑n
i=1 cix

i−1, whence
f(x) =

∑n
i=1 cigi(x) ∈ span({g1, ..., gn}). Thus, span({g1, ..., gn}) = V .

Eventually, we see that {g1, ..., gn} is a basis for V and dimV = n.

Method 4*: (This is an approach to prove the statement assuming that we have
already learnt knowledges in Sec. 2.1 - 2.4.)
Define T : Pn−1(R) → Pn(R) by g(x) 7→ (x − a)g(x). T is in fact a map from Pn−1(R)
to V since ∀g ∈ Pn−1(R), T (g)(a) = (a− a)g(a) = 0. ∀f, g ∈ Pn−1(R), ∀c ∈ R,

T (f + g)(x) = (x− a)(f + g)(x) = (x− a)f(x) + (x− a)g(x) = T (f)(x) + T (g)(x),

T (cf)(x) = (x− a)(cf)(x) = c(x− a)f(x) = cT (f)(x).

Therefore, T : Pn−1(R) → V is a linear transformation.
If g(x) ∈ Pn−1(R) and (x − a)g(x) = T (g)(x) = 0, then clearly g(x) = 0. Hence,
N(T ) = {0}. By Theorem 2.4 in Sec. 2.1, T is one-to-one. ∀f(x) ∈ V , by Factor The-
orem ∃g(x) ∈ P(R) such that f(x) = (x − a)g(x) and by comparing degrees, we know
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that g(x) ∈ Pn−1(R), whence f = T (g). Therefore, T is also onto. As T is one-to-one
and onto, it is invertible.
Finally, by a lemma in Sec. 2.4 (see page 101), dimV = dimPn−1(R) = n.

Method 5*: (This is an approach to prove the statement assuming that we have
already learnt knowledges in Sec. 2.1, especially properties of null spaces)
Define T : Pn(R) → R by f 7→ f(a). Note that ∀f, g ∈ Pn(R), ∀c ∈ R,

T (f + g) = (f + g)(a) = f(a) + g(a) = T (f) + T (g),

T (cf) = cf(a) = cT (f).

Hence, T is a linear transformation from Pn(R) to R. Now we see that the null space
N(T ) of T is equal to V . On the other hand, ∀c ∈ R, T (fc) = fc(a) = c, where fc ∈ Pn(R)
is the constant polynomial with constant term c. Therefore, the range R(T ) of T is equal
to R. Now we apply Dimension Theorem (Theorem 2.3 in Sec. 2.1):

nullity(T ) + rank(T ) = dimPn(R),
∴ dimV + dimR = dimPn(R),

∴ dimV = Pn(R)− dimR = (n+ 1)− 1 = n.

Q31 Sol: (a) As W1 ∩W2 ⊂ W2, dim(W1 ∩W2) ≤ dim(W2) = n by Theorem 1.11, Sec 1.6.
(b) We assume S1 = {v1, ..., vm} is a basis of W1 and S2 = {u1, ..., un} is a basis of W2.

It is obvious that S = S1 ∪ S2 generates W1 +W2.
By theorem 1.9, we get a subset S′ of S such that S′ is a basis of W1 +W2.
S′ contains m+n vectors at most since S = S1∪S2 contains m+n vectors at most.
Therofore, dim(W1 +W2) ≤ m+ n .

7


