THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2040A/B (First Term, 2018-19) Linear Algebra II Solution to Homework 3

Sec. 1.6

Q4 Sol: No, they don't generate $P_3(R)$. What we need to do is to find a polynomial in $P_3(R)$ but not in $span\{v_1, v_2, v_3\}$, where $v_1 = x^3 - 2x^2 + 1$, $v_2 = 4x^2 - x + 3$, $v_3 = 3x - 2$. Let $u = v_1 + v_2 + v_3 + 1$, it is obvious that $u \in P_3(R)$. We will show that $u \notin$

*span{v*1*, v*2*, v*3*}*.

If $u \in span\{v_1, v_2, v_3\}$, we have that $v_1 + v_2 + v_3 + 1 = av_1 + bv_2 + cv_3$.

Comparing the coefficient of x^3 , we have $a = 1$.

Since $a = 1$, minus v_1 at the both side and comparing the coefficient of x^2 , we have $b=1$.

Since $a = 1$ and $b = 1$, minus $v_1 + v_2$ at the both side and comparing the coefficient of x , we have $c = 1$.

Thus we have $v_1 + v_2 + v_3 + 1 = v_1 + v_2 + v_3$, contradiction arises! So $u \notin span\{v_1, v_2, v_3\}$.

Q11 Sol: **Claim 1**: $\{u + v, au\}$ is a basis for *V*.

Indeed, suppose c_1, c_2 are scalars such that $c_1(u + v) + c_2(au) = \vec{0}$. Then

$$
(c_1 + c_2 a)u + c_1 v = \vec{0}
$$

and by linear independence of $\{u, v\}$, $c_1 + c_2 a = c_1 = 0$. As $a \neq 0$, on solving, we get $c_1 = c_2 = 0$. It implies that $\{u + v, au\}$ is linearly independent.

Because $\{u, v\}$ is a basis for *V*, *V* is of dimension 2 and by Corollary 2 in Sec. 1.6, $\{u + v, au\}$ is a basis for *V*.

(**Alternatively**, as $V = \text{span}\{u, v\}$, $\forall w \in V$, \exists scalars c_1, c_2 such that

$$
w = c_1 u + c_2 v = c_2 (u + v) + a^{-1} (c_1 - c_2) (au) \quad (\because a \neq 0).
$$

Hence, $V = \text{span}\{u + v, au\}.$

To conclude, since $\{u + v, au\}$ spans *V* and is linearly independent, it is a basis for *V*.)

Claim 2: $\{au, bv\}$ is a basis for *V*.

Indeed, suppose c_1, c_2 are scalars such that $c_1(au) + c_2(bv) = \vec{0}$. By linear independence of $\{u, v\}$, $c_1 a = c_2 b = 0$. As $a \neq 0$ and $b \neq 0$, $c_1 = c_2 = 0$. It implies that $\{au, bv\}$ is linearly independent.

Because $\{u, v\}$ is a basis for *V*, *V* is of dimension 2 and by Corollary 2 in Sec. 1.6, *{au, bv}* is a basis for *V* .

(**Alternatively**, as $V = \text{span}\{u, v\}$, $\forall w \in V$, \exists scalars c_1, c_2 such that

$$
w = c_1 u + c_2 v = (a^{-1}c_1)(au) + (b^{-1}c_2)(bv)
$$
 (: $a \neq 0$ and $b \neq 0$).

Hence, $V = \text{span}\{au, bv\}$.

To conclude, since *{au, bv}* spans *V* and is linearly independent, it is a basis for *V* .)

Q12 Sol: Suppose *a, b, c* are scalars such that $a(u + v + w) + b(v + w) + cw = \vec{0}$. Then

$$
au + (a+b)v + (a+b+c)w = \vec{0}.
$$

By linear independence of $\{u, v, w\}$, $a = a + b = a + b + c = 0$. Then, $a = b = c = 0$. Therefore, $\{u + v + w, v + w, w\}$ is linearly independent.

Because $\{u, v, w\}$ is a basis for *V*, *V* is of dimension 3 and by Corollary 2 in Sec. 1.6, $\{u + v + w, v + w, w\}$ is a basis for *V*.

(**Alternatively**, as $V = \text{span}\{u, v, w\}$, $\forall x \in V$, \exists scalars a, b, c such that

$$
x = au + bv + cw = a(u + v + w) + (b - a)(v + w) + (c - b - a)w.
$$

Thus, $V = \text{span}\{u + v + w, v + w, w\}.$ Finally, as $\{u+v+w, v+w, w\}$ spans *V* and is linearly independent, it is a basis for *V*.)

Q14 Sol: We only need to find the basis for them.

Let $B_1 = \{(0,1,0,0,0), (0,0,0,0,1), (1,0,1,0,0), (1,0,0,1,0)\}\,$, we will show that B_1 is a basis of W_1 .

It is obvious that B_1 is linearly independent and B_1 is a subset of W_1 . Then we show that B_1 generates W_1 .

∀v ∈ *W*₁, we denote *v* by $(a_3 + a_4, a_2, a_3, a_4, a_5)$. Then we have $v = a_2(0, 1, 0, 0, 0)$ + $a_5(0, 0, 0, 0, 1) + a_3(1, 0, 1, 0, 0) + a_4(1, 0, 0, 1, 0) \in span(B_1)$ So B_1 is a basis of W_1 and the dimension of W_1 is 4.

Let $B_2 = \{(0, 1, 1, 1, 0), (1, 0, 0, 0, -1)\}$, we will show that B_2 is a basis of W_2 .

It is obvious that B_2 is linearly independent and B_2 is a subset of W_2 . Then we show that B_1 generates W_2 .

∀v ∈ *W*₂, we denote *v* by $(a_1, a_2, a_2, a_2, -a_1)$. Then we have $v = a_2(0, 1, 1, 1, 0)$ + $a_1(1, 0, 0, 0, -1)$ ∈ $span(B_2)$

- So B_2 is a basis of W_2 and the dimension of W_2 is 2.
- Q15 Sol: $\forall i, j \in \{1, ..., n\}$, denote by E^{ij} the $n \times n$ matrix in which the only nonzero entry is a 1 in the *i*th tow and *j*th column.

Method 1: Choose $l \in \{1, ..., n\}$. $\forall i \in \{1, ..., n\}$ with $i \neq l$, define $H^{i} = E^{ii} - E^{ll}$. It is clear that the set

$$
B = \{ E^{ij} : i, j \in \{1, ..., n\}, i \neq j \} \cup \{ H^i : i \in \{1, ..., n\}, i \neq l \}
$$

is a subset of *W*. We claim that it is indeed a basis for *W*. Suppose $A \in W$. Then \exists scalars a_{ij} 's for $i, j \in \{1, ..., n\}$ such that $A = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E^{ij}$. As *A* has trace zero, i.e. $\sum_{i=1}^{n} a_{ii} = 0$, or equivalently, $a_{ll} = -\sum_{i=1, i \neq l}^{n} a_{ii}$. Then

$$
A = \sum_{\substack{1 \le i, j \le n \\ i \ne j}} a_{ij} E^{ij} + \sum_{k=1, k \ne l}^{n-1} a_{kk} H^k.
$$

It implies that *B* spans *W*.

Suppose a_{ij} 's for $i, j \in \{1, ..., n\}$ with $i \neq j$ and $b_1, ..., b_{l-1}, b_{l+1}, ..., b_n$ are scalars such that

$$
\sum_{\substack{1 \le i,j \le n \\ i \ne j}} a_{ij} E^{ij} + \sum_{k=1, k \ne l}^{n} b_k H^k = 0.
$$

By comparing entries of matrices on both sides, we have $a_{ij} = 0 \ \forall i, j \in \{1, ..., n\}$ with *i* \neq *j*, and *b*_{*k*} = 0 ∀*k* \in {1, ..., *n*} with *k* \neq *l*. Thus, *B* is linearly independent. All in all, we see that *B* is a basis for *W*. Hence,

$$
\dim W = n(n-1) + (n-1) = n^2 - 1.
$$

Method 2: $\forall i \in \{1, ..., n-1\}$, define $H^i = E^{ii} - E^{i+1,i+1}$. It is clear that the set

$$
B = \{E^{ij} : i, j \in \{1, ..., n\}, i \neq j\} \cup \{H^i : i \in \{1, ..., n-1\}\}
$$

is a subset of *W*. We claim that it is indeed a basis for *W*. Suppose $A \in W$. Then \exists scalars a_{ij} 's for $i, j \in \{1, ..., n\}$ such that $A = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E^{ij}$. We want to find scalars $b_1, ..., b_{n-1}$ such that

$$
\sum_{i=1}^{n} a_{ii} E^{ii} = \sum_{i=1}^{n-1} b_k H^k = b_1 E^{11} + (b_2 - b_1) E^{22} + \dots + (b_{n-1} - b_{n-2}) E^{n-1, n-1} - b_{n-1} E^{nn}.
$$

As *A* has trace zero, i.e. $\sum_{i=1}^{n} a_{ii} = 0$, we can solve the above equation to get $b_k = \sum_{i=1}^{k} a_{ii}$ for any $k \in \{1, ..., n-1\}$, whence $\sum_{i=1}^{k} a_{ii}$ for any $k \in \{1, ..., n-1\}$, whence

$$
A = \sum_{\substack{1 \le i, j \le n \\ i \neq j}} a_{ij} E^{ij} + \sum_{k=1}^{n-1} \left(\sum_{i=1}^k a_{ii} \right) H^k.
$$

It implies that *B* spans *W*.

Suppose a_{ij} 's for $i, j \in \{1, ..., n\}$ with $i \neq j$ and $b_1, ..., b_{n-1}$ are scalars such that

$$
\sum_{\substack{1 \le i,j \le n \\ i \neq j}} a_{ij} E^{ij} + \sum_{k=1}^{n-1} b_k H^k = 0.
$$

By comparing entries of matrices on both sides, we have $a_{ij} = 0 \ \forall i, j \in \{1, ..., n\}$ with $i \neq j$, and

$$
b_1 = b_2 - b_1 = \cdots = b_{n-1} - b_{n-2} = -b_{n-1} = 0,
$$

whence $b_k = 0 \ \forall k \in \{1, ..., n-1\}$. Thus, *B* is linearly independent. All in all, we see that *B* is a basis for *W*. Hence,

$$
\dim W = n(n-1) + (n-1) = n^2 - 1.
$$

Q20 Sol:

(a)Proof: If $n = 0$, the proof is trivial.

If $n > 0$, *S* must contain a vector v_1 , s.t. v_1 is not the 0 vector. If not, $S = \{0\}$ then *S* can not generate *V*. Contradiction arises!

Let $S_1 = v_1$, then we construct S_p from $S_{p-1}, \forall p \geq 2$:

If S is not the subset of $span\{S_{p-1}\}\$, we assume $v_p \in S$ but $v_p \notin span\{S_{p-1}\}\$. Let $S_p = S_{p-1} \cup \{v_p\}.$

If *S* is the subset of $span\{S_{p-1}\}\$, we stop this scheme.

Claim 1: For the constructed S_k , $\forall k \in \mathbb{Z}^+$, S_k is linearly independent.

when $k = 1$, the claim holds since $S_1 = \{v_1\}$ and $v_1 \neq 0$.

We assume the claim holds when $k \leq q-1$, so when $k = q$, we have $S_q = S_{q-1} \cup \{v_q\}$, *S*^{*q*}−1 is linearly independent and $v_q \notin span\{S_{q-1}\}.$

So by theorem 1.7, we have S_q is linearly independent. Thus the claim also holds when $k = q$.

Therefore the claim holds for $\forall k \in \mathbb{Z}^+$ by induction.

Claim 2: We can not get the set $S_k, k \geq n+1$.

If the claim 2 doesn't hold, there is a set S_{n+1} such that S_{n+1} is linearly independent and it contains $n + 1$ vector.

So the dimension of $span\{S_{n+1}\}\$ is $n+1$. And $span\{S_{n+1}\}\$ is the subspace of *V* because $S_{n+1} \subset S \subset V$. However, the dimension of *V* is *n* which is small than the dimension of its subspace. That is impossible. So the claim 2 holds.

From claim 2, we assume that the constructing scheme stops at S_k , i.e. *S* is the subset of span $\{S_k\}$. So $V = span\{S\} \subset span\{S_k\}$. Thus $V = span\{S_k\}$ since $S_k \subset V$. Since $V = span{S_k}$ and S_k is linearly independent, so S_k is a subset of S that is a basis of *V* .

(b)Proof: If S only contains k vectors, $k \leq n-1$.

From (a), we can find a subset of S that is a basis of V. We denote it by U. Then the dimension of *V* is not larger that $n-1$ since *U* is a basis of *V* and *U* contains $n-1$ vector at most. Contradiction arises!

Thus S contains at least n vectors.

Q23 Sol: i. We claim that $v \in W_1$ is a necessary and sufficient conditions such that

$$
\dim(W_1) = \dim(W_2).
$$

Note that as $\{v_1, ..., v_k\} \subset \{v_1, ..., v_k, v\}$, $W_1 \subset W_2$ (by a lemma in Lecture Note 3). (⇒) Suppose $v \in W_1$. Clearly, $v_i \in \text{span}(\{v_1, ..., v_k\}) = W_1 \ \forall i \in \{1, ..., n\}$. Then *{v*1*, ..., vk, v} ⊂* span(*{v*1*, ..., vk}*) and thus (by the same lemma in Lecture Note 3)

$$
W_2 = \text{span}\{v_1, ..., v_k, v\} \subset \text{span}(\text{span}(\{v_1, ..., v_k\})) = \text{span}(\{v_1, ..., v_k\}) = W_1
$$

Therefore, $W_1 = W_2$ and thus dim $W_1 = \dim W_2$. (←) Suppose dim W_1 = dim W_2 . Because W_1 ⊂ W_2 and dim $W_1 = W_2$, $W_1 = W_2$ (by a theorem in Lecture Note 3). Thus, $v \in \{v_1, ..., v_k, v\} \subset W_2 = W_1$.

ii. We claim that in case $\dim(W_1) \neq \dim(W_2)$, $\dim(W_2) = \dim(W_1) + 1$. We first treat the special case when $\{v_1, ..., v_k\}$ is a basis for W_1 . Then $\dim(W_1) = k$. Now, it suffices to show that $\{v_1, ..., v_k, v\}$ is a basis for W_2 , implying dim (W_2) $k + 1$.

By definition, $\{v_1, ..., v_k, v\}$ spans W_2 . Suppose $c_0, ..., c_k$ are scalars such that

$$
c_0v + c_1v_1 + \cdots + c_kv_k = \vec{0}.
$$

Then $c_0v = -\sum_{i=1}^k c_i v_i \in W_1$. By the hypothesis that $\dim(W_1) \neq \dim(W_2)$ and (a), $v \notin W_1$. As W_1 is a vector space, $c_0v \in W_1$ only if $c_0 = 0$, whence $\sum_{i=1}^n c_i v_i = \vec{0}$. By linearly independence of $\{v_1, ..., v_k\}$, $c_1 = \cdots = c_k = 0$. Therefore, $\{v_1, ..., v_k, v\}$ is linearly independent. Hence, $\{v_1, \ldots, v_k, v\}$ is a basis for W_2 .

Now we go to the general case when $v_1, ..., v_k$ are arbitrary vectors of W_1 . Choose any basis $\{v'_1, ..., v'_{k'}\}$ for W_1 . Then $W_1 = \text{span}(\{v'_1, ..., v'_{k'}\})$. We want to show that $W_2 = \text{span}\{v'_1, ..., v'_{k'}, v\}$ so that we can apply the argument in the special case by replacing $v_1, ..., v_k$ by $v'_1, ..., v'_{k'}$.

Since $v_1, ..., v_k \in W_1 = \text{span}\{v'_1, ..., v'_{k'}\}, \{v_1, ..., v_k, v\} \subset \text{span}\{v'_1, ..., v'_{k'}, v\}$ and hence $W_2 \subset \text{span}(\{v'_1, ..., v'_{k'}, v\})$. Similarly, because $v'_1, ..., v'_{k'} \in W_1 = \text{span}\{v_1, ..., v_k\}$, $\{v'_1, ..., v'_{k'}, v\} \subset \text{span}\{v_1, ..., v_k, v\}$ and hence $\text{span}(\{v'_1, ..., v'_{k'}, v\}) \subset W_2$. We are done.

Q24 Sol: Let $S = \{f^{(k)}(x)\}\$, $k = 0, 1, ..., n$. We show that S is linearly independent. Since $f(x)$ is a polynomial of degree n, thus $f^{(k)}(x)$ is a polynomial of degree $n - k$. Assume that $\sum_{k=0}^{n} a_k f^{(k)}(x) = 0$, we show that $a_k = 0, k = 0, 1, ..., n$ thus S is linearly

independent. When $k = 0$, comparing the coefficient of x^n , we have $a_0 = 0$. We assume that $a_k = 0$ holds when $k \leq p-1$. The when $k = p$, we have

 $\sum_{k=p}^{n} a_k f^{(k)}(x) = 0$

Comparing the coefficient of x^{n-p} , we have $a_p = 0$ since the degree of $f^{(k)}(x)$ is $n-p-1$ at most when $k \geq p+1$.

Thus $a_k = 0$ also holds when $k = p$.

Therefore a_k must be equal to 0 by induction, $k = 0, 1, \ldots, n$.

So S is linearly independent and contains $n + 1$ vectors.

Since the dimension of $P_n(R)$ is n+1, we get that S is a basis of $P_n(R)$ by corollary 2(b). The assertion of Q24 is true by the definition of basis.

Q26 Sol: Let $V = \{f \in P_n(\mathbb{R}) : f(a) = 0\}.$

Method 1: $\forall i \in \{1, ..., n\}$, define $g_i \in \mathsf{P}_n(\mathbb{R})$ by $g_i(x) = x^i - a^i$. We claim that ${g_1, ..., g_n}$ is a basis for *V* and therefore the dimension of *V* is *n*. First, notice that $\forall i \in \{1, ..., n\}$, $g_i(a) = a^i - a^i = 0$ and hence $g_i \in V$. Second, suppose $c_1, ..., c_n \in \mathbb{R}$ such that $c_1g_1 + \cdots + c_ng_n = 0$. Then

$$
c_n x^n + \cdots + c_1 x - (c_n a^n + \cdots + c_1 a) = 0.
$$

By comparing coefficients, we get $c_1 = \cdots = c_n = 0$. $\{g_1, ..., g_n\}$ is linearly independent. Third, fix $f \in V$. $\exists c_0, ..., c_n \in \mathbb{R}$ such that $f(x) = \sum_{i=0}^n c_i x^i$. Then $\sum_{i=0}^n c_i a^i = 0$, or

equivalently, $c_0 = -\sum_{i=1}^n c_i a^i$. We have

$$
f(x) = c_n x^n + \dots + c_1 x + c_0 = c_n g_1(x) + \dots + c_1 g_1(x).
$$

Thus, $\text{span}({q_1, ..., q_n}) = V$.

Eventually, we see that ${g_1, ..., g_n}$ is a basis for *V* and dim $V = n$.

Method 2: $\forall i \in \{1, ..., n\}$, define $g_i \in \mathsf{P}_n(\mathbb{R})$ by $g_i(x) = (x - a)^i$. We claim that ${g_1, ..., g_n}$ is a basis for *V* and therefore the dimension of *V* is *n*.

First, notice that $\forall i \in \{1, ..., n\}$, $g_i(a) = (x - a)^i = 0$ and hence $g_i \in V$.

Second, suppose $c_1, ..., c_n \in \mathbb{R}$ such that $c_1g_1 + \cdots + c_ng_n = 0$. Putting $y = x - a$, the equality becomes $c_n y^n + \cdots + c_1 y = 0$, which yields $c_n = \cdots = c_1$. $\{g_1, ..., g_n\}$ is linearly independent.

Third, fix $f \in V$. Define $h(x) = f(x+a) \in P_n(\mathbb{R})$. Then $\exists c_0, ..., c_n \in \mathbb{R}$ such that $h(x) = \sum_{i=0}^{n} c_i x^i$. Note that $c_0 = h(0) = f(a) = 0$. Then

$$
f(x) = h(x - a) = \sum_{i=1}^{n} c_i g_i(x).
$$

Thus, $\text{span}({g_1, ..., g_n}) = V$.

Eventually, we see that $\{g_1, ..., g_n\}$ is a basis for *V* and dim $V = n$.

Method 3: $\forall i \in \{1, ..., n\}$, define $g_i \in \mathsf{P}_n(\mathbb{R})$ by $g_i(x) = (x - a)x^{i-1}$. We claim that ${g_1, ..., g_n}$ is a basis for *V* and therefore the dimension of *V* is *n*. First, notice that $\forall i \in \{1, ..., n\}$, $g_i(a) = (a - a)a^{i-1} = 0$ and hence $g_i \in V$. Second, suppose $c_1, ..., c_n \in \mathbb{R}$ such that $c_1g_1 + \cdots + c_ng_n = 0$. Then

$$
c_nx^n + (c_{n-1} - ac_n)x^{n-1} + (c_{n-2} - ac_{n-1})x^{n-2} + \cdots + (c_1 - ac_2)x - ac_1 = 0.
$$

So $c_n = c_{n-1} - ac_n = c_{n-2} - ac_{n-1} = \cdots = c_1 - ac_2 = -ac_1 = 0$. On solving, we get $c_1 = \cdots = c_n = 0$. $\{g_1, ..., g_n\}$ is linearly independent.

Third, fix $f \in V$. Since $f(a) = 0$, by Factor Theorem, $\exists g \in P_{n-1}(\mathbb{R})$ such that $f(x) = (x - a)g(x)$. Then $\exists c_1, ..., c_n \in \mathbb{R}$ such that $g(x) = \sum_{i=1}^n c_i x^{i-1}$, whence $f(x) = \sum_{i=1}^{n} c_i g_i(x) \in \text{span}({g_1, ..., g_n}).$ Thus, $\text{span}({g_1, ..., g_n}) = V$. Eventually, we see that $\{g_1, ..., g_n\}$ is a basis for *V* and dim $V = n$.

Method 4*: (This is an approach to prove the statement assuming that we have already learnt knowledges in Sec. 2.1 - 2.4.)

Define $T: \mathsf{P}_{n-1}(\mathbb{R}) \to \mathsf{P}_n(\mathbb{R})$ by $g(x) \mapsto (x-a)g(x)$. *T* is in fact a map from $\mathsf{P}_{n-1}(\mathbb{R})$ to V since $\forall g \in P_{n-1}(\mathbb{R})$, $T(g)(a) = (a-a)g(a) = 0$. $\forall f, g \in P_{n-1}(\mathbb{R})$, $\forall c \in \mathbb{R}$,

$$
T(f+g)(x) = (x-a)(f+g)(x) = (x-a)f(x) + (x-a)g(x) = T(f)(x) + T(g)(x),
$$

\n
$$
T(cf)(x) = (x-a)(cf)(x) = c(x-a)f(x) = cT(f)(x).
$$

Therefore, $T: \mathsf{P}_{n-1}(\mathbb{R}) \to V$ is a linear transformation.

If $g(x) \in \mathsf{P}_{n-1}(\mathbb{R})$ and $(x-a)g(x) = T(g)(x) = 0$, then clearly $g(x) = 0$. Hence, $N(T) = \{0\}$. By Theorem 2.4 in Sec. 2.1, *T* is one-to-one. $\forall f(x) \in V$, by Factor Theorem $∃g(x) ∈ P(\mathbb{R})$ such that $f(x) = (x - a)g(x)$ and by comparing degrees, we know

that $g(x) \in \mathsf{P}_{n-1}(\mathbb{R})$, whence $f = T(g)$. Therefore, *T* is also onto. As *T* is one-to-one and onto, it is invertible.

Finally, by a lemma in Sec. 2.4 (see page 101), dim $V = \dim P_{n-1}(\mathbb{R}) = n$.

Method 5*: (This is an approach to prove the statement assuming that we have already learnt knowledges in Sec. 2.1, especially properties of null spaces) Define $T: \mathsf{P}_n(\mathbb{R}) \to \mathbb{R}$ by $f \mapsto f(a)$. Note that $\forall f, g \in \mathsf{P}_n(\mathbb{R}), \forall c \in \mathbb{R}$,

$$
T(f + g) = (f + g)(a) = f(a) + g(a) = T(f) + T(g),
$$

\n
$$
T(cf) = cf(a) = cT(f).
$$

Hence, *T* is a linear transformation from $P_n(\mathbb{R})$ to \mathbb{R} . Now we see that the null space $N(T)$ of *T* is equal to *V*. On the other hand, $\forall c \in \mathbb{R}$, $T(f_c) = f_c(a) = c$, where $f_c \in \mathsf{P}_n(\mathbb{R})$ is the constant polynomial with constant term c . Therefore, the range $R(T)$ of T is equal to R. Now we apply Dimension Theorem (Theorem 2.3 in Sec. 2.1):

$$
\text{nullity}(T) + \text{rank}(T) = \dim \mathsf{P}_n(\mathbb{R}),
$$

.:
$$
\dim V + \dim \mathbb{R} = \dim \mathsf{P}_n(\mathbb{R}),
$$

.:
$$
\dim V = \mathsf{P}_n(\mathbb{R}) - \dim \mathbb{R} = (n+1) - 1 = n.
$$

- Q31 Sol: (a) As $W_1 \cap W_2 \subset W_2$, $\dim(W_1 \cap W_2) \leq \dim(W_2) = n$ by Theorem 1.11, Sec 1.6.
	- (b) We assume $S_1 = \{v_1, ..., v_m\}$ is a basis of W_1 and $S_2 = \{u_1, ..., u_n\}$ is a basis of W_2 . It is obvious that $S = S_1 \cup S_2$ generates $W_1 + W_2$. By theorem 1.9, we get a subset *S*^{\prime} of *S* such that *S*^{\prime} is a basis of $W_1 + W_2$. *S*^{\prime} contains *m* + *n* vectors at most since *S* = *S*₁ *∪ S*₂ contains *m* + *n* vectors at most. Therofore, $\dim(W_1 + W_2) \leq m + n$.