$\overline{10}$

MATH4050 Real Analysis Assignment $3 \cancel{100}$ / 702

There are $\mathscr S$ questions in this assignment. The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.

 $1.$ (3rd: P.52, Q51)

(Upper and lower envelopes of a function) Let f be a real-valued function defined on $[a, b]$. We define the *lower envelope g* of *f* to be the function *g* defined by

> inf $|x-y|<\delta$

and the upper envelope h by
\n
$$
g(y) = \sup_{\delta>0} \inf_{|x-y| < \delta} f(x),
$$
\n
$$
g(y) = \sup_{\delta>0} \inf_{|x-y| < \delta} f(x),
$$
\n
$$
g(y) = \sup_{\delta>0} \inf_{|x-y| < \delta} f(x).
$$
\n
$$
= \lim_{\delta>0} \sup_{|x-y| < \delta} f(x).
$$
\n
$$
f_{\delta}(y) = \inf_{\delta>0} f(y).
$$
\n
$$
f_{\delta}(y) = \inf_{\delta>0} f(x).
$$

 $g(y) = \sup$

*>*0

- at *x*, while $g(x) = h(x)$ if and only if *f* is continuous at *x*.
- b. If *f* is bounded, the function *g* is lower semicontinuous, while *h* is upper semicontinuous.
- c. If φ is any lower semicontinuous function such that $\varphi(x) \leq f(x)$ for all $x \in [a, b]$, then $\varphi(x) \leq g(x)$ for all $x \in [a, b]$.
- χ ^{*} (3rd: P.53, Q52)

(3rd: P.53, Q52)
Let *f* be a lower semicontinuous function defined for all real numbers. What can you say about the sets $\{x : f(x) > a\}, \{x : f(x) \ge a\}, \{x : f(x) < a\}, \{x : f(x) \le a\}, \text{ and } \{x : f(x) = a\}$?

-
- 3. (3rd: P.53, Q53; 4th: P.28, Q56) Let f be a real-valued function defined for all real numbers. Prove that the set of points at which *f* is continuous is a G_{δ} . 4. (3rd: P.53, Q54; 4th: P.28, Q57) on \mathbb{R} continues Prove that the set of f is continuous is a G_{δ} . Hint c = $\bigcap_{\substack{z \ge 0 \\ z \ge 0}} C_{\epsilon}$, where $C_{\epsilon} = \begin{cases} \delta : \exists \delta > 0 \\ s + \exists (s_0) - \frac{1}{2}(s_1) \le \delta \le 0 \\ s \le 0 \end{cases}$
(3rd: P.53, Q54; 4th: P.28, Q57) $\kappa(s) \le C_{\epsilon}$

Let ${f_n}$ be a sequence of continuous functions defined on R. Show that the set *C* of points where this sequence converges is a $F_{\sigma\delta}$. Hint: $C = C_0 C_{\epsilon}$ with C_{ϵ} defined by

For Guestion 5-7, let \tilde{m} be a countably additive measure defined for all sets in a σ -algebra \mathfrak{M} Prove that $c_{\epsilon} = \begin{cases} \frac{1}{2} & \text{if } 1 & \text{if } n \leq 1 \end{cases}$
C_e, $\sqrt{\frac{1}{2} \cdot \frac{1}{2}}$ l $\sqrt{\frac{1}{2} \cdot \frac{1}{2}}$ for $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{$ $\frac{200}{100}$

- 5. (3rd: P.55, Q1; 4th: P.31, Q1) If *A* and *B* are two sets in \mathfrak{M} with $A \subset B$, then $m(A) \leq m(B)$. This property is called monotonicity.
- 6. (3rd: P.55, Q2; 4th: P.31, Q2) Let ${E_n}$ be any sequence of sets in \mathfrak{M} . Then $m(\bigcup E_n) \leq \sum mE_n$.
- 7. (3rd: P.55, Q3; 4th: P.31, Q3) If there is a set *A* in \mathfrak{M} such that $mA < \infty$, then $m\phi = 0$. $\mathcal{M}(E)$, = $\mathcal{F}(E)$ $\mathcal{H}E^2X$

8. (3rd: P.55, Q4; 4th: P.31, Q4) Let $\overline{n}E$ be ∞ for an infinite set *E* and be equal to the number of elements in *E* for a finite set. Show that *n* is a countably additive set function that is translation invariant and defined for all sets of real numbers. This measure is called the **counting measure**. Let \times be a set and **on de**

$$
^{1}Moveovev, for X = \mathbb{R},
$$

$$
m: \mathcal{O}(\mathbb{R}) \Rightarrow [o, \infty]
$$

9. Each
$$
x = R
$$
 and an the 0 - alg of all (lebesgue)
\n
$$
mean
$$
 and 0 are x and x are x
\n $m^*(A) = inf_{m} \left(\frac{m^*(F)}{m} \right)$ and 0 and $m^*(A) = inf_{m} \left(\frac{m^*(F)}{m} \right)$
\nwe define the inner measure m_x by
\n $m_x(A) = sup_{m} \left(\frac{m^*(F)}{m} \right)$ does $F \subseteq A$ and $H \subseteq B$
\n $m_x(B) = sup_{m} \left(\frac{m^*(F)}{m} \right)$ does $F \subseteq A$ and $H \subseteq B$
\n $m_x(E) = m^*(E) \left(\frac{1}{2} + \infty \right)$,
\nand $(partially \text{ conv}(x) = 0)$
\n $H \cap M_x(E) = m^*(E) $(\frac{1}{2} + \infty)$, $E \in \mathfrak{M}$
\n H and 0 have $im_x(k) = 0$
\n 0 and M and $\frac{1}{2} \left(\frac{m}{2} \right) < 0$
\n 0 and M and $\frac{1}{2} \left(\frac{m}{2} \right) < 0$
\n 0 and M and $\frac{1}{2} \left(\frac{m}{2} \right) < 0$
\n 0 and M and $\frac{1}{2} \left(\frac{m}{2} \right) < 0$
\n 0 and M and $\frac{1}{2} \left(\frac{m}{2} \right) < 0$
\n 0 and M and $\frac{1}{2} \left(\frac{m}{2} \right) < 0$
\n 0 and M and $\frac{1}{2} \left(\frac{m}{2} \right) < 0$
\n 0 and M and $\frac{1}{2} \left(\frac{$$