Supplementary concepts in Metric Spaces (Renerant to Function Spaces)
(A) Separable Spaces
(A) Separable Spaces
(A) Separable Spaces
(A) Separable Space (X,d) is said to be separable
if there is a countable dense subset
$$E \subset X$$
.
(i.e. E is countable and $\overline{E} = X$)
egs: · IR is separable as G is countable
and $\overline{GA} = IR$.
· IRⁿ is separable (See the proof of
the Ascoli's Theorem)
· (C[ayb], dw) is separable by Weierstrass Approximation
Thenew: $\mathcal{D} = \text{set of polynomials on [a,b]}$.
Then $\overline{\mathcal{B}} = C[a,b]$.
 $\overline{R} = |R \Rightarrow$ polynomials approximated by polynomials with
reational coefficients in supmann.
Hume $\overline{Pg} = \overline{\mathcal{F}} = C[a,b]$, where

 $\mathcal{D}_{g} = \text{st of polynomials when variable coefficients}$ is countable.

(B) <u>Compactness</u> (Recall in the \$9.1 Ascoli's Thu)

let: A set K in a metric space is said to be compact if every sequence in K has a subsequence converging to a point in K.

(i.e. K is precompact and closed) (i.e. K has Bolzano-Weierstrass property)

(C) Total Boundedness

let (Z, d) be a metric space. SCX is called totally bounded MYEZO, I finite set (XI, ..., Xn) CX St. $S \subset \bigcup_{i=1}^{n} B_{\varepsilon}(X_{i})$.

Thin A metric space X is totally bounded (=) every sequence has a Cauchy subsequence

(I may not complete, Cauchy subseq, may not converge)

They A metric space is compact () it is complete and totally bounded.

Final Exam:

Ch1 Fourier Series

- · Riemann-lebesgue Lemma
- · pointwise and miniform convergence
- · Weiestrass Approximation Theorem
- · L² contregence (mean contregence)

- · Open and Closed Sets
- · Interior, closure & boundary
- Elementary Inequalities for Functions
 (Young's, Hölder's, Minkowski's)

- Ch3 Contraction Mapping Principle
 - · Completeness
 - · Fixed points & Contraction
 - · Perturbation of Identity
 - Inverse Function Theorem (Implicit Function Thm)
 - · Picard-Lindelöf Thm (IVP in ODE)

Ch4 Space of Continuous Functions · Ascolè's Theorem (equi continuity, minform bddness, pre compact) · Arzela's Theorem · Cauchy-Peano Thm (IVP in ODE) · Baire Category Thm (nowhere dense, 1st category, residual) · Applications of Baire Category Thm (es nouhere differentiable contanuous functions & etc)