Supboundary. cmaps in Metric spaces (revariant to function spaces)	
(A) Separable Spaus	
Ref: A matrix space (X,d) is said to be separable	
Qef: A matrix space (X,d) is said to be separable	
Qef: A matrix space (X,d) is said to be separable	
(i.e. E is countable and $\overline{E} = X$)	
eqs: IR is separable and A is countable	
and $\overline{Q} = \mathbb{R}$.	
or \mathbb{R}^n is separable (See the proof of the Section)	
• (C(a,b), d ₀) is separable by Weierstass Approxi	
• Theorem:	$D = set$ of polynomials on [a,b].
• Theorem:	$D = set$ of polynomials on [a,b].
• Theorem:	$\overline{B} = \overline{C} \overline{A} \overline{B} \overline{B}$.
• Theorem:	$\overline{B} = \overline{C} \overline{A} \overline{B} \overline{B}$.
• Theorem:	

 P_{g} = gt of polynomials with rational coefficients is countable.

af But Miais space of bounded functions on cars is nonseparable omitted

B Compactness (Recall in the SF.I Ascoli's Thm)

Def A set K in ^a metric space is said to be compact if every sequence in K has a subsequence converging to a point in K.

(i.e. K is precompact and closed) ie K has Bolzano Weierstrass property

Thus	(X,d) = metric space	
$K \subset X$ <i>cupact</i>		
Then	(1)	K is closed.
(2)	K is bounded.	
(3)	K is computed.	
(4)	K is separable.	

I

$$
\begin{array}{c}\n\hline \text{Thm} & (\mathbb{X}, d) = \text{metric space} \\
\text{Then} \\
\mathbb{K} \text{ is } \text{Cmpact} \text{ (ie Bdgano-Weirstras Property)} \\
\Leftrightarrow \text{Evevy open core of } \mathbb{K} \text{ has a } \text{finite} \\
\text{subcone} & (\text{Heine-Borel Property)}\n\end{array}
$$

^d Total Boundedness

Det let (X,d) be a metric space. SCE is called totally bounded $i\in\mathbb{Z}$ $\forall \epsilon>0$, \exists finite set $\{x_1, ..., x_n\}\subset\mathbb{Z}$ S_t . $S \subset \bigcup_{i=1}^n B_{\varepsilon}(x_i)$.

Thm A metric space X is totally bounded \Leftrightarrow every sequence has a Cauchy subsequence

(I may not complete, Candry subseg, may not coverge)

They A metric space is compact \iff it is complete and totally bounded.

Final Exam:

Chl Fourier Series

- Riemann Lebesgue lemma
- pointwise and uniform convergence
- Weiestrass Approximation Theorem
- L- convergence (mean convergence

Parserval's Identity

Chz Metric Spaces Basic notations

- Open and closed Sets \bullet
- Interior, closure & boundary Ò
- Elementary Inequalities for Functions \bullet (Young's, Holder's, Minkowski's)
- Ch3 Contraction Mapping Principle
	- Completeness \bullet
	- Fixed points & Contraction \bullet
	- · Perturbation of Identity
	- Inverse Function Theorem (Implicit Function Thm)
	- · Picard-Lindelof Thm (IVP in ODE)

Ch4 Space of Continuous Functions · Ascolè's Theorem equicontinuity uniformboldness precompact · Arzela's Theorem · Cauchy-Peano Thm (IVP in ODE) Baire category 1hm (nowhere dense, 1st category, residual) · Applications of Baire Category Thm (eg nowhere differentiable continuous functions & etc)