Further examples

Lef let
$$f:[a,b] \rightarrow |\mathbb{R}$$
 be a function, and
 $L: |\mathbb{R} \rightarrow |\mathbb{R}$
 $X \mapsto x \times t \beta$ for some $a, \beta \in |\mathbb{R}$.
We say \underline{L} crosses f (or f crosses \underline{L})
 $\widetilde{U} \equiv x_0 \in [a,b]$ and $\delta > 0$ such that
 $f(x_0) = L(x_0)$
and either one of the following holds:
 $L(x) \leq f(x)$, $X \in [x_0 - \delta, x_0] \cap [a,b]$
 $L(x) \geq f(x)$, $X \in [x_0 - \delta, x_0] \cap [a,b]$
 $L(x) \geq f(x)$, $X \in [x_0 - \delta, x_0] \cap [a,b]$
 $L(x) \geq f(x)$, $X \in [x_0 - \delta, x_0] \cap [a,b]$
 $L(x) \geq f(x)$, $X \in [x_0, x_0 + \delta] \cap [a,b]$
 $L(x) \geq f(x)$, $X \in [x_0, x_0 + \delta] \cap [a,b]$

If
$$L_1(x) \equiv 1$$
, L_1 doesn't cross f:
at every intersection $(2n+1)\frac{\pi}{2}$, $f(x) < L_1(x) \equiv 1$
for all x in the nbd $((2n+1)\frac{\pi}{2} - \delta, (2n+1)\frac{\pi}{2} + \delta)$
except $x = (2n+1)\frac{\pi}{2}$, for any $0 < \delta < 2\pi$.

Q:
$$f(X) = \begin{cases} |X|^{\frac{1}{2}} \operatorname{alin} \frac{1}{X} , X \neq 0 \\ 0 , X = 0 \end{cases}$$

Then no line L
crosses f at $x_0 = 0$.
All line L passing thro. (0,0)
intersects $y = t|X|^{\frac{1}{2}}$. Then infuite oscillation of f
 \Rightarrow neither (1) nor (11) in the definition fields.

 $\operatorname{Pef}: A \operatorname{function} f:[a,b] \Rightarrow \mathbb{R}$ is said to be
"crosses no lines" if there \tilde{v} no

$$L(x) = \alpha X + \beta$$
 crosses S .

$$\begin{array}{l} \underline{Pf}: \mbox{ Note that}\\ & \end{tabular} C[a_{j}b_{j}] \end{tabular} \mathbb{E} \left\{ f \in ([a_{j}b_{j}]: \exists \mbox{ some } L \end{tabular} crosses f(at \mbox{ some } pt.) \right\}\\ & \end{tabular} where \end{tabular} L(x) = d(x + \beta \end{tabular} (d, \beta \in [R]).\\ & \end{tabular} And we need to show that \end{tabular} C[a_{j}b_{j}] \end{tabular} is of 1st\\ & \end{tabular} category.\\ & \end{tabular} Notation = \end{tabular} \end{tabular} f \in C[a_{j}b_{j}] \end{tabular} and \end{tabular} de [R], we denote\\ & \end{tabular} \int_{-\alpha}^{-\alpha} (x) = \end{tabular} \end{tabular} \end{tabular} is denote\\ & \end{tabular} \end$$

Note that the non-the independent nonvalue, and

$$f_{-n}(t) \leq f_{-n}(x)$$
 is exactly
 $f(t) = -at \leq f(x) - dx$
 $\Leftrightarrow f(t) \leq at + (f(x) - dx) = Lt$ $\forall t \in (k - \frac{1}{n}, x)$
Similarly $f_{-n}(t) \geq f_{-n}(x)$ is exactly
 $f(t) \geq at + (f(x) - dx) = Lt$, $\forall t \in (x, x + \frac{1}{n})$
 $\therefore f \in A_n \Rightarrow f crosses L at x, (Lt = at + (far + ak))$
 $(with \overline{\sigma} = tr and alope (al \leq n.))$
And if f crosses some L at some x, then either
 $f \in A_n$ or $-f \in A_n$ for some n.
 $\Rightarrow f \in A = \bigcup_{n=1}^{\infty} A_n$ or $-f \in A = \bigcup_{n=1}^{\infty} A_n$.
Denote $B = \{f \in C[a,b] = -f \in A\}$.
Then f crosses some lines
 $\Leftrightarrow f \in A \cup B$.
Hence $C[a,b] \setminus Z = A \cup B$.

So we only need to shaw that An is nowhere
danse
$$\forall N$$
, by proving
(1) An is closed $\forall N$, and
(2) $C[a_{j}b] \setminus An$ is dense.
Pfof(1) Let $\{f_{k}\}\ be a seq. in An and $f_{k} \rightarrow f$ in $(C[a_{j}b], d\infty)$.
Since $f_{k} \in A_{n}, \exists \alpha_{k} \in [-n,n]$ and
 $x_{k} \in [a_{i}b]$
s.t. $\int (f_{k})_{-\alpha_{k}(t)} \leq [f_{k})_{-\alpha_{k}(x_{k})}, \forall t \in (x_{k}, x_{k}+t_{k}))$
 $f_{k} \rightarrow \alpha_{k}(t) \geq [f_{k})_{-\alpha_{k}(x_{k})}, \forall t \in (x_{k}, x_{k}+t_{k}))$
By passing to subsequence, we may assume
 $x_{k} \rightarrow x_{0} \in [-N, n]$.
Then $(f_{k})_{-\alpha_{k}(t)} \leq (f_{k})_{-\alpha_{k}(x_{k})}, \forall t \in (x_{k}-t_{n}, x_{k}))$
 $\leqslant f_{k}(t) - \alpha_{k}t \leq f_{k}(x_{k}) - \alpha_{k}x_{k}, \forall t \in (x_{k}-t_{n}, x_{k})$
Now $\forall t \in (x_{0}-t_{n}, x_{0}), \exists k_{0} \geq 0$ s.t.$

)

te(Xk-t, Xk) y k≥ko (Size Xk→Xo) Then $f_k \gg f$ in (C[a,b], d_{∞}), $\alpha_k \gg d_0$ we have $f(t) - dt \leq f(x_0) - d_0 \chi_0$ (by letting k > 100) Since tE(xo-ti,xo) is arbitrary, we've proved $f_{-d}(x) \leq f_{-d}(x_0), \forall t \in (x_0 - t_0, x_0).$ Similarly, one can prove $f_{-d}(x) \ge f_{-d_0}(x_0), \forall x \in (x_0, x_0^{+\frac{1}{n}}).$ Hence fEAn. ... An is closed. * Pf of (2) let B_E(f) C (Ia,b] be a metric ball. If $f \notin An$, then $B_{\varepsilon}^{\infty}(f) \cap (C[a,b] \setminus An) \neq \emptyset$. If fEAn, by Weierstrass Approximation Themen, $\exists a polynomial p s.t. <math>\|p - f\|_{60} < \frac{\varepsilon}{3}$. $g(x) = p(x) + \frac{\varepsilon}{3} p(x) \in C[a,b]$ Refine where q is the mestalicition to [a,b] of the function of period 2r Satisfying 05951 jiq-saw

and slope of the graph of
$$\varphi$$
 is $\pm \frac{1}{r}$ (r>0)
(except the finitely many non-differentiable points).

Then
$$||g-f||_{\infty} \leq ||g-p||_{\infty} + ||P-f||_{\infty}$$

 $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$
 $\Rightarrow q \in B_{\varepsilon}^{\infty}(f).$

Suppose that
$$g \in A_{n}$$
,
then $\exists x \in [a,b]$, $d \in [en,n]$ st.
 $\begin{cases} g_{-d}(t) \leq g_{-d}(x) , t \in (x-t_{n},x) \\ g_{-d}(t) \geq g_{-d}(x) , t \in (x, x+t_{n}) \end{cases}$
If $\varphi(x) \in [o, t_{n}]$, then consider $\forall t \in (x-t_{n}, x)$,
 $p(t) + \xi = \varphi(t) - dt \leq p(x) + \xi = \varphi(x) - dx$
 $\Rightarrow \qquad \varphi(x) - \varphi(t) \geq \frac{2N}{\xi}(x-t) - \frac{2}{\xi}(p(x) - p(t))$

By the property of
$$\varphi$$
, $\exists t$ with $|t-x| < r$ (in both side)
s.t. $\varphi(x) - \varphi(t) \leq -\frac{1}{2}$
Therefore, $\exists r < \frac{1}{n}$, then $\exists t \in (x-t_{1},x) < t$.
 $-\frac{1}{2} \geq \frac{2\alpha}{2} (x-t) - \frac{2}{2} (\varphi(x) - \varphi(t))$
 $\Rightarrow t \leq \frac{4}{2} (L+n)$ where $L = Lip const. of P$.
 $It > \alpha contradiction (as $t > 0$).
Hence $\varphi(x) \in [t_{2}, 1]$.
Then consider $\forall t \in (x, x+t_{2})$
 $p(t) + \frac{2}{2}\varphi(t_{2}) - dt \geq p(x) + \frac{2}{2}\varphi(x) - dx$
 $\Rightarrow \varphi(t) - \varphi(x) \geq \frac{2\alpha}{2}(t-x) - \frac{2}{2}(p(t_{2}) - p(x))$
By the property of φ , $\exists t$ with $|t-x| < r$ (in both sides)
 $s.t. \varphi(t_{2}) - \varphi(x) \leq -\frac{1}{2}$
Therefore, $z_{1} = \frac{1}{2}(t-x) - \frac{2}{2}(\varphi(t_{2}) - \varphi(x))$$

many lines cross f. Hence f monotonic on

some interval => fEC[a,b] \Z. Since CTabJ12 is of 1st Category, any subset of CTa, bJ12 is also of 1st category. > set of cts functions monotonic on some interval is of 1st category. set of its nowhere monotonic functions is ι ι a residual. Remark: The Thin can be used to prove Thin 4.13 too.

Another application of Baire Category Theaem:

Thm 4.14 Every basis of an infinite dimensional Banach space consists of uncountably many vectors.

Pf: Let V be a Banach space.
Suppose on the contrary that V has a
countable band
$$\mathcal{B} = \{w_j\}_{j=1}^{\infty}$$
.
Then $V = \bigcup_{n=1}^{\infty} W_n$,
where $W_n = \operatorname{Span}\{w_1, \dots, w_n\}$.
Claim 1: W_n has empty interia.
Pf: Since V is of infinite dimensional,
 $V \setminus W_n \neq \emptyset$, $\forall n = l_2, \dots$
 $\Rightarrow \{v \in V : |v| = l \leq l \leq W_n \neq \emptyset$, $\forall n = l_2, \dots$
 $\Rightarrow \{v \in V : |v| = l \leq l \leq W_n \neq \emptyset$, $\forall n = l_2, \dots$

 $|v_0| = 1$.

Then $\forall w \in W_n$ and $\varepsilon > 0$, $w + \varepsilon v_0 \in B_{\varepsilon}(w) \land (V \setminus W_n)$

⇒
$$B_2(w) \land (V(Wn)) \neq \emptyset$$
.
... Wrn has empty interion.
Claim 2: Wrn is closed, $\forall n=1,2,...$
Pf: Let $\{V_j\}_{j=1}^{\infty}$ be a seq. in Wrn
and conveges to some $V \circ \in V$.
Note that T: Wrn → IRⁿ
 $\Sigma a_j w_j \mapsto (a_j...,a_n)$
is a vector space isomorphism.
And cause the norm in V, $|\Sigma a_j w_j|_V$
gives a norm on IRⁿ
 $||(a_j...,a_n)|| = |\Sigma a_j w_j|_V$.
Since any two norms on (Rⁿ are equivalent, (Ex!.))
 $||(a_j...,a_n)|| = \overline{a_j^2+\cdots+a_n}$.
 $\Rightarrow \exists c_j c_2 > 0 \text{ s.t.}$
 $||U_{ij} \Rightarrow U_0 \text{ in V}, \{V_k\}$ is Cauchy in (V, 1.1v).

:.
$$\forall E \ge 0, \exists l_0 \ge 0 \text{ s.t.}$$

 $| \forall_2 - \forall_E|_V \le E, \forall l_0 \ge l_0.$
 $\Rightarrow | T \forall_2 - T \forall_E | \le \frac{C_2}{C_1} | \forall_2 - U_E |_V < \frac{C_2}{C_1} \underbrace{E}, \forall_2, k \ge k_0$
 $\Rightarrow | T \forall_2 \le \tilde{u} \text{ Gaucly in } | \mathbb{R}^n (with standard metric))$
By completeness of $| \mathbb{R}^n, \exists a^* = (a^*_1, \dots, a^*_n) \in | \mathbb{R}^n$
 $s.t. | T \forall_2 - a^* | \rightarrow 0 \quad ao \ l \Rightarrow t d 0.$
Let $\psi^* = T^{-1}a^* = \underbrace{\sum}_{j=1}^{n} a^*_j w_j \in W_n,$
we have $| \forall_2 - \psi^* |_V \le C_1 | T \forall_2 - a^* | \rightarrow 0$
 $as \ l \Rightarrow o o.$
By uniqueness of limit, $\psi_0 = \psi^* \Rightarrow \psi_0 \in W_n$.
...
 W_n is closed. This proves (latin 2.)
By (latins $1 \le 2$, W_n is nowlere dense and
 $V = \bigcup_{n=1}^{\infty} W_n$ is of $1 \le Categor_1$. But V is complete,
Here is is impossible. Hence any basis of V connot
be countable. X